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Abstract. As the complexity of compute nodes in high-performance
computing (HPC) keeps increasing, systems equipped with heteroge-
neous memory devices are becoming paramount. Efficiently utilizing
heterogeneous memory-based systems, however, poses significant chal-
lenges to application developers. System-software-level transparent solu-
tions utilizing artificial intelligence and machine learning approaches, in
particular nonsupervised learning-based methods such as reinforcement
learning, may come to the rescue. However, such methods require rapid
estimation of execution runtime as a function of the data layout across
memory devices for exploring different data placement strategies, ren-
dering architecture-level simulators impractical for this purpose.
In this paper we propose a differential tracing-based approach using

memory access traces obtained by high-frequency sampling-based meth-
ods (e.g., Intel’s PEBS) on real hardware using of different memory
devices. We develop a runtime estimator based on such traces that pro-
vides an execution time estimate orders of magnitude faster than full-
system simulators. On a number of HPC miniapplications we show that
the estimator predicts runtime with an average error of 4.4% compared
to measurements on real hardware.

Keywords: Memory management · Heterogeneous memory · Machine
learning

1 Introduction

As dynamic random-access memory (DRAM) approaches its limits in terms
of density, power, and cost, a wide range of alternative memory technologies
are on the horizon, with some of them already in relatively large-scale deploy-
ment: 3D NAND flash [32], non-volatile memories such as 3D-XPoint [16], spin-
transfer torque magnetic RAM [45], and phase-change memory [27]. Moreover,
high-performance volatile memories, such as Hybrid Memory Cube [19], high-
bandwidth memory (HBM) [21], and Graphics Double Data Rate 6 [22], are
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actively being developed and deployed. Resource disaggregation [4], an emerg-
ing compute paradigm that has been receiving a lot of attention recently, will
further expand the heterogeneous memory landscape.

While these technologies provide opportunities for improving system utiliza-
tion and efficiency through better matching of specific hardware characteristics
with application behavior, at the same time they pose immense challenges to soft-
ware developers. Management of such heterogeneous memory types is a major
challenge for application developers, not only in placing data structures into the
most suitable memory, but also in adaptively moving content as application char-
acteristics change over time. Operating system and/or runtime level solutions
based on artificial intelligence (AI) and machine learning (ML) that optimize
memory allocations and data movement by transparently mapping application
behavior to the underlying hardware are therefore highly desired.

Although a large body of existing work explores various ML approaches for
heterogeneous memory management [12,18,43,44], to the best of our knowledge
none of this work applies nonsupervised learning such as reinforcement learn-
ing (RL) [41]. This gap exists despite RL’s enormous potential that has been
demonstrated in a wide range of fields recently [31]. RL evolves an agent to
refine its policy through repeatedly interacting with the environment. Hence it
requires rapid and low-overhead estimation of application execution time as a
function of memory layout over heterogeneous memory devices. Cycle-level full-
system simulators such as gem5 [8] and cycle-accurate memory simulators such
as Ramulator [25] and NVSIM [11] incur slowdowns that are prohibitive for
such a scenario. Additionally, restricting the simulation to memory devices only,
namely by feeding memory access traces (captured by tools such as PIN [28] or
DynInst [9]) into memory simulators, loses timing information about the com-
putation, in turn degrading the accuracy of the overall simulation. Furthermore,
these tools are still orders of magnitude slower than execution on real hardware.

This paper explores an alternative approach to rapid execution time estima-
tion over heterogeneous memory devices, a method we call differential tracing.
The basic idea is to obtain high-fidelity memory access traces running on real
hardware using different memory devices; matching the traces to identify dif-
ferences in runtime; and, based on this information, providing an estimate for
execution time as a function of the virtual memory to device mapping. To this
end, we utilize Intel’s precise event-based sampling (PEBS) [20] mechanism and
propose a number of extensions (e.g., the notion of application phasemarks) to
the tracing mechanism that enables high-accuracy matching of memory traces.
Using the matched traces, we develop an estimator that provides a runtime
estimate substantially faster than cycle-level simulators.

Specifically, in this paper we make the following contributions.

