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ABSTRACT
Page-based memory management (paging) is utilized by most
of the current operating systems (OSs) due to its rich fea-
tures such as prevention of memory fragmentation and fine-
grained access control. Page-based virtual memory, how-
ever, stores virtual to physical mappings in page tables that
also reside in main memory. Because translating virtual to
physical addresses requires walking the page tables, which
in turn implies additional memory accesses, modern CPUs
employ translation lookaside buffers (TLBs) to cache the
mappings. Nevertheless, TLBs are limited in size and appli-
cations that consume a large amount of memory and exhibit
little or no locality in their memory access patterns, such
as graph algorithms, suffer from the high overhead of TLB
misses.
This paper proposes a new hybrid kernel design targeting

many-core CPUs, which manages the application’s memory
space by segmentation and offloads kernel services to dedi-
cated CPU cores where paging is utilized. The method en-
ables applications to run on top of the low-cost segmented
memory management while allows the kernel to use the rich
features of paging. We present the design and implementa-
tion of our kernel and demonstrate that segmentation can
provide superior performance compared to both regular and
large page based virtual memory. For example, running
Graph500 on top of our segmentation design over Intel’s
Xeon Phi chip can yield up to 81% and 9% improvement
compared to utilizing 4kB and 2MB pages in MPSS Linux,
respectively.
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D.4 [Operating Systems]: Storage Management—Virtual
Memory
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Figure 1: Hybrid paging and segmentation kernel
architecture. Certain system calls issued by the applica-

tion running over the thin segmentation kernel are offloaded

to the paging kernel.

1. INTRODUCTION
Most of the current OSs use page-based memory manage-

ment (paging) to provide virtual memory with rich features
such as memory fragmentation avoidance and fine-grained
protection control. Paging enables these features by defin-
ing the virtual to physical address mapping in steps of small
memory units, called pages. This mapping (i.e., the page
table) is transparently referenced by the memory manage-
ment unit (MMU) during address translation, each time the
execution involves a memory access. Because page tables
also reside in the physical memory, modern CPUs employ
translation lookaside buffers (TLBs), which cache page ta-
ble entries in order to avoid the cost of memory accesses
each time a lookup in the page table is performed.

Supporting TLB is not, however, a sufficient solution in
all situation. Since TLBs are caches, their effectiveness in-
herently depends on the application’s memory footprint, as
well as the memory access pattern’s spatial and temporal lo-
cality. Recent research suggests that TLB cannot eliminate
the paging cost completely and leaves an overhead of 5-14%
of the execution time even for usual applications [10]. The
cost can presumably grow as high as 50% of the execution
time for applications which have unfortunate access patterns
[8, 18].

Taking the emergence of data-centric workloads and large-
scale data analyses in enterprise and scientific computing
into account, the effectiveness of TLBs will likely further
decrease in the future [24]. The continuing increase of the
amount and variety of digital data leads to more diverse
and complex data processing so that meaning can be ex-
tracted from the data. At the same time, more and more
data are kept in memory so that response latency of online



services can be minimized. These processing methods have
complicated and close to random access patterns, which are
unsuitable for TLBs. A typical example is Facebook, where
most of the complex friend linkage data are stored in mem-
ory, which renders the memory footprint large and the access
pattern having little or almost no locality [21].
On the other hand, the latest trend of CPU architecture is

integrating a large number of simple CPU cores (i.e., many-
core CPUs), because improving single core performance by
extracting instruction level parallelism makes the hardware
complex, results in unreasonable increase of die area, design
and verification time, and power consumption [20, 12]. This
architectural trend has created another source of cost for
paging based virtual memory with TLBs: the consistency
problem. To keep each CPU core’s TLB consistent after
memory allocation and deallocation, TLBs must be invali-
dated by software, which if often referred to as TLB shoot-
down. Reportedly, this cost can grow over 10% when dozens
of CPU cores are utilized by applications that frequently up-
date memory mappings and page permissions [25]. Reducing
the cost of paging will thus become an important issue in
the future. TLBs also consume non-negligible energy since
they are accessed on every memory or cache access. Indus-
trial report shows that 3-14% of power consumption of a
core (including cache) can be accounted to TLBs [27].
One way to avoid these taxes of paging is not using paging:

