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† Télécom SudParis, Institut Polytechnique de Paris, France, francois.trahay@telecom-sudparis.eu

‡ RIKEN Center for Computational Science, Japan, {jens.domke, aleksandr.drozd, emil.vatai, bgerofi}@riken.jp
§ College of Computer and Information Science, Southwest University of China, China, liaotoad@hotmail.com

¶ Tokyo Institute of Technology, Tokyo, Japan
‖ Amigawa GK, Tokyo, Japan

Abstract—Stochastic gradient descent (SGD) is the most preva-
lent algorithm for training Deep Neural Networks (DNN). SGD
iterates the input data set in each training epoch processing data
samples in a random access fashion. Because this puts enormous
pressure on the I/O subsystem, the most common approach to
distributed SGD in HPC environments is to replicate the entire
dataset to node local SSDs. However, due to rapidly growing
data set sizes this approach has become increasingly infeasible.
Surprisingly, the questions of why and to what extent random
access is required have not received a lot of attention in the
literature from an empirical standpoint.

In this paper, we revisit data shuffling in DL workloads to1
investigate the viability of partitioning the dataset among workers
and performing only a partial distributed exchange of samples
in each training epoch. Through extensive experiments on up
to 2,048 GPUs of ABCI and 4,096 compute nodes of Fugaku,
we demonstrate that in practice validation accuracy of global
shuffling can be maintained when carefully tuning the partial
distributed exchange. We provide a solution implemented in
PyTorch that enables users to control the proposed data exchange
scheme.

I. INTRODUCTION

Deep Learning (DL) is a class of machine learning meth-
ods that is based on Deep Neural Networks (DNNs). Deep
learning’s success has been fueled mainly by two phenomena,
the availability of large amounts of data and the continuous
improvements in computational power to analyze the data.
In particular, training DNNs is extremely computationally
intensive, which has sparked a growing interest not only in
creating DL targeted specialized hardware, but also in the
utilization of large-scale supercomputers for such workloads.

As neural networks become more complex and require an
increasing amount of computing power, ever larger quantities
of data are required to train accurate models. Needless to say,
the size of data keeps growing rapidly. For instance, while
the ImageNet dataset is 140 GiB, recent datasets such as
DeepCAM [5], or YouTube-8M [2] already consist of terabytes
of data. Because of the large datasets, and the complex neural
networks, many machine learning applications now need to be

Fig. 1: Dedicated node local storage on fifteen of the fastest
supercomputers from the TOP500 list [1] vs. data set sizes.
Datasets from top to bottom: [2], [3], [4], [5], [6], [7], [8],
[9], [7].

distributed over many workers1 to speed up training and to fit
the dataset in memory.

Distributing the training of a neural network in a data par-
allel fashion over compute nodes of a supercomputer requires
loading the input samples on compute nodes so that each
node can process a subset of the samples at each training
epoch. This is either done by storing the entire dataset on
compute node local storage, or by each node reading a subset
of the samples from the parallel file system (PFS). As datasets
become larger, storing the entire dataset on local storage
becomes impossible since they exceed storage capacities. See
Section II for more details and Figure 1 for an illustration of
the problem. Similarly, reading from the parallel files system
puts an enormous pressure on the storage nodes because many
compute nodes read terabytes of data simultaneously [10],
[11]. Moreover, to improve generalization, distributed neural
network training shuffles the data at each epoch so that nodes

1A worker in data parallel DNN training is a processing element that
maintains and trains its own local copy of the model.
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can randomly access input samples, which further increases
the I/O requirements of deep learning applications.

This random access to the input samples has been in
fact identified as one of the major contributors to poor I/O
performance in HPC systems and various solutions have been
proposed to tackle this issue at the level of the I/O subsys-
tem [5], [12], [13], [14], [15]. Nevertheless, it is the overarch-
ing consensus that random shuffling input elements is a strict
requirement and most I/O approaches take this for granted.
There have only been a few studies in the past that approach
the I/O bottleneck of deep neural network training with an
investigative eye on the shuffling procedure itself. Moreover,
they provide limited insights on how different approaches
impact training accuracy or performance at scale [16], [17].

In this paper, we revisit data shuffling strategies when
scaling deep learning applications to a large number of
workers. We develop a method that allows us to control
the fraction of the dataset that is globally shuffled in each
epoch. In our method we implement the following shuffling
strategies. Global shuffling (i.e., all of the dataset is shuffled
and distributed across workers), local shuffling (i.e., each
worker uses the same part of the dataset for each epoch), and
a novel partial-local shuffling strategy that exchanges only a
configurable proportion of the dataset among workers in each
epoch and leaves the rest local. Using our method requires
very few changes to existing PyTorch training scripts, does not
require any changes to the PyTorch framework itself, and could
support any arbitrary format for the samples by implementing
a loader for the data.

We provide a proof that partial local shuffling produces
the same gradients as global shuffling, and we discuss some
factors that could have an unidentifiable effect when training
with partial local shuffling. We further investigate the practical
conditions for assuring that the shuffling error without dom-
inating the convergence rate. For empirical results, we use
our solution to train DNNs on several datasets and we study
the impact of various shuffling strategies on accuracy when
scaling to a large number of workers. To much of our surprise,
the experiments reveal that local shuffling often achieves a
similar accuracy as global shuffling, even when scaling to
1,024 workers. In some cases, local shuffling degrades the
accuracy. The partial-local shuffling strategy then achieves
similar accuracy as global shuffling while only requiring to
store to up to 0.03% of the whole dataset. In addition, for
data sets that do not fit locally in the first place, partial-local
shuffling can improve accuracy compared to the local only
access. This opens the doors for leveraging the potential of
locality in large scale training of large datasets, and addresses
the DL I/O challenge at its root: avoid I/O when possible.

The contributions of this paper are as follows:

• We implement a dataset partitioning, shuffling, and redistri-
bution solution for distributed training (synchronous SGD).
Our solution requires minor modification to PyTorch training
scripts, a load handler for the dataset, and no modifications
to the PyTorch framework itself.