• We address the issue of providing an execution time estimator for hybrid
memory systems without incurring unacceptable slowdowns that would oth-
erwise be prohibitive in iterative machine learning methods such as RL.
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• We introduce a number of novel extensions to sampling-based memory access
tracing (e.g., application phasemarks) that improve our ability to match mem-
ory traces.

• We evaluate our proposal on four HPC miniapplications across a wide range
of memory layouts and compare the estimates with real hardware execution.

We find that the proposed method provides an average estimation error of
4.4% compared with execution on real hardware, while it runs orders of magni-
tude faster than gem5 and Ramulator.

The rest of the paper is organized as follows. We begin with further moti-
vation in Sect. 2. Section 3 provides background information on memory access
tracing and lightweight kernels. Our custom PEBS driver and the estimator are
detailed in Sect. 4, and evaluation is provided in Sect. 5. Section 6 provides
additional discussion, Sect. 7 surveys related work, and Sect. 8 concludes the
paper.

2 Motivation

Before getting into the details of our proposal, we provide a high-level overview
of the approach we are pursuing. Our aim is to further clarify the motivation
for this work. Figure 1 outlines the idea of RL-based heterogeneous memory
management.

Fig. 1. Reinforcement-learning-based heterogeneous memory management.

In essence, the system software runs an RL agent that periodically observes
application behavior through low-level hardware metrics such as memory access
patterns, the current utilization of memory bandwidth, and the measured arith-
metic intensity. Subsequently, it feeds this state information into a policy net-
work that infers an action for potentially rearranging the memory layout of the
application, that is, moving data across memory devices. In turn, the application
(optionally in cooperation with the hardware) provides feedback on progress in
the form of rewards, for example, inverse proportionally with execution time.
The agent’s goal is to maximize rewards and thus to minimize execution time.

Ideally, one would train such agents in a real execution environment on
actual hardware. However, RL requires a large number of iterations for exploring
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the environment, which renders real-hardware-based training extremely resource
demanding. Therefore, a better approach is to train the agent offline with a sur-
rogate hardware model faster than the actual hardware. In the remainder of
the paper, we call this model an estimator. While existing hardware simulators
can provide accurate runtime estimation, they are impractical because of the
immense slowdown they incur (see Sect. 5 for a quantitative characterization
of the overhead). Instead, what we need is a simulation environment that pro-
vides swift estimation of application execution time as a function of the memory
layout.

In summary, we emphasize that the goal of this study is not to optimize
the memory layout of the particular applications considered for evaluation but,
rather, to provide a simulation environment that can be used to train machine
learning models for memory management in a general context.

3 Background

3.1 Precise Event-Based Sampling

PEBS is a feature of some Intel microarchitectures that builds on top of Intel’s
Performance Counter Monitor (PCM) facility [20]. PCM enables the monitoring
of a number of predefined processor performance counters by monitoring the
number of occurrences of the specified events1 in a set of dedicated hardware
registers.

PEBS extends the idea of PCM by transparently storing additional processor
information while monitoring a PCM event. However, only a small subset of the
PCM events actually support PEBS. A “PEBS record” is stored by the CPU
in a user-defined buffer when a configurable number of PCM events, named the
“PEBS reset”, occur. The actual PEBS record format depends on the microar-
chitecture, but it generally includes the set of general-purpose registers as well
as the virtual address for load/store operations.

A PEBS assist in Intel nomenclature is the action of storing the PEBS record
into the CPU buffer. When the number of records written by the PEBS assist
events reaches a configurable threshold inside the PEBS buffer, an interrupt is
triggered. The interrupt handler is expected to process the PEBS data and clear
the buffer, allowing the CPU to continue storing more records. The smaller the
threshold, the more frequent the interrupt requests (IRQs). We note that the
PEBS assist does not store any timing information. Timestamping the PEBS
data, however, can potentially occur in the IRQ handler.

3.2 Lightweight Kernel-Based Development Environment

Lightweight multikernels have emerged as an alternative operating system archi-
tecture for HPC, where the basic idea is to run Linux and a lightweight ker-
nel (LWK) side-by-side in compute nodes to attain the scalability properties of

1 The exact availability of events depends on the processor’s microarchitecture.
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Fig. 2. Overview of the IHK/McKernel architecture.