using segmentation. This approach can eliminate all prob-
lems related to paging. Also, since the size of segments can
be variable, there is no need for re-designing the hardware
in response to the increase in memory size, unlike paging,
where changing page size necessitates both hardware and
software changes. Moreover, without paging, the design of
CPU cores becomes simpler by eliminating hardware page
walk handlers, TLBs and other related mechanisms. To use
segmentation, however, one must consider how to supple-
ment the lack of features that paging offers, such as avoid-
ance of memory fragmentation and per-page access control,
which functions may be necessary to some applications or
OS kernels.
We introduce a new design of OS kernel in which the main

OS kernel runs on paging, but certain applications (those
targeting high performance) can be executed using segmen-
tation based memory model. In this design, the OS kernel
using paging (paging kernel) works in harmony with another
tiny kernel, running on another CPU core, which enables
the segmented memory (segmentation kernel). High level
overview is shown in Figure 1. The segmentation kernel
provides a minimalistic execution environment for applica-
tions and delegates kernel functions to the paging kernel.
Utilizing manycore architectures, we use a few cores to ex-
ecute the paging kernel and the rest of the cores may run
over segmentation. Such luxurious usage of CPU cores is not
available in single- or multi-processor architectures since ap-
plications do time sharing over the cores. We describe our
design, reveal some details of the implementation and pro-
vide quantitative measurements on the performance benefits
of segmentation over paging.
The rest of this paper is organized as follows. Section 2

provides background and gives on overview of segmentation,
Section 3 discusses the design and implementation of our hy-
brid kernel. Section 4 provides experimental results, Section
5 surveys related work, and finally, Section 6 concludes the
paper.

2. BACKGROUND

2.1 Segmentation in x86 Architecture
The x86 (or x86-64) architecture has several modes of op-

eration. In this section we describe segmentation on pro-
tected mode, where segmentation can be used without any
restrictions while the length of virtual address and registers
are limited to 32 bits. In segmentation memory model on
protected mode, the virtual address space is defined as a
set of variable-sized address spaces named segments. Each
of these has its own start (base) physical address, size, and
other attributes. These parameters of segments are set to
be matched with their own intended uses.

Figure 2: Address Translation using Segmentation.

The mechanism of segmentation is depicted by Figure 2.
A virtual address in segmentation is a pair of a segment se-
lector, which selects a segment to use, and an offset to the
base address of the segment. There are 6 segment registers
on one core, and they are named CS (Code Segment), DS
(Data Segment), ES, FS, GS and SS (Stack Segment), re-
spectively. CS is used during instruction fetch, SS is used for
instructions which access the stack, such as push/pop and
move instruction which uses the EBP or ESP register as the
offset of the address. DS is used for regular memory access.
The other segment registers, FS, GS are used to make spaces
to store thread-local or core-local data.

Specifically, the segment selector selects an entry in seg-
ment descriptor tables, which is called segment descriptor
and corresponds to a segment. A segment descriptor is a
length of 64 bits, and holds the base address, size, access
permission and other attributes of the segment. A segment
descriptor table is an array of the entry. There are two types
of segment descriptor tables: the GDT (Global Descriptor
Table) and the LDT (Local Descriptor Table). The pri-
mary difference between GDT and LDT is the way how the
address of the table is specified. Although LDT is useful
when several processes run on the same core because LDTR
changes automatically at hardware task switch, we use only
GDT in our implementation, because we currently assume
that only a single thread runs on a core.