• We show that in the overwhelming majority of our experi-
ments local shuffling achieves similar validation accuracy as
the default global shuffling strategy.

• Experiments on Fugaku with up to 4096 workers show that
partial-local shuffling achieves the same accuracy as global
shuffling, while requiring to store only a very small fraction
(0.03%) of the dataset.

• We show that on ImageNet-1K (and ImageNet-21K) we
converged to 69% (44%) of top-1 validation accuracy of the
global shuffling with an exchange factor of 0.3, while local
shuffling lags behind by 10% (3%). We also improve the
validation accuracy of DeepCAM by 2% when using partial
shuffling in replacement of local shuffling.

• The training time obtained with local shuffling (and partial
shuffling in most cases) is up to 5x lower than that of global
shuffling.

• We demonstrate that our solution provides a qualitative
advantage for systems that have little or no local storage
on their compute nodes.

II. BACKGROUND AND MOTIVATION

Data sizes of input sets in large scale deep learning have
been increasing steadily. While the original ImageNet dataset
is only approximately 140 GB in size [7], newer data sets
are becoming larger. The red horizontal lines in Figure 1
provide an overview of some of the data sets widely used
for deep learning training. For example, the Youtube-8M
features dataset used in video models is 1.5 TB [2], the
DeepCAM data set used as a benchmark in high-performance
computing environments is about 8.2 TB [5], while the Google
OpenImages dataset has a total size of about 18 TBs [4].

Using stochastic gradient descent (SGD), training jobs run
multiple epochs (usually in the range of 50-100 [18]), where
each epoch passes over the entire training data in a random
access fashion. A reshuffle of the dataset is typically done
before each epoch. Due to the high bandwidth requirement
as well as the random nature of accessing input samples,
DL workloads exert enormous I/O pressure. Training from
the Parallel File Systems (PFS), typically available in HPC
centers, is infeasible. What makes things even worse for the
parallel filesystem is that users typically run tens or hundreds
of instances of the same job for hyper-parameter tuning, each
with different configurations of the neural network model
(e.g., learning rate, activation function, etc.) [18], further
exacerbating the I/O problem.

For the aforementioned reasons, the current state of practice
in scale-out deep learning training is to replicate the input data
set to node-local SSDs in compute nodes. Unfortunately, this
is also becoming increasingly unattainable due to the growing
size of the data sets. Figure 1 also illustrates this problem by
comparing the local storage capacity on fifteen of the fastest
supercomputers from the TOP500 list (as of 2020 November)
with the size of DL datasets. Note that the Y axis is on log-
scale, had we chosen to use linear representation, data set sizes
would dominate the plot and render local storage sizes nearly
invisible. Dark blue bars represent SSDs located physically
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Fig. 2: Overview of how partitioning and exchange is pre-
sented as partial local shuffling.

in compute nodes, while light blue bars indicate flash based
storage provided over the network. Systems with neither local
SSDs nor network attached flash storage are indicated with
zero capacity. In addition, we mark systems that have been
designed explicitly for deep learning workloads with a star.

For example, Fugaku (the top system in the Top500 list of
June 2021) is equipped with one SSD for each group of 16
compute nodes [19]. The shared SSD can be exposed as node-
local storage of up to 50GB compute node dedicated capacity.
Frontera, Piz Daint, and Trinity, on the other hand, provide
access to flash based storage located in separate racks (a.k.a.,
dedicated burst buffers). For Frontera, Trinity, and Piz Daint
we display the proportion of the storage capacity correspond-
ing to a single compute node and note that network attached,
shared filesystems typically suffer from similar problems with
the global parallel file system, e.g., due to the centralized
metadata management that has been identified as a major
component of I/O overhead in deep learning [10], [11].

In summary, as seen in Figure 1, many of the data sets
are already too large to be loaded on dedicated compute
node storage. While systems that were primarily designed for
deep learning are best suited than their classic HPC oriented
counterparts, even those platforms cannot satisfy storage re-
quirements for all data sets. Overall, we see an urgent need to
provide easy-to-use I/O approaches for DL workloads.

III. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of our proposed partial local shuffling strategy. To reduce I/O
requirements when training DNNs we do the following: a)
we split the dataset across workers, b) workers train on the
local partition, and c) worker exchange a subset of the locals
samples before each epoch (when deemed necessary).

A. Data Partitioning and Shuffling Scheme

As Figure 2 shows, data partitioning is represented as a
shuffle of the dataset, where different permutations represent
different ways to partition the data. The worker to whom a

sample belongs is determined by the order in which it appears
in a permutation. We propose a shuffling scheme in which each
worker exchanges globally a fraction Q of its local samples
before each epoch. Each worker then combines the Q newly
received samples with the remaining portion of 1−Q samples
and shuffles it locally. A value of Q = 1 results in a full global
shuffle that corresponds to the without-replacement shuffling
scheme typically used in distributed SGD training [20], while
a value of Q = 0 corresponds to the pure local shuffle at
which each worker only has a local view of its portion of the
dataset. The partial local shuffling in this paper is a middle-
ground between pure global and local strategies.

This partial local shuffling is an extension of existing
works [16], [17] that reduce the amount of remote samples to
retrieve by keeping a part of the samples locally. Our proposed
shuffling scheme ensures that the amount of local samples is
balanced across workers, and it allows to control the ratio
between the number of local and remote samples.

We assume that each worker’s designated portion of the
training data samples is loaded into a predefined storage area
before training. During training, a worker only processes data
samples in its designated storage area. This predefined area
can be memory, local storage (e.g., local SSDs) as well as a
parallel file system. In the global shuffling scheme (here after
GS for short), each worker can access the entire dataset. This
requires a storage system that is large enough to store the
whole dataset, i.e., N samples. In local shuffling (LS), each
worker can only access a subset of the dataset, e.g., NM (where
M is the number of workers), which is often copied into its
local storage beforehand. Thus, when using local shuffling,
workers process the same subsets of datasets at each epoch
throughout the training.