LWKs and full compatibility with Linux at the same time. IHK/McKernel is
a multikernel OS whose architecture is depicted in Fig. 2. A low-level software
infrastructure, called Interface for Heterogeneous Kernels (IHK) [40], provides
capabilities for partitioning resources in a many-core environment (e.g., CPU
cores and physical memory), and it enables management of lightweight ker-
nels. IHK can allocate and release host resources dynamically. No reboot of the
host machine is required when altering its configuration, thus enabling relatively
straightforward deployment of the multikernel stack on a wide range of Linux
distributions.

McKernel is a lightweight co-kernel developed on top of IHK [15]. It is
designed explicitly for HPC workloads, but it retains a Linux-compatible appli-
cation binary interface so that it can execute unmodified Linux binaries. McKer-
nel implements only a small set of performance-sensitive system calls; the rest
of the OS services are delegated to Linux. Specifically, McKernel provides its
own memory management, it supports processes and multithreading, it has a
simple round-robin cooperative (tickless) scheduler, and it implements standard
POSIX signaling. It also implements interprocess memory mappings, and it offers
interfaces for accessing hardware performance counters.

McKernel has a number of favorable properties with respect to this study.
First, it is highly deterministic. Not only does it provide predictable performance
across multiple executions of the same program, but it also ensures that the
same virtual memory ranges are assigned to a process when executed multiple
times, assuming that the application itself is deterministic. As we will see, this
significantly simplifies comparing memory access traces obtained from multiple
executions.

Second, McKernel’s relatively simple source code provides fertile ground for
developing custom kernel-level solutions. For example, it provides a custom
PEBS driver [29] that we extend with an API to capture higher-level application
information (e.g., the application phasemarks discussed in Sect. 4.1), as well as
another custom interface that enables selectively binding parts of the application
address space to specific memory devices without changing the application code
(detailed in Sect. 4.2).
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4 Design and Implementation

This section discusses the design of our proposed execution time estimator along
with its most relevant implementation details.

Application

(a)

Application Profile

Data Mapping

Estimator Execution Time

PEBS+McKernel(b) Phasemark

gem5 / gem5+Ramulator

Intel pin / gem5 Ramulator / Siena

Fig. 3. High-level representation of the steps needed to build the proposed estimator
(a) and the tools that assist with the implementation (b).

Figure 3(a) gives an overview of the steps to build the proposed estimator.
The system comprises two main pieces: the application profiler and the estimator.
First, we collect memory access traces of the target application (Application
Profile in the figure). Since we want to train an agent offline, trace collection
may be slow for the purpose of training. However, the profiling step must have a
low overhead once the agent is deployed (i.e., during inference), and the estimator
has to be fast for training. Thus, it is desired that both pieces be fast, incur low
overhead, and attain high accuracy.

In our implementation of this system (PEBS+McKernel in Fig. 3(b)), we
collect high-frequency memory access traces from a real, heterogeneous memory-
equipped hardware environment where we place application content into differ-
ent memory devices. Therefore, the application profile is composed of sampled
memory access traces annotated with timing information, once for each mem-
ory device of the target computing system. Using sampling hardware counters
is effectively the lowest-overhead, application-oblivious way to collect an appli-
cation’s memory access trace.

The estimator, which we will describe in more detail below, matches the
traces and identifies execution phases (Phasemark in the figure) along with the
accessed memory regions that impact performance. Taking into account the dis-
crepancy between traces from different memory devices, it estimates execution
time based on input that describes the layout of application data with respect
to the underlying memory devices, the mapping between virtual memory ranges
to the corresponding memory devices that back those mappings (Data Mapping
in Fig. 3(a)).
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Different approaches exist for implementing such a system, as outlined in
Fig. 3(b). It can be implemented with a different profiling method and/or a
different estimator (Intel pin/gem5 and Ramulator/Siena in the figure, respec-
tively) or even combining the profiling and estimation steps into a single step
(gem5/gem5+Ramulator). We found that existing approaches are impractical
in the context of reinforcement learning because RL requires both low-overhead
profiling for the inference step and a fast estimator for the training step. We
evaluate some of these approaches in Sect. 5.