To translate a virtual address to physical address, the se-
lector part of the virtual address specifies a segment descrip-
tor. A segment selector is a length of 16 bits, which holds a



bit (TI in Figure 2) to choose between LDT or GDT and a
index in the GDT or LDT. After a entry is selected, the size
and other attributes of the segment are checked to verify the
validity of the memory access, and if valid the physical ad-
dress is calculated by adding offset to the base address of the
segment. To accelerate the translation, segment descriptors
are cached in segment registers and LDTR when a segment
selector is loaded on these registers, which eliminates any
additional memory accesses from the translation.
The x86 architecture offers a memory management mech-

anism which uses paging and segmentation at the same time.
In this mechanism, virtual addresses are translated to lin-
ear address by segmentation and then to physical address
by paging. What we call physical addresses in the above de-
scription of segmentation is strictly linear addresses. In this
research, we enable only segmentation and clear the paging
cost.
In 64 bit mode, where virtual address and some registers

are a length of 64 bits, to the best of our knowledge it is
impossible to disabling paging [16]. In addition, in segmen-
tation with paging in 64 bit mode, the base addresses of
CS, DS, ES, SS are fixed at zero and attributes of segment
descriptors are almost ignored. Paging is thus the primary
memory management mechanism in current x86-64 architec-
tures.

2.2 McKernel
In this section we give a short description of McKernel, a

light-weight kernel for manycore architectures being devel-
oped primarily by the University of Tokyo and RIKEN AICS
[26, 14]. Although our proposed design is implemented on
top of McKernel, we believe the design can be applied to
other OS kernels on manycore architectures. Design princi-
ples of McKernel are small memory and cache footprint and
scalable kernel data structure. To achieve these goals, McK-
ernel supports only necessary functions of OS kernel such as
memory and process/thread management and handling sys-
tem calls, and some unconventional data structures of OS
kernels [14]. It can be used easily and is suitable for ap-
plications with high parallelism, because it maintains Linux
ABI and supports facilities for parallel computing such as
pthreads and OpenMP.
Mckernel runs on Intel’s Xeon Phi coprocessor, which is

currently non-bootable PCI Express device and thus it works
with the help of Linux running on the multi-core host. Both
of these two kernels utilize our Interface for Heterogeneous
Kernels (IHK), which enables memory mapping, interrupt
sending and DMA between a host and a coprocessor. IHK on
manycore is implemented as a kernel code library, and IHK
on host is implemented as a kernel module and has duties
of initializing coprocessor and booting, shutdown and other
management of a OS on coprocessor. Two kernels communi-
cate with Inter Kernel Communication (IKC), which is im-
plemented using IHK and provides asynchronous messaging
facilities.
To execute an application on the co-processor, we use a

special program, mcexec, on host Linux. This program takes
a statically-linked application as the parameter and depute
this to the manycore. The process image of the application
is loaded into the memory of the coprocessor and then McK-
ernel starts execution the application. The process image is
memory-mapped to that of mcexec waiting for offloading of
system calls from McKernel through IKC. Mckernel handles

Figure 3: Flow chart of execution from bootstrap to
exit.

simple system calls by itself, but complex system calls such
as file I/O is forwarded to mcexec and processed in host
Linux. Note that this offloading mechanism is independent
from the one between the segmentation kernel and McKernel
itself.

In current design of McKernel, only one application can
be executed on McKernel at the same time. Implementation
of the proposed design described later is thus also restricted
to that execution model.

3. DESIGN AND IMPLEMENTATION

3.1 General Design
In our design, two types of kernels are working simulta-

neously on the manycore unit. One is a kernel which uses
paging memory management model (paging kernel), and the
other is a tiny kernel which uses segmentation (segmentation
kernel). CPU cores can be divided into these two groups and
by default we boot a paging kernel on the first core. User
communicates only with the paging kernel and she can re-
quest execution of applications on top of the segmentation
kernel(s). The segmentation kernel executes an application
and when system calls or other kernel requests are issued,
it delegates the requests to the paging kernel. Of course,
applications may be executed on the paging cores as well.