In contrast, when training with partial local shuffling (PLS),
each worker stores a subset of the dataset and updates it at
each epoch. Before each epoch, each worker sends a selected
set of data samples to other workers and consequently, receives
new data samples from other workers. After the data transfer
is finished, workers remove the data samples they transmitted
and save the received samples into their local storage area.
It is worth noting that our implementation of PLS requires a
(1 +Q)-fold local storage capacity as it is with LS, i.e., each
worker stores up to (1 +Q)NM samples. That is, the required
local storage capacity of PLS is at most 2-fold as it is with
LS, yet at least still M

2 times smaller than that in GS.

B. Exchanging Samples Between Workers

Once the N samples are initially distributed among the
M workers, each worker processes N

M samples locally. It
then randomly picks a portion made up of Q × N

M samples
(which we call the global partition of each worker) for global
exchange. From the global perspective, samples from all the
global partitions are aggregated and randomly pushed back
to all the workers. This might be accomplished by shuffling
the combined global partitions followed by a round-robin
distribution of those samples to individual workers. However,
due to the high cost of maintaining such a global view, we
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Fig. 3: Global vs. partial local sampling in PyTorch.

implement the global exchange using a distributed fashion that
only requires a local view on each worker. Specifically, each
worker randomly selects a destination to exchange for each
sample in its global partition.

Algorithm 1 Global Exchange
Input: Number of samples N , Global fraction Q, Local batch size
b, Number of workers M , Rank r

1: p← random permutation of 1 to N
M

2: for i from 1→ Q× N
M

do
3: dest← random permutation of 1 to N
4: isend sample p[i]-th to rank dest[r]
5: irecv data from ANY SOURCE
6: end for
7: wait for all outstanding requests to finish exchanging

As shown in the line 3 → 4 of Algorithm 1, a worker
of rank r picks up the destination rank for transferring the
sample ith from a random permutation of all the ranks dest,
where all workers use the same random seed (e.g., setup before
training in the training script) to assure single source and single
destination for each exchanged sample. This method could
guarantee all the workers send and receive the same number
of samples, thus providing a balanced communication.

Thus, each worker sends (and receives) Q × N
M samples

and reads (1 − Q) × N
M samples locally at each epoch. For

example, when using a partial shuffling scheme with Q =
10% on 512 workers that load the ImageNet-21K dataset, each
worker sends (and receives) 0.1 × 1.1TiB

512 = 225MiB and
reads 0.9× 1.1TiB

512 = 2GiB locally. It is to be compared with
global shuffling where each worker reads 1.1TiB

512 = 2.2GiB
from the PFS. Each worker then replaces the selected samples
by Q × N

M samples received from other workers to establish
a new set of N

M samples used in the subsequent epoch.

C. Implementation

We implement the proposed shuffling strategies with the
aim to simplify the reuse of existing PyTorch training code.
It should be noted that PyTorch does not have any strict
requirements for data loading, except that it needs to be
a torch.Tensor, since loading and preprocessing are specific

Fig. 4: Illustration of overlapping the sample exchange with
the forward and backward phases in a epoch of three iterations.

to the dataset. A recommended approach is to use the two
data primitives provided by PyTorch: a Dataset to store the
samples and their corresponding labels, and a DataLoader to
iterate over the (batches of) samples. We provide convenience
wrappers for Dataset to maximise code reuse by minimising
the need to modify existing scripts. The newly wrapped dataset
(PLS.ImageFolder in Figure 3) requires additional functions
for saving, and removing the samples from the local storage.
The implementation of those functions depends on the way
each dataset is organized. This way, we avoid modifying the
PyTorch codebase itself as well as the loading function of the
original dataset (e.g. the case of ‘ImageFolder’ dataset).

We then introduce a scheduler for managing the global
exchange. To reduce the overhead of the sample exchange in
each epoch, we overlap communication with the forward and
backward phases of the previous epoch (as shown in Figure 4).
Let us consider an epoch with I = N

b×M iterations, where b is

the batch size at each worker. In each iteration, Q×
N
M

I = Q×b
samples are sent/received from one worker. We use non-
blocking MPI calls, i.e., MPI Isend() and MPI Irecv(), to
implement the communication between two workers using the
method described in Algorithm 1. The worker then awaits, in
the next iteration, for the data exchange to be concluded and
removes the exchanged samples from its local storage at the
end of each epoch. Figure 3 presents code examples that uses
global shuffling (the default for PyTorch Distributed) and our
proposed method of partial local shuffling. Only six lines need
to be changed/added to enable our shuffling implementation
(marked with red in Figure 3).

D. Deployment

Our guideline for practical deployment is to start with
local shuffling and if training accuracy is dissatisfactory,
treat the shuffling factor as an additional hyper-parameter of
the training process. Given the well established practice of
hyper-parameter tuning in current deep learning algorithms we
believe that treating the shuffling fraction as a hyper-parameter
is a practical condition for the deployment of the proposed
method.

E. Assumptions and Restrictions

Our method is designed for data parallelism where each
worker processes a different subset of the dataset. The tech-
niques in this work may not be suitable for supporting pure
model parallelism where all the workers process the same
data samples (i.e., the whole dataset). Note, however, that our
technique is still applicable to hybrid parallelism.
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Our solution supports datasets that manage each data sample
in a single distinct physical file. However, some datasets
manage multiple samples in a single compressed file, e.g., the
Open Catalyst dataset [8] allows multiple samples to be co-
located in a single LMDB file. Our scheduler could however
be simply extended to exchange batches of samples instead of
individual samples; the granularity of the exchange does not
conflict with the scheme implemented by the scheduler.