We first describe the details of our memory access tracing mechanism.

4.1 Memory Access Tracing and Application Phasemarks

To track application-level memory accesses, we utilize Intel’s PEBS facility.
Specifically, we configure PEBS on the event of last-level cache misses for which
the PEBS records include not only the set of general-purpose registers but also
the virtual address for the particular load/store operation that triggered the
cache miss, effectively capturing the memory access pattern of the application.

It has been reported previously that standard PEBS drivers incur nontriv-
ial overhead and have limited configuration flexibility [1,26,30]. For example,
in both the Linux kernel’s PEBS driver and the one provided by Intel’s vTune
software, no interface is available for controlling the internal PEBS assist buffer
size, which implicitly controls the frequency of PEBS interrupts that enable
the annotation of PEBS records with high-granularity timestamps. Olson et
al. also reported that decreasing the PEBS reset value below 128 on Linux
caused the system to crash [30]. For these reasons we utilize McKernel’s cus-
tom PEBS driver, which has been shown to have negligible runtime overhead
even at very high-granularity tracing, for example, by capturing memory accesses
with a PEBS reset counter as low as 16 [29].

In addition to high-frequency tracing, we extend the kernel device driver to
annotate PEBS records with two extra pieces of information. First, we introduce
the notion of application phases, for which we add a dedicated phasemark()
system call in McKernel. The call simply increments a counter in the PEBS
driver, which is in turn appended to each PEBS record. Second, we automatically
record the number of retired instructions elapsed since the beginning of the last
application phase, which again is attached to the PEBS record. As we will see
below, this extra information enables us to match memory access traces from
different memory devices with very high accuracy. We note that phasemark calls
can be inserted into the application source code either manually or through
compiler-level code transformation.

Figure 4 highlights the impact of phasemarks in two memory access traces
captured from DDR4 and high-bandwidth memory, respectively, when running
the Lulesh miniapplication [23]. For more information on the hardware platform
used for this experiment as well as on the specifics of how we execute the appli-
cation, see Sect. 5. The x-axis of the figures indicates elapsed time, while the
y-axis shows virtual page indices (i.e., virtual addresses divided by the page size).
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The width of the two plots is proportional to the execution time, while the red
vertical lines pinpoint application phasemarks captured by the PEBS driver. The
two plots show the same four phases of the application, with the only difference
being that the application was running on different memory devices.

Fig. 4. Lulesh memory traces from DDR4 vs. MCDRAM, annotated with application
phasemarks.

As shown, the virtual memory ranges of the two executions are almost identi-
cal. This is due to the deterministic behavior of McKernel’s memory management
subsystem. In addition, phasemarks help determine how much a given applica-
tion phase is impacted by the fact that memory content is placed into a particular
memory device. This information is especially important because not all phases
experience the same effect. For example, the execution time of the fourth phase
in the figure is reduced by 44% when using MCDRAM; the first phase, how-
ever, becomes almost 4× faster. Had we not marked the different phases, trace
matching would become significantly more complex, since it would need to iden-
tify parts of the trace where the application proceeds at a different pace from
that of others when executed out of a different memory device. In contrast, with
the presence of phasemarks, we have stable anchors for periodic synchronization
while processing the traces. In Sect. 5 we quantitatively characterize the impact
of phasemarks on runtime estimation accuracy.



264 N. Denoyelle et al.

4.2 Execution Time Estimation and Verification

Estimation. The mechanism of the execution time estimator is remarkably
simple. The algorithm processes memory traces of a given application obtained
from different memory devices by iterating through the individual phases supple-
mented by the phasemark annotation. In a given phase, the memory access traces
are further divided into windows based on the number of retired instructions
associated with the memory access samples. Much to our surprise, we observe
some discrepancy between the number of retired instructions (associated with
particular phases) captured by the PEBS driver based simply on which underly-
ing memory device is utilized. We are unsure whether this is due to some timing
effect caused by the difference between the memory devices or an issue with
performance counter implementation in the CPU. Either way, to guarantee that
a given phase is processed at the same pace from both traces, we configure the
window lengths proportionally. The window length is a parameter of the estima-
tor, and we typically configure it to cover a few hundred thousand instructions
according to the baseline trace.