Figure 3 presents a flow chart describing the interaction
between the two kernels from the bootstrap to the end of
an application when executed on the segmentation kernel.
Unlike in paging, in segmentation large enough contiguous
physical address ranges are required for both kernel and
user address spaces. The segmentation kernel ranges are
hence reserved by the paging kernel during bootstrap, and
user ranges are either reserved during boot or right before
the execution of an application. The user ranges are also
memory-mapped to a virtual address space of the paging
kernel so that it can read and write to/from the user space
when handling delegated system calls.

To execute an application on the segmentation cores, a
program which delegates the application to the segmentation
kernel is executed on the paging kernel. The delegation in
the program is performed by a special system call, which



writes the process image of the application to the reserved
user range. Subsequently, it notifies the segmentation kernel
to start the execution, waits for system call requests from
the segmentation kernel until the end of the application’s
execution and receives notification when the execution is
finished.
When a system call is issued, the segmentation kernel first

decides based on the system call number whether it delegates
the call to the paging kernel or handles by itself. If the sys-
tem call is delegated, the paging kernel handles the system
call and sends the return value to the segmentation kernel.
The segmentation core simply waits for the return value in
this case. When the application finished execution, the final
return value is sent to the paging kernel, and the segmenta-
tion core starts waiting for the next application. An error
code is sent as a substitute of the final return value if the
application finishes unexpectedly.
If a return value or an error code is sent from the seg-

mentation kernel, the paging kernel then returns from the
delegation system call and the delegation program exits.

3.2 Discussion on the Design
Our proposed design has three advantages. First, applica-

tions can run on top of the low-cost segmentation memory
management model, which can boost performance and can
eliminate paging related power consumption, such as TLBs
and hardware page table walker. This merit will become
more important in the future since the detrimental effect
of paging on performance will likely increase as described
earlier.
Second, OSs can still use the functions of paging if re-

quired. Since segmentation offers limited, coarse-grained
features compared to paging, an OS could become less reli-
able and/or secure in case segmentation was used exclusively
as the method for memory virtualization. In this design,
CPU cores running the paging kernel can still utilize the
fine-grained features of page based virtual memory.
Third, it costs less to implement this design than to im-

plement a full OS from scratch, because the segmentation
kernel can take advantage of various functionalities provided
by the paging kernel. For instance, during the implementa-
tion of the proposed design, we could directly re-use source
codes of most delegated system calls to the paging kernel
(with little or no modification), thus eliminating the need
for extra development. The simple mechanism of segmenta-
tion kernel also makes the kernel code significantly smaller.
An important design consideration is the decision which

system calls are delegated to the paging kernel. Although it
is impossible for some system calls to be implemented with-
out the help of paging, most system calls could be either
delegated or handled directly. There are mainly three points
to consider when deciding whether a system call is handled
by the segmentation kernel or the paging kernel. First, the
call frequency of a specific system call. Since delegation of
system calls inherently takes some time due to the commu-
nication between the two kernels, if system calls are issued
frequently the accumulated cost of delegation may increase
execution time. It is hence a good decision to implement
frequently called system calls in the segmentation kernel to
minimize delegation overhead. Second issue is whether a
system call must be handled in the thread which issues the
system call. There are system calls which are related to
thread local variables or inter-thread communication such

as synchronization. These system calls must not be dele-
gated to the paging kernel. Third point is whether or not
there is any useful code in the paging kernel that could im-
plement a system call. Due to the delegation cost, if the
cost to implement a system call in the segmentation kernel
is lower than that in the paging kernel, implementation in
the segmentation kernel might be the better choice.

Another consideration is when to reserve and memory-
map user ranges for segmentation: during bootstrap or di-
rectly before execution. Both of these have pros and cons. If
choosing the latter, we can make more flexible decisions on
the size of the allocated memory based on the estimation of
the memory footprint of the application, leading to avoiding
reserving unused memory space and leaving more memory to
applications executed on top of the paging kernels. There is
also a possibility that physical memory space is fragmented
at the start of execution and that the application cannot
get enough contiguous memory area to be executed. Al-
though memory compaction can solve this problem at most
case, it imposes more overhead at the start of execution.
If allocating takes place during bootstrap, fragmentation is
not a problem. In contrast, this choice may reserve surplus
unnecessary memory space and cause termination of an ap-
plication on the paging cores due to shortage of physical
memory.