IV. SHUFFLING IN DISTRIBUTED SGD

This section attempts to establish an understanding of why
and when partial local (or simply local) shuffling may achieve
accuracy comparable to that of global shuffling. This is a
complex topic that needs to be approached both theoretically
and empirically from different angles. First we expand on
existing work that show that shuffling with some sort of
locality (albeit using the same random number sequence) [17]
can be equivalent to global shuffling, and we briefly discuss
assumptions that need further considerations. Second, we build
on a convergence analysis of distributed SGD [20] to assess
the impact on convergence rate. We do, however, show that for
practical number of workers and dataset sizes, the shuffling
error would dominate the convergence rate of the smooth
non-convex objective function in the case of partial local
shuffling in distributed SGD, and yet convergence, in practice
and in most cases is not affected, as shown experimentally in
section V. This highlights the challenges imposed on analysing
shuffling for distributed SGD, and implies further effort is
required to investigate the convergence bounds.

A. Partial Local vs. Global Shuffling: Gradients

In this section we expand on the proof by Yang et al. [17]
which proved that global shuffling is equivalent to sampling
with locality. A difference from our paper is that Yang et al.
use the same random number sequence in both shuffling types.
We expand on the proof to show that our proposed partial local
shuffling produces the same gradients as global shuffling.

For synchronous SGD, at iteration t, where the worker m in
M set of workers computes the gradient over its local subset
of samples btm, the local gradients are averaged to update the
model parameters as follows:

wt+1 = wt − ηt.
1

Mb

∑
m∈M

∑
i∈btm

∇fi(wt) (1)

For the N j
t dataset samples (j ∈ N ), the

local samples assigned to worker m are[
N

N
M×(m−1)
t , N

N
M×(m−1)+1
t , . . . , N

N
M×(m−1)+

N
M

t

]
.

Assuming both the global and partial local shuffling
start at the time step t from the same weights w, then at
the time step t + 1 the global sampling would produce
the sequence

[
N1
t+1, N

2
t+1, . . . , N

N
t+1

]
of samples in the

dataset, where the permuted sequence at each worker is

[
N

N
M×(m−1)
t+1 , N

N
M×(m−1)+1
t+1 , . . . , N

N
M×(m−1)+

N
M

t+1

]
. The

gradient for this local sequence would be:

∇fi(wt+1 :
[
N

N
M x(m−1)
t+1 , N

N
M x(m−1)+1
t+1 , .., N

N
M x(m−1)+ N

M
t+1

]
)

=
∑
i∈bt+1

m

∇fi(wt+1 : N
N
M×(m−1)+i
t+1 ) (2)

The averaged gradient term in Equation 1 can be written as∑
m∈M

∑
i∈bt+1

m

∇fi(wt+1 : N
N
M
×(m−1)+i

t+1 ) (3)

Unlike the original proof by Yang et al. [17], we do not
use the same random sequence. However, with respect to
convergence, the partial local shuffling is partially permut-
ing from the portion that is shuffled globally (i.e. Q) and
the portion that is shuffled locally (i.e. Q − 1) to amount
to what is the original sample sequence. More specifically,[
N1
t+1, N

2
t+1, . . . , N

N
t+1

]
is transformed to a sequence of

different sample order
[
N
fy(1)
t+1 , N

fy(2)
t+1 , . . . , N

fy(N)
t+1

]
, where

fy(n) is a Fisher-Yates shuffle that follows the partial local
break down of local and global shuffling portions. When
partitioning the shuffled sequence to M workers (i.e., worker
m ∈ M receives a sub-sequence N

fy(s)
t+1 to N

fy(e)
t+1 ), the

gradient of partial local shuffling becomes:

∇fi(wt+1 :
[
N
fy(s)
t+1 , N

fy(s)+1
t+1 , . . . , N

fy(e)
t+1

]
)

=
∑

i∈{s→e}

∇fi(wt+1 : N i
t+1)

(4)

The averaged gradient term in Equation 1 can be written as∑
m∈M

∑
i∈{s→e}

∇fi(wt+1 : N i
t+1) (5)

The two terms from Equation 3 and Equation 5 are equal
(by the commutative property of addition) and therefore the
weights updated according to Equation 1 at time step t+1 (i.e.,
wt+1) for both the global and partial local shuffling methods
is the same. When both global and partial local shuffling use
the same number of iteration, learning rate, and initialize the
weights with the same random seed, both shuffling methods
arrive at the same final weights.

1) Limitations of the Equivalence: The above assumptions
for equivalence do not consider some factors that could in
theory have some impact on training. We list those factors here
and while their effects are not fully understood, the empirical
results we discuss in Section V indicate that the impact is
minimal in most cases, and becomes notable as the ratio of
dataset size to number of workers become smaller.
• As pointed out by Yang et al. [17], since batch normalization

is typically applied to the local mini-batch of each worker,
the mean and the variance for partial local shuffling would
differ from the global shuffling case. Normalization methods
that are effective at smaller number of samples per worker,
e.g. group normalization [21], could potentially be an alter-
native for effective normalization in partial local shuffling.
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• There can be unidentified effects from the implicit bias
when treating samples as being all the same with respect
to their impact on training, given that there are studies
that indicate that not all samples contribute equally to the
learning process [22].

• The statistical properties of the dataset at large, not at the
individual sample level, can have an impact on training [23].
Partitioning the dataset to different workers changes the
similarity in sampling sequences, which can in turn have
an impact on training.