In a given window, the estimator iterates the traces and records the number
of accesses that hit each particular memory device according to the mapping
between the virtual memory ranges and the backing devices. Based on the ratio
of the number of accesses, we calculate the execution time of the given window by
skewing it proportionally between the measured times over different devices, e.g.,
for a DRAM plus HBM system we use the following formula: test = tDRAM −
(tDRAM − tHBM ) · #accessesHBM

#accessesall
.

As one may notice, this mechanism completely disregards data dependencies
among memory accesses and greatly simplifies the interpretation of memory
access traces. Nevertheless, as we will see in Sect. 5, this simple approach (in
combination with phasemarks) proves to be surprisingly accurate. We also note
that utmost accuracy is not required for the ML training process to be successful;
rather, it is sufficient if it is expressive enough to guide the learning algorithm
to the right optimization path.

Verification. To verify the accuracy of the estimator, we extend McKernel’s
memory management code with two custom APIs. One allows the specification of
a list of virtual memory ranges along with their target memory device; the other
makes it possible to indicate a percentage that is interpreted as the fraction
of application pages that are to be mapped to a given memory device. The
kernel automatically places the memory of the calling process on the target
device irrespective of whether it covers the stack, heap, data/BSS sections, or
anonymous memory mappings in the process’s address space.

As opposed to standard POSIX calls such as set mempolicy() or mbind()
that need to be invoked at the application level, this memory placement mecha-
nism is carried out in an application-transparent fashion. This approach greatly
simplifies experimentation because we do not need to make modifications to
individual applications. Using the APIs, we can easily verify the accuracy of the
proposed estimator against measurements on real hardware.
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5 Evaluation

All of our experiments were performed on an Intel R� Xeon Phi
TM

7250 Knights
Landing (KNL) processor, which consists of 68 CPU cores, accommodating 4
hardware threads per core. The processor provides 16 GB of integrated, high-
bandwidth MCDRAM, and it is accompanied by 96 GB of DDR4 RAM. We
configured the KNL processor in Quadrant flat mode; in other words, MCDRAM
and DDR4 RAM are addressable at different physical memory locations. We used
64 CPU cores for applications and reserved the rest for OS activities. While we
acknowledge that the KNL platform has come of age, we emphasize that our
proposal is orthogonal to the underlying hardware. We use KNL because it is
currently the only generally available CPU architecture supporting both high-
bandwidth memory and regular DDR4. Note that Intel has already announced
its upcoming Sapphire Rapids CPU model that will provide a similar hybrid
memory environment [3]. For the wall-clock measurements of the estimator, we
use an Intel R� Xeon

TM
Platinum 8280 (Cascade Lake) CPU equipped platform.

5.1 Application Benchmarks

To evaluate the proposed estimator, we chose the following miniapplications
primarily because they are the subject of a substantial runtime difference when
executed out of high-bandwidth memory.

• MiniFE is a proxy application for unstructured implicit finite element codes.
It is similar to HPCCG and pHPCCG but provides a much more complete
vertical covering of the steps in this class of applications [17].

• Lulesh is the Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics benchmark, which is part of the Shock Hydrodynamics Challenge
Problem. It was originally defined and implemented by Lawrence Livermore
National Laboratory, and it is a widely studied proxy application in U.D.
Department of Energy co-design efforts [23].

• LAMMPS is an acronym for Large-scale Atomic/Molecular Massively Par-
allel Simulator. LAMPPS is a classical molecular dynamics code [36].

• Nekbone solves a standard Poisson equation using a conjugate gradient iter-
ation with a simple preconditioner on a block or linear geometry. Nekbone
exposes the principal computational kernel that is pertinent to Nek5000 [5].