There are also several limitations in our design. To benefit
the most, it is important to choose the suitable applications.
If the application inherently requires features of paging like
per-page access control, it cannot be run on a segmentation
kernel. Also, applications which have complex allocation
and deallocation patterns are unsuitable because they are
subject to cause memory fragmentation. Applications with
high parallelism are more appropriate because they don’t
waste segmentation cores. If running multiple applications
on segmentation cores, the memory footprint of each ap-
plications must be known beforehand to provide sufficient
memory.

3.3 Implementation
The proposed design is implemented on Intel’s Xeon Phi

coprocessor, where McKernel is used as the paging kernel.
The Xeon Phi coprocessor provides hyper-threading mecha-
nism and four hyper-threads can be executed on a physical
processor core. From this point on, we refer to ”a core” as a
hyper-thread.

There are some restrictions of the current prototype im-
plementation. First, a segmentation kernel must run in pro-
tected (32-bit) mode since segmentation without paging is
(to the best of our knowledge) not available on 64-bit mode
in current x86 architectures. Nevertheless, McKernel does
run 64-bit kernel code. This constraint renders an applica-
tion’s memory usage smaller than 4 GB. Also there are sev-
eral interface problems when communicating between McK-
ernel and a segmentation kernel, such as the differences of
system call numbers.

The second is that stack, data and code segments can’t
be separated in a physical address space because they must
have the same base address due to linkers and compilers.
Only two contiguous physical address spaces thus need to
be reserved as a kernel data/stack/code segment and a user
segment, as shown in Figure 4. The kernel space is reserved
when the process image of the segmentation kernel is loaded
into an area of physical memory at the time of loading McK-
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Figure 4: Memory mappings of an application exe-
cuted by the segmentation kernel.

ernel’s process image, and the user space is reserved and
memory-mapped later. Although we could eliminate this re-
striction by modifying the linker and the compiler, we opted
to go for the simpler solution.
The design gives almost the same interface to applications

as the paging kernel, hence applications for this design are
written and compiled in the same way as for McKernel, ex-
cept the modification of the linker script to set the start
address of the text section to 0.
The two kernel communicates on a memory space named

the communication area, which is reserved and memory-
mapped to the virtual address space of McKernel as well.
The area is used when delegating system calls to McKernel
and handling the special system calls described below.
Two system calls were added to McKernel for users to

access segmentation cores: init core , which boots segmen-
tation cores, and load core, which is called just after a issue
of init core and starts to execute an application on segmen-
tation cores.
The init core system call first reserves the user space of

segmentation kernel and memory-maps that regions to an
area of the virtual address space of McKernel. User space
is reserved just before the execution on a segmentation ker-
nel because it must be memory-mapped to an area in the
user space of the delegation program due to the system call
delegation to the host Linux. McKernel then boots all seg-
mentation cores, waits until all cores are booted and returns
from the system call. Each segmentation core gets a boot
request with some variables such as the base physical ad-
dress of the kernel code, which is needed to set the GDT.
The bootstrap includes the setting of the GDT and other
usual settings. A segmentation core notifies McKernel when
booted, and spinlocks with a exec flag of the core in the
communication area.
The load core system call gets the start address of a memory-

mapped ELF object image as the argument, and first ex-
pands it to a process image of the application. Tload core
then selects a segmentation core to execute the application,
and sends the selected core the entry point address, the
initial value of stack pointer and the size of data segment
through the communication area. When all values are writ-

ten, exec flag is set so that the segmentation core can start
to execute the application. McKernel then waits for the
termination of the execution and system call delegation re-
quests. The unlocked segmentation core sets the GDT (user
code/data/stack segment), switches to user mode and exe-
cute the application.