B. Convergence Rate and Shuffling Error

In practice, shuffling aims to produce a random permutation
of the samples in the dataset, which is equivalent to without-
replacement shuffling, and is usually compared to the baseline
i.i.d. [24] 2 sampling. Meng et al. [20] provided the most rele-
vant analysis for distributed SGD. They identified the converge
rate bounding terms for insufficient global shuffling, where
insufficient means the shuffling is not uniformly distributed.
We build on Meng et al. analysis by formulating the partial
local shuffling scheme as insufficient global shuffling that is
not uniformly distributed, for which the bias of the local
shuffling portion (if uniform itself) leads to insufficiency of
the global shuffling. According to Meng et al., for insufficient
global shuffling in the non-convex case, the convergence rate’s
upper bound include three terms

O

(√
1

S|N | +
log|N |
|N | +

|N |ε(A,N)2

b|M |

)
(6)

Where |N | is the number of samples in the training dataset
N , |M | is the number of workers in workers set M , b is the
local minibatch size (per worker), S is the number of epochs,
and ε(A,N) is the shuffling error of algorithm A with the
samples N . The aim of the partial local scheme is to assure that
the shuffling error ε(A,N) will not dominate the bound and
accordingly the insufficiency of the partial local scheme would
not negatively influence the convergence rate. This requires
that the following condition is satisfied: ε(A, h,N) ≤

√
b|M |
|N | ,

i.e. the shuffling error would not dominate the convergence
rate in Equation 6. The shuffling error is defined as follows

ε(A, h,N) =
1

2

∑
πi([N ])∈π([N ])

|uπi [N ]− vπi [N ] (A, h,N)| (7)

Where uπ is the uniform distribution on the set that contains
all permutations of π([N ]), i.e. permutations of all different
ways the samples can be picked from the dataset (|N |!
permutations), and vπ [N ] (A, h,N) is the distribution after
shuffling the dataset of |N | samples using algorithm A with
h operators. Here we expand on the analysis of Meng et
al. to find the practical values for which the shuffling error
would not dominate the converge rate upper bound. Among
the permutation of all possible shuffles (i.e., |N |!), the number

2Independent and Identically Distributed random variables

of the permutations σ that would include the desired partial
local shuffling factor of Q between the |M | partitions is

σ =
|N |
|M | ! ∗ P

(|M−1|)|N|
|M|

Q|N|
|M|

∗ P
|N|
|M|
Q|N|
|M|
∗ ((|M − 1|) |N ||M | )! (8)

Where we multiply the following four values: the number of
permutations of all samples in a partition (i.e., a worker), the
number of permutations of candidate samples from outside
the local pool of samples, the number of permutations of the
possible exchanges, and the number of permutations for the
remaining samples in other partitions, after the exchange has
been done. The above equation can be rewritten as

σ =
|N |
|M |

!∗
(|M−1|)|N|
|M| !(

(|M−1|)|N|
|M| − Q|N|

|M|

)
!
∗

|N|
|M| !(

|N|
|M| −

Q|N|
|M|

)
!
∗
(

(|M − 1|)|N |
|M |

)
!

(9)

We divide the summation of the error (in Equation 7) into
two portions. The first portion includes the samples that are
valid exchanges, and the second portion includes the remaining
permutations. The summation can then be rewritten as follows:∣∣∣∣ 1

|N |! −
1

σ

∣∣∣∣ ∗ σ +
1

|N |! ∗ (|N |!− σ) (10)

Which is rearranged and simplified to be 2 − 2 σ
|N |! , then

Equation 7 can be written as

ε(A, h,N) = 1− σ

|N |! (11)

We conclude that for practical dataset sizes and number of
workers, the shuffling error ε(A, h,N) would approach the
value 1, and the shuffling error would hence dominate the
convergence rate (Equation 6). For instance, practical settings
for training ImageNet (|N | = 1.2 × 106) on any number
of workers 4 ≤ |M | ≤ 100, 000 and b value that gives a
total mini-batch size of less than 100K yields a shuffling
error ε(A, h,N) ≈ 1. This implies that further convergence
studies for locality schemes are necessary to improve on the
convergence bounds. More specifically, importance sampling
schemes [25] can be expanded to investigate the effect of
the sampling bias, and consequently shuffling error. Exploring
whether importance sampling schemes that reduce the stochas-
tic variance can be effective in countering the sampling bias
arising partial exchange is planned for future work.

V. EVALUATION

In this section, we conduct a wide range of experiments to
empirically characterize the accuracy as well as performance
properties of different shuffling strategies, including the pro-
posed partial local scheme.

A. Experimental Environment

We run experiments on the following two large scale
supercomputing systems.

Fugaku [19] is the world fastest supercomputer on the
Top500 June 2021 list. It consists of 158,976 compute nodes
equipped with Fujitsu A64FX CPU. A64FX provides 48
application CPU cores and 32 GiB of HBM2 memory, the
nodes are interconnected through the TofuD network. Each
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TABLE I: Datasets and Models Used in Experiments (*)Trained
on a subset of the original dataset. (**) Use pre-trained model.

Model Dataset #Samples Size
Resnet50 [27] ImageNet-1K [7] 1.2M ∼ 140GB
Densenet161 [28]
Resnet50 [27] ImageNet-50(*) [7] ∼65K ∼ 2GB
WideResNet-28-10 [29] CIFAR-100 [30] 50K ∼160 MB
Inceptionv4 [31]
Resnet50 (**) [27] Standford Cars [32] 8144 ∼ 934 MB
Resnet50 [27] ImageNet-21K(*) [7] ∼ 9.3M ∼1.1 TB
DeepCAM [27] DeepCAM [5] ∼ 122K ∼8.2 TB

group of 16 compute nodes share a 1.6 TB SSD storage, and
all the nodes can access the global 150 PB Lustre filesystem.
We utilize SSDs in the so-called local mode, where each SSD
is divided proportionally among compute nodes in the given
group and is exposed as dedicated per-node filesystem. In our
experiments, we run four MPI ranks per compute node, where
each worker runs 12 OpenMP threads.

AI Bridging Cloud Infrastructure (ABCI) [26] is an
AI specialized supercomputer that consists of 1,088 compute
nodes, each equipped with 2 Intel Xeon Gold 6148 CPUs
(total: 40 cores), 384 GiB of DRAM, 4 NVidia V100 GPUs,
and InfiniBand EDR NICs. Nodes are equipped with 1.6TB
of local storage, and share a 35PB Lustre parallel filesystem.
In our experiments, we run 4 MPI ranks per compute node
so that each MPI rank has dedicated access to one GPU. We
store samples on the local SSDs.