All our measurements are performed in flat MPI configuration, that is, run-
ning 64 MPI ranks on a single node with a dedicated CPU core for each process.
This setup enables us to achieve two important goals. First, we make sure that
we exercise the entire chip and measure a practical application deployment. Sec-
ond, the single-threaded execution of each rank ensures deterministic behavior
with respect to memory mappings, which in turn enables us to easily measure
configurations where only specific ranges of the address space are mapped to
high-bandwidth memory. We also note that we observe negligible performance
variation across multiple executions on McKernel, and thus we omit error bars
on measured data points. As for PEBS, we configure the reset value to 16.
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5.2 Results

We provide two sets of experiments with respect to estimation accuracy. In the
first setup we gradually increase the fraction of the application address space
that is mapped to high-bandwidth memory from 0% (i.e., running entirely out of
DDR4) all the way up to 100%, where all memory is allocated out of MCDRAM.
We increase the ratio in steps of 10%. Figure 5 summarizes the results.

(a) MiniFE (b) Lulesh

(c) Nekbone (d) LAMMPS

Fig. 5. Runtime estimations vs. measurements as a function of data fraction placed in
high-bandwidth memory.

On each plot the x-axis indicates the fraction of application memory that
is mapped to HBM. The left y-axis shows execution time, where the blue,
orange and green bars indicate runtimes as measured, estimated w/o phase-
marks, and estimated with phasemarks, respectively. We do not estimate values
for full DDR4 and MCDRAM executions. The right y-axis covers estimation
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error (against the measured values). The actual values are shown by the blue
and red crosses, for with and w/o phasemarks, respectively.

(a) MiniFE (b) Lulesh

(c) Nekbone (d) LAMMPS

Fig. 6. Runtime estimations vs. measurements as a function of data ranges placed in
high-bandwidth memory.

As shown, without using phasemarks we endure estimation errors up to over
60%, while with the incorporation of phasemark information the proposed mech-
anism provides a remarkably accurate estimation of runtimes. Specifically, the
average estimation error when using phasemarks for MiniFE, Lulesh, Nekbone,
and LAMMPS is 2.4%, 2.3%, 3.2%, and 2.7%, respectively. The largest error
(while using phasemarks) we observe across all the experiments is for LAMMPS
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at 90% of the memory placed into HBM where we see approximately a 10%
error. We find this particular result counterintuitive because most pages are in
HBM already; we are still investigating the root cause of it.

The second set of experiments covers arbitrary ranges placed into high-
bandwidth memory. We emphasize that the importance of these experiments
lies in the fact that they mimic the conditions the estimator would encounter
during RL training. Results are shown in Fig. 6.

The plots are similar to those in Fig. 5 except for the x-axis. For brevity
we omit listing the actual address ranges (also because they do not carry any
particular meaning), and we use short notations on the x-axis to indicate differ-
ent configurations where select memory ranges are placed into MCDRAM. We
handpicked these ranges by visually examining traces and by algorithmically
identifying areas where a large number of the accesses concentrate.

Again, without using application phasemarks we observe errors up to 75%.
To the contrary, when utilizing phasemarks the average estimation error for
MiniFE, Lulesh, Nekbone, and LAMMPS is 4.1%, 5.7%, 3.1%, and 6%, respec-
tively. We note that although in a few cases the error using phasemarks exceeds
that of without it (e.g., in Fig. 6c), the error is already very small in these cases.
While these numbers are somewhat elevated compared with those of the more
regular percentage-based experiments, we believe these are still well within the
acceptable range for driving ML training. Overall, across all experiments, the
estimator with phasemarks yields an average error rate of 4.4%.

Estimation Time. As depicted in Fig. 3, the profiling and estimation steps
proposed in this paper may be compared with other methods having similar
utility, that is, to estimate the application execution time as a function of the
mapping between application data and physical memory. Here, we compare the
overhead of our method with that of three other methods.

Table 1. Comparison of actual application runtime, the wall-clock time of the proposed
estimator, and simulation times of Ramulator and gem5.