If a system call is delegated during execution, arguments
of the system call are passed through a special structure in
the communication area. At delegation, a segmentation core
locks the structure to prohibit others cores to overwrite the
argument which is used by McKernel. Segmentation cores
notify the arrival of a system call to McKernel by setting a
flag of system call after all arguments had been written to
the communication area. The segmentation core then waits
until the arrival of a return value of the system call with
which it returns to user mode.

4. EVALUATION

4.1 Experimental Setup
All experiments were carried out on Intel’s Xeon Phi co-

processor, with hardware specifications shown in Table 1.
Data and instruction caches as well as TLBs are per-core
resources.

Processor Intel’s Xeon Phi Knight Corner
60 cores, 4 hyper-threads/core
1.0 GHz

L1 DTLB 4KB: 64-entry
64KB: 32-entry
2MB: 8-entry 4-way assoc.

L1 ITLB 4KB: 32-entry
L2 TLB 4KB&64KB&2MB: 64-entry

L1 D cache 32KB 8-way assoc.
L1 I cache 32KB line size:

L2 D/I cache 512KB 64 byte
RAM (GDDR5) 8GB

Table 1: Hardware specification. D and I stands for

data and instruction, respectively.

Note that each core provides 64 L2 TLB entries, regardless
the size of the mapping. Consequently, using large pages the
TLB cache can cover 128MBs of virtual memory, which as
we will see later corresponds to our measurements.

4.2 Results

4.2.1 Random Memory Access
The first measurement we performed is a micro bench-

mark to assess randommemory access performance for which
we used a standard code from the HPC Challenge Bench-
mark [2]. We used array sizes up to 2GB for this experiment
and rewrote the algorithm in x86 assembly to make sure that
the exact same codes run on both of 32-bit kernel (our de-
sign) and the 64-bit kernel (McKernel). Random access is
an important workload in our case because its access pattern
exhibits close to zero locality and thus it provides insights
to what extent segmentation may improve performance.

Results are shown in Figure 5 as the function of the amount
of memory used. As seen, random access with segmentation
is significantly faster than both of 4kB and 2M pages. If
more memory could be used, the difference would be likely



Figure 5: Normalized execution time of random ac-
cess benchmark using 4kB/2MB pages compared to
segmentation as the function of memory footprint.

even larger. In fact, approximations provided by [8] assess
that 83% and 53% of the execution time would be spent on
page walks accessing a 64GB array if using 4KB pages and
2MB pages, respectively. Our actual measurements reveal
similar tendencies. At memory usage of less than 32kB, seg-
mentation is 22% faster than regular pages and 26% faster
than large pages. This is because TLB lookup cost of cache
access is eliminated on segmentation. At 64kB a non-linear
increase of execution time happens and the ratio between
segmentation and paging becomes 11-17% due to the over-
flow of the L1 data cache. The gap between segmentation
and 4kB pages is especially larger at 512kB, because at this
point it exceeds the size of L2 TLB, but not the L2 cache,
and thus resulting in relatively higher impact of the L2 TLB
misses. From 32MB on, performance gap between segmenta-
tion and regular pages increases steadily and reaches almost
200% at 2GB.
Although segmentation is only about 15% faster than large

pages at 2GB, the memory footprint is relatively smaller
compared to memory size of current computer systems, and
thus, the performance gap may increase significantly in large
memory practical use cases, assuming segmentation would
be available in 64-bit execution mode.