B. Models and Datasets

To evaluate the impact of various sampling strategies, we
used several models and datasets, shown in Table I. The largest
data set we use is DeepCAM, which consists of approximately
122K samples and requires 8.2TBs of storage. Another large
dataset we use is ImageNet-21K which has over 9M samples
and requires 1.1TBs of storage 3. The dataset is divided into
two disjoint parts, where 80% of samples are used for training,
and 20% of samples are used for validation.

C. Training Configuration

For all the models, we follow the original training regime
and hyper-parameters suggested by their authors. We do not
change the base learning rate and the number of epochs.
For examples, we follow the hyper-parameters suggestion
in [34] for training on ImageNet dataset, [35] for training
on Standford Cars dataset, and [36] for training CIFAR-100
dataset. For large-scale training, e.g., more than 512 and 256
workers for Resnet50 and Densenet, respectively, we apply
LARS [37] with the hyper-parameter as suggested in [38]. We
train from scratch with random initiated weights.

In our experiments, we compare several shuffling schemes.
Global shuffling is the default strategy in Pytorch that requires
to store the entire dataset, from which workers randomly select

3The original full dataset of ImageNet-21K [7] consists of 14M images,
divided into 21,841 classes. In this work, we remove infrequent classes with
less than 500 samples, as suggested in [33].

samples in each training epoch. With local shuffling, workers
only store a subset of the dataset to which all their data access
is restricted in all epochs. In partial-x shuffling, workers store
a subset of the dataset, and exchange a portion x of it before
each epoch. For instance, with partial-0.01, workers exchange
1% of their samples at each epoch. We emphasize that in
partial local shuffling, a full shuffle of the local portion of
the data is performed before the designated ratio is exchanged
(i.e., the actual samples exchanged are also randomized).

D. Equivalence of Local and Global Shuffling: When Local is
Enough

To much of our surprise, in the overwhelming majority
of our experiments local shuffling performs almost identical
to global shuffling in terms of validation accuracy attained
by the training. Figure 5(a)-(d) summarizes the results for
such behavior. Note the exception in the case of 2048 GPUs
in Figure 5(a), where the negative effect of smaller subsets
of samples at each worker start to appear in local shuffling
(hence necessitating a partial shuffle to restore accuracy). The
Y axis of the plots indicates validation accuracy, while X axis
represents training epoch number. We run the training up to a
point where no more improvement is observed in subsequent
epochs. All of these experiments were conducted on the ABCI
supercomputer, using up to 2,048 GPUs.

When training on ImageNet-1K, both ResNet50 and
DenseNet achieve the same validation accuracy with local
shuffling and global shuffling, except for ResNet50 on 2,048
GPUs as shown in Figure 5(a) and Figure 5(b), respectively
(we elaborate in Section V-E). One key observation on those
figures is the fact that while local shuffling starts to con-
verge slower than its global counterpart (in term of number
of epochs), local partial shuffling provides almost identical
accuracy trajectory with global sampling, which in turn with
a feasible learning rate schedule could lead to faster overall
convergence and thus a reduction in runtime.

While the CIFAR-100 and StanfordCar data sets are sub-
stantially smaller than ImageNet-1K (see Table I), we per-
formed these experiments to explore whether or not similar
behavior can be generalized over models with different ar-
chitectures as well as for different data sets. As shown in
Figures 5(c) and 5(d), similar behavior can be observed also
with different models and data sets. For such small datasets,
the number of samples that each worker trains on becomes
small at large scale. For instance, the Stanford Cars dataset
contains 8144 samples that are distributed over 64 workers,
which means that each worker only trains on 128 samples
when shuffling locally. Similarly, the 128 workers that train
WideResNet-28 on CIFAR-100 (50K samples) only process
390 samples each.

On larger datasets, such as ImageNet-1K, it is surprising to
note that local shuffling achieves the same accuracy as global
shuffling, even at large scale (e.g. 1,024 workers), when each
worker only processes a very small fraction of the dataset (e.g.
1/1024). This indicates that workers do not actually need to
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Fig. 5: Top-1 accuracy of training experiments. In (a)-(d) local shuffling achieves the same accuracy as global shuffling and
in (e)-(f) we increase the levels of partial local shuffling until achieving the same accuracy as global shuffling.

(a) 2048 workers (b) 4096 workers

Fig. 6: Top-1 accuracy of ResNet50 with ImagetNet-1K on
Fugaku when strong scaling (global batch size = 65,536).

process a large portion of the whole dataset, and exchanging
the gradient weights is enough to ensure convergence.

E. Partial Local Shuffling

We explained earlier in Section IV that despite equivalence
in gradients, some factors, specially the batch norm, could
have a negative impact on the accuracy of local shuffling
at specific training configurations. Our proposed partial local
shuffling targets those training configurations, by allowing the
user to control the volume by which samples are exchanged.

We start to observe a gap of 9% between global and
local shuffling when we scale up to 2,048 GPUs training on

ResNet50 with ImageNet-1K (Figure 5(a)). Similarly for the
ResNet50 with ImageNet-50 and Inception-v4 with CIFAR-
100 as shown in Figure 5(e)-(f). For instance, as we scale up
to 128 GPUs, we start to observe a gap between the global
and local shuffling that can reach up to 30% drop in accuracy
for ImageNet-50 (and 10% even at the modest scale of 32
GPUs). For ImageNet-50 with 128 workers, a rather high level
of exchange rate of 70% is required to start converging to an
accuracy that is significantly closer to global shuffling than that
of the local one. Note however that this relatively high level
of exchange remains to be far less damaging, in comparison
to transferring the files from the parallel filesystem in each
epoch (in absence of sufficient local storage to replicate the
entire datasets). In the case of ImageNet-1K and CIFAR-100,
an exchange rate of 0.3 is sufficient to converge to global
shuffling accuracy.

These results shows that some DNN models are more
sensitive to samples diversity than others. For instance, local
shuffling degrades the accuracy of Inception-v4 on CIFAR-
100, while WideResNet-28 achieves similar accuracy as with
global shuffling for the same dataset. This experiment also
shows that partial local shuffling reduces the local storage
requirements. While global shuffling requires that each worker
stores the whole dataset, partial local shuffling with a 30%
exchange rate, the 128 workers only store 1.3× 1

128 ≈ 1% of
the dataset.
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Fig. 7: DeepCAM validation accuracy and performance.

The results imply that on large scale supercomputers with
little local storage, like Fugaku, partial local shuffling can
significantly reduce the storage requirement without affecting
the accuracy. For evidence, we run a strong scaling exper-
iment on ResNet50 with ImageNet-1K on Fugaku, where
we decrease the local batch size as the number of workers
increases. Figure 6 reports the results for 2,048 and 4,096
workers. The results show that the local shuffling accuracy
decreases as the number of workers scales. This is because, for
4,096 workers, each worker only trains on approximately 292
samples. Using partial-0.1 local shuffling slightly increases
the accuracy for 2,048, and partial-0.3 local shuffling achieves
the same accuracy as global shuffling for up to 4,096 workers.
In this case, each of the 4,096 workers only stores up to
1.3× 1

4096 ≈ 0.03% of the dataset.
It is worth noting that the partial local shuffling is still

useful in supercomputers that have a large local storage like
ABCI, especially when the dataset size is larger than the
local storage. Figure 7(a) shows validation accuracy on the
DeepCAM dataset comparing local shuffling with local partial
(with exchange ratios of 0.25, 0.5 and 0.9) using 1,024 and
2,048 GPUs on ABCI. Because the DeepCAM dataset does
not fit into local storage and training from the PFS would
be prohibitive, we are unable to present accuracy numbers
for global shuffling. As seen, however, partial local shuffling
improves accuracy by approximately 2% when using exchange
ratio 0.5 or higher on 1,024 GPUs and about 1% on 2,048
GPUs. For the case of 2,048 GPUs, we only have results on
exchange ratio 0.9. We speculate that the reason for smaller
improvement at larger scale is due to the relatively small
number of input samples in DeepCAM (about 122K), where
the entire data set gets processed in a few iterations due to the
larger minibatch size.

Reusing the pre-trained deep learning models has recently
led to a significant improvements on many tasks. Figure 8 il-
lustrates the impact of shuffling in pretraining ResNet50 mode
with the ImageNet-21K dataset. We observe that although the
accuracy of upstream training using local shuffling degrades
around 3% (in the case of 2,048 GPUs) when compared with
global shuffling as shown in Figure 8(a), the difference of
the final accuracy of downstream training with ImageNet-1K

(a) Upstream training. (b) Downstream training (256 GPUs).

Fig. 8: Top-1 accuracy upstream training ResNet50 model with
ImagetNet-21K and downstream training with ImageNet-1K.

Fig. 9: Performance of ResNet50 with ImageNet-1K dataset.

dataset between them is trivial. This result implies that using
the (partial) local shuffling for upstream training could poten-
tially help to reduce the training time while still maintaining
the final downstream accuracy.

F. Performance

We evaluate the performance of different shuffling schemes
by measuring the average training time per epoch when
running ResNet50 with ImageNet-1K on ABCI. Figure 9
reports the training time of different shuffling strategies as
the number workers grows. The performance results show that
the global shuffling strategy significantly degrades the training
time compared to local shuffling. For instance, global shuffling
on 128 workers is almost 5x slower than local shuffling. This
slowdown is due to the difference of performance of the I/O
subsystem: when using local shuffling, workers read samples
from their local storage, whereas workers concurrently read
samples from the parallel file system with global shuffling.
The performance of partial-0.1 is similar to the performance
of local shuffling for up to 512 workers. However, the per-
formance of partial-0.1 significantly degrades when scale up
to 1,024 and 2,048 GPUs. Since the number of iterations per
epoch becomes less in such cases, i.e., 40 and 20 iterations,
respectively, it makes our design of overlapping the sample
exchange with the computation of the forward and backward
pass during training becomes less effective, i.e., less total
time for overlapping. Further more, exchanging the samples
randomly between workers leads to a personalized all-to-
all communication pattern which is sensitive to the network
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(a) ImageNet-1K + Resnet50. (b) ImageNet-1K + Densenet161.

Fig. 10: Breakdown of performance impact as the function of
exchange rate (512 GPUs).

congestion when scaling up. An alternative solution is to
use a hierarchical global exchange scheme that maps to the
hierarchy of connection between computing nodes.

Similarly, we present performance of partial shuffling with
DeepCAM dataset in Figure 7(b). While on DeepCAM our
exchange scheme incurs noticeable overhead, we emphasize
that compared to a PFS based global scheme (shown by the
red horizontal line in Figure 7(b)), we still perform multiple
times better. The value for global shuffling is a lower bound
estimate based on the theoretical peak bandwidth of the PFS
on ABCI, and the overall size of the DeepCAM dataset.

In order to better understand the performance difference
between local, partial, and global shuffling, we analyze the per-
formance of training Resnet50 and Densenet161 on ImageNet-
1K over 512 workers on ABCI. Figure 10 reports a breakdown
of the training time for 512 workers as the exchange rate
of the partial strategy grows. We report the average time
spent performing I/O, exchanging samples between workers
for partial shuffling (EXCHANGE), performing the backward
and forward propagation (FW+BW), and exchanging gradient
and updating weights (GE+WU). The reported performance
is the average measured time of five epochs. The error bars
represent the variation of the total duration of an epoch.

The figure shows that the performance of partial shuffling
slightly decreases as the exchange rate grows. For low ex-
change rates, the performance of partial is similar to that of
local shuffling. When the exchange rate increases, the over-
head of sample exchange becomes noticeable because of the
increased volume of communication. Thus, the performance
is degraded by up to 1.37×. However, this slight performance
degradation is compensated by the increased accuracy obtained
by partial shuffling, as shown in Section V-E.