4.2.2 Graph500
In order to explore the benefits of segmentation on a real

application we chose to evaluate our design using the Graph500
benchmark [1]. Graph500 is a community effort backed by
over 50 international HPC experts to create a set of bench-
marks that truly represents data intensive applications in ar-
eas such as cybersecurity, medical informatics, data enrich-
ment, social networks, and symbolic networks. The bench-
mark generates a undirected graph and consequently per-
forms multiple breadth-first search operations on it.
We measured the performance of Graph500 in three set-

tings. First, running it over our segmentation design where
system calls are offloaded to McKernel cores, as described
earlier. We then compared the results to executions over
Intel’s MPSS Linux (the default software stack provided for
the Xeon Phi) using 4kB and 2MB pages. In order to make
the comparison fair, we use the same random seed for graph

Figure 6: Normalized average execution time of BFS
search in Graph500 using 4kB/2MB pages on MPSS
Linux compared to segmentation with McKernel as
the function of graph scale.

generation and the same set of start vertices for the BFS
search. Also, we utilize graphs with large number of ver-
tices and low edge factor so that we can get relatively large
graphs even in the 32 bit address space (i.e., for segmenta-
tion). Note, that MPSS Linux runs the benchmark in 64-bit
mode. In our prototype implementation, we currently only
support one thread and thus we provide results only for se-
quential execution. Support for multi-threaded execution is
part of our future agenda.

Results are shown in Figure 6. The X axis represents the
size of the graph up to the maximum scale we could squeeze
into the 32 bit address space. Y axis is the execution time
of the average BFS search when using 4kB and 2MB pages
normalized to the segmentation performance.

As seen, for small graph size (SCALE equals 21), both
4kB and 2MB pages perform better than segmentation. We
believe this might have something to do with the fact that
the Xeon Phi doesn’t cache all segment registers and access-
ing memory that is entirely covered by the TLB entries may
be slightly faster than using segmentation or perhaps some
differences between the 32-bit and 64-bit executions. Never-
theless, at SCALE of 23 performance of both 4kB and 2MB
pages starts to degrade when compared to segmentation. As
seen, for SCALE 25, the benefits of segmentation becomes
approximately 81% and 9% against 4kB and 2MB page sizes,
respectively. We believe these results are extremely promis-
ing, considering that increasing the memory size we would
very likely see even more benefits.

5. RELATED WORK
To the best of our knowledge, our design is the first at-

tempt to utilize segmentation mechanism (with an actual
implementation) for the purpose of high performance com-
puting. The most relevant research similar to our approach
is direct segment [8], a work that appeared in parallel with
our efforts. The authors of direct segment showed that to-
day’s big-memory workloads seldom exploit the functions of
paging and proposed a hardware extension, called direct seg-
ment, which translates a range of virtual addresses to phys-
ical address without any memory access while paging works



normally in the other parts of virtual address space. The
OS reserves a contiguous physical address range, maps it
into the virtual address space via a so called primary region,
and uses this space when memory spaces with read/write ac-
cess permission is requested. This enables the application to
manage most of its memory by segmentation in the low-cost
part and can reduce TLB misses of big-memory workloads
significantly.
There are three main points which distinguish our work

from this effort. First, the most important limitation of
direct segment is that it explicitly requires hardware modifi-
cation. Although some features of segmentation in the cur-
rent 64-bit x86 architecture are disabled by default, which
restricted us to implement our design only in 32-bit mode,
we believe re-enabling full support for segmentation in 64-
bit mode would be relatively straightforward. Second, due
to the fact that there is no hardware available with direct
segment support, authors in [8] could only approximate the
benefits of such system by carefully calculating the cost of
TLB misses. In contrast, we provide an implementation and
reveal actual measurements on real hardware. Finally, al-
though direct segment also combines segmentation and pag-
ing, the authors intention is to utilize paging and segmenta-
tion in tandem on the same CPU core which in fact is the
reason that makes hardware modifications necessary. On
the contrary, we utilize a hybrid approach with CPU core
specialization, a technique increasingly viable on many-core
architectures, to offload system services to CPU cores where
rich features of paging can be taken advantage of.
Several studies on paging overhead proposed more effi-