The breakdown shows that the time of performing forward
and backward propagation phases remain constant for all
the cases. Similarly, the cost of gradient exchange, weights
update and I/O are slightly different between local and partial
shuffling. However, since global shuffling reads from the PFS,
the cost of I/O is much higher than those of local and partial
shuffling. For example, Densenet with global shuffling spends
19.6s on average performing I/O, compared to 8s when using
local shuffling. When measuring the I/O time of all workers,

we observe a significant variation when using global shuffling.
For example on Densenet, the fastest worker reads samples
in 11.9s while the slowest worker reads samples in 142s.
This high variation of I/O performance could indicate that the
PFS suffers congestion caused by the 512 workers performing
IO concurrently [39]. Moreover, workers wait for each other
using collective communication during the gradient exchange.
Because some of the workers enter the collective lately (due
to poor I/O performance), all the workers are delayed, and the
average time spent performing the gradient exchange reaches
70s.

VI. RELATED WORK

A. Shuffling to Alleviate the I/O Bottleneck for DNNs

DeepIO [16] reduces the need to access the storage by
performing in-situ shuffling: instead of shuffling the dataset,
the compute node exchange samples through RDMA, and
some of the samples are kept local in order to reduce the need
for communication, while exchanging enough data to ensure
the accuracy of the model. A similar approach is used [17]: the
data loader caches data in memory on the compute nodes to
reduce the number of I/O requests to the parallel file system.
Moreover, the data loading arranges the distribution of sample
to increase their locality.

It is important to note that despite similarities to our method,
in both of the above approaches the local sampler introduces
uncontrolled bias since the ratio of global to local shuffle
portion is unidentified (i.e. the split is itself random). Since the
exchange is uncontrolled, arbitrary communication bottlenecks
can occur and there is no means to overlap and interleave
the exchange with the gradient averaging Allreduce in a
orchestrated manner. Finally, both studies report results for
up to 64 nodes only; negative effects not observable at that
scale.

B. Theoretical Studies on the Effect of Shuffling in Distributed
SGD

Several efforts over the years improved on the upper bound
of the convergence rate for random and global shuffling in the
general sense, i.e., shuffling the entire dataset at the beginning
of each epoch [40], [24], [41], [42]. For distributed training,
most notably is Elmahdy et al. [43] study that proposed a
linear coded shuffling algorithm and provided a lower bound
that guarantees the optimally over other shuffling methods.
Meng et al. [20] did an extensive analysis on the convergence
properties of distributed SGD with insufficient random shuf-
fling, including the non-convex cases. The analysis however
did not directly cover the case of partial local shuffling, albeit
pointing to the shuffling error impact on the convergence rate
(under the condition that the component functions are convex).

C. Machine Learning I/O Bottlenecks at the System Software-
level

The I/O has been identified as one of the main bottlenecks
that limit the scalability of machine learning applications [44].
Studies analyzed the I/O performed by various deep learning
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applications running over BeeGFS [10], or over GPFS [11].
The collected I/O patterns consist of many small (approx
100KB) read operations, and metadata operations account
for one third of the I/O overhead. However, as the num-
ber of clients grows, the metadata overhead becomes the
main bottleneck. Koziol analyzes the I/O requirements of
a TensorFlow climate simulation running on a pre-exascale
supercomputer [45]. The bandwidth required for reading the
entire dataset is an order of magnitude higher than the GPFS
bandwidth.

In order to reduce the cost of I/O in machine learning ap-
plications, several approaches have been investigated. PHDFS
groups small files in order to improve read throughput [15].
To reduce I/O contention on the parallel filesystem, LMDBIO
uses a hierarchical scheme that reduces the number of pro-
cesses that perform I/O operations [13]. It also prefetches the
data that is likely to be needed in the future.

Multiple works reduce the number of I/O requests to the
storage servers by exchanging samples between the compute
nodes [5], [12], [14], [46], [18]. FanStore implements a meta-
data cache in the compute nodes to avoid accessing the storage
nodes [12]. Data files are read from the local filesystem,
or from other compute node via MPI messaging. Similarly,
LBANN stores data samples in an in-memory distributed data
store[46]. Quiver introduces an I/O cache for DL workloads in
cloud environments that employs a hash-based addressing to
transparently reuse cached data across multiple jobs and even
multiple users operating on the same dataset [18]. DIESEL+
is an end-to-end solution that accelerates that I/O pipeline of
image processing deep learning training tasks [47]. It includes
pieces such as local metadata snapshots, per-task distributed
caching, chunk-wise shuffling (i.e., by grouping small files into
bigger chunks) and GPU-assisted image decoding. Another
recent proposal introduces a new data format that uses com-
pression to reduce the overhead of fetching and transporting
data [48]. While these methods address the same overall I/O
problem, their proposals are orthogonal to our main focus,
which is the exploitation of shuffling itself.

VII. CONCLUSION

We have proposed a dataset partitioning, shuffling, and
redistribution solution for large scale distributed DNN training
(synchronous SGD). Our solution requires minor modifications
to PyTorch training scripts and no modifications to the PyTorch
framework itself. We demonstrated on various data sets and
DNN models that in many scenarios local shuffling attains
similar validation accuracy as global shuffling, and when local
shuffling falls behind, redistributing even a small portion of
the local data set can contribute significant improvements to
accuracy and thus can approach that of global sampling.

One of the key takeaways from our experiments is that
while in the state-of-the-art practice the need for global
shuffling is widely assumed, there is a clear indication that
such assumption should be questioned. Eliminating unneces-
sary shuffling of data samples in distributed SGD can have
profound implications on the I/O requirements of the overall

training procedure. First, there is no need to replicate data
everywhere, which reduces the cost of data staging in HPC
environments. Second, smaller local data storage suffices that
could enable training comparable neural network models in
more modest storage environments, such as over local tmpfs,
opening up the potential for less powerful HPC systems to be
utilized for deep learning workloads.
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