cient TLB designs and they often employ naturally-occurred
contiguity of address mappings. SpecTLB [7] infers trans-
lated addresses from contiguity of mapping at TLB misses
and speculatively continues execution in parallel with page
walks. CoLT [23] is another design which stores multiple
consecutive address mappings in single TLB entries. MMU
caches along with the necessary software support were pro-
posed in [11], where the intention is to coalesce consecutive
PTEs in MMU caches and to share MMU caches by multi-
ple CPU cores. Most of these works, however, only mitigate
paging cost, and cannot eliminate it completely, although
they retain all features of paging. Also, most of these stud-
ies make hardware even more complicated. In our design,
paging cost is eliminated exhaustively, but hardware design
remains the same or could become even simpler.
Support for large pages are one of the current solutions

to high overhead of paging. If modifying applications and
using libraries such as libHugeTLBFS [4] or using the mmap
system call with a special flag, large pages can be enforced
explicitly. Mechanisms to automatically use large pages were
also studied [28, 19] and recently introduced to Linux known
as Transparent Hugepage [6]. Architectures, which support
very large mappings, can also provide an alternative solution
to segmentation via employing very large TLBs, as demon-
strated by Yoshii et al. for BlueGene/P [29]. While large
pages currently succeed in considerably mitigating paging
overhead, their success will not continue forever due to vari-
ous difficulties in applying them to ever larger memory sizes
as Basu et al. argue in [8].
Some extinct OSs used segmentation, but both the de-

tails and usage of these mechanisms are very different from
that of today’s x86 architecture. For example, Multics is
a famous old OS used segmentation [9]. However, Multics

used segmentation on top of paging, which is the opposite
of our design. iMAX [17] is a OS on iAPX 432 micropro-
cessor architecture, which doesn’t support paging but only
segmentation [15]. Although the mechanism of segmenta-
tion in iAPX 432 is similar to that of x86, check of access
right is far more detailed in iAPX 432. iAPX 432’s pur-
pose of segmentation is not performance but protection of
data abstraction and due to its complex design, the machine
was significantly slower than other computer systems at that
time, which resulted in its commercial failure [3, 13].

For hybrid kernel designs, the most similar work to our
proposal is FusedOS [22]. FusedOS runs HPC applications
on top of a lightweight kernel (ensuring very low OS noise),
which in turn offloads system calls to a general purpose
Linux kernel. Although the offloading mechanism is simi-
lar to the technique how the proposed segmentation kernel
obtains system services from McKernel, FusedOS doesn’t
address the TLB issue. Another interesting OS design which
provides specialized kernel for certain applications was pro-
posed in Libra [5]. Libra provides an execution environment
specialized for IBM’s J9 JVM using a hypervisor partition,
which transparently relies on an instance of Linux in an-
other hypervisor partition to provide a networking stack, a
filesystem, and other OS services.

6. CONCLUSION AND FUTURE WORK
In this paper, we have designed and implemented a hybrid

OS kernel, where some CPU cores run on paging and rest
utilize segmentation over Intel’s Xeon Phi coprocessor. Run-
ning applications over segmentation can completely elimi-
nate the cost of paging, such as overhead of TLB misses
and page walks as well as the energy consumption associ-
ated with TLB support. In our design, applications exe-
cuted on the segmentation kernel can transparently obtain
OS services from dedicated CPU cores that execute in pag-
ing setup, and thus, can take advantage of the rich features
of paging during system call execution.

Although our current implementation is restricted to 32-
bit mode, we have successfully demonstrated that segmen-
tation can provide superior performance compared to both
regular and large page based virtual memory. For instance,
running Graph500 on top of our segmentation design can
yield up to 81% and 9% improvement compared to utiliz-
ing 4kB and 2MB pages in Intel’s MPSS Linux, respectively.
Furthermore, our experiments also showed that rich features
of paging are unnecessary for HPC applications. Most im-
portantly, we believe that hardware vendors of the x86 archi-
tecture should indeed consider full support for segmentation
in 64-bit execution mode due to its potential benefits to the
HPC community.

In the future, we intend to provide support for multi-
threading in the segmentation kernel and further evaluate
applications not only from a performance perspective but
also in terms of OS noise.
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