Application Runtime Estimator Ramulator gem5

(measured) (measured) (estimated) (estimated)

MiniFE 41 s ∼9 s ∼1 h ∼14 days
Lulesh 86 s ∼54 s ∼2 h ∼29 days
Nekbone 54 s ∼66 s ∼1 h ∼18 days
LAMMPS 46 s ∼39 s ∼1 h ∼15 days

Based on measurements, we report the upper limit of application runtime
(i.e., running out of DRAM) and the wall-clock time it takes the proposed
mechanism to give an estimate. In addition, we estimate the simulation times
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of Ramulator and gem5. Ramulator [25] is a memory simulator capable of sim-
ulating multiple memory technologies. In our experience, using Ramulator to
process a memory access trace obtained with the Intel Pin [28] binary instru-
mentation tool was about 100 to 1,000 times slower than running the actual
application. We estimate wall-clock times based on these values. The gem5 [8]
simulator is a cycle-level simulator, modeling several components of a hard-
ware platform including CPUs, caches, and the memory hierarchy. We estimate
gem5 runtimes based on the approximate 30, 000 times slowdown reported by
Sandberg et al. [38], which is also in line with our own experience running smaller
benchmarks.

Results are shown in Table 1. As seen, the runtimes of both gem5 and Ramu-
lator are prohibitive for our purpose. In contrast, the proposed estimator provides
runtime estimates several orders of magnitude faster. In fact, except for Nekbone,
it runs faster than the application itself. We note that the slowdown in Nekbone
is related to the large number of memory accesses that impacts the speed of
the simulation. We leave further performance optimization of the estimator for
future work. Nevertheless, we point out that the estimator runs on a single CPU
core as opposed to the application that occupies at least an entire chip. Taking
into account RL’s ability to utilize multiple agents concurrently, our solution
provides efficiency improvements proportional to the number of CPU cores even
if compared with actual application runs. Moreover, since the application profile
used in the proposed mechanism is based on sampled memory access traces, we
can adjust the trade-off between the trace resolution and the estimator accuracy
to speed up the profiling and estimation.

6 Discussion

This section provides additional discussion on various aspects of the proposal.
The ultimate goal of this study is to train ML agents that will guide memory

placement in heterogeneous memory environments in an application transparent
fashion. Phasemarking is used exclusively for building the environment to train
the agent (i.e., for generating training data) and the expectation is that ML
agents will generalize enough to work on unseen access patterns.

We emphasize that at the time of deployment an RL agent only needs to
observe memory accesses (e.g., through PEBS) and there is no need for phase-
marking each application when the system is deployed. Furthermore, our special-
purpose OS is only utilized for the creation of training data. Once an RL agent
is trained, it can be deployed in any standard OS/runtime environment with the
only requirement for being able to sample memory accesses.

One might recognize the possibility to directly utilize phasemark information
for memory management. While this may be feasible, it is outside the scope
of this study and we leave it for future exploration. Our goal is to derive an
application-transparent solution that does not require code instrumentation.
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7 Related Work

A significant amount of research has been done over the years on improving page
placement for complex memory architectures.

Focusing on modern memory architectures and profiling-based methods, we
identify several works of interest. The first set of research studies can be char-
acterized by the focus on designing a system or runtime using different memory
tiers as a stage-in/stage-out cache. These studies can predict which pages of
memory should be migrated from large and slow to small and fast memory
devices ahead of time, either in a system with NVRAM and DRAM or a system
with DRAM and HBM. We highlight the works of Doudali et al. [12–14] that
showcase ML methods to predict which pages to migrate next or how often to
perform migration. These works are difficult to adapt to our objective, however,
since they operate under the assumption that any application page would benefit
from being in fast memory at the right time, which is not necessarily the case in
the HPC context [33,37]. Indeed, we aim here to select the right placement for
each page and not to design a paging scheme that would move the working set
of an application in and out of a hierarchy of devices. We also note that many of
the above-mentioned studies consider only single CPU core execution, which we
think is unrealistic in an HPC setting. We can also differentiate these works with
respect to the profiling method used: whether it is based on estimating locality
metrics (e.g., reuse distance) [2,12,24] or a form of memory pressure (e.g., access
count per region) [6,30,39].

We further highlight studies providing heuristics or software facilities for data
migration between heterogeneous memories [7,35], either through the use of the
same metrics as above or through more knowledge of the application. Phase
detection is also an extensive field of study, surveyed in [10]. We note that most
phase detection methods, in particular architecture-supported ones, tend to be
used for reconfiguration purposes (make a change in a policy) and not as much
for comparison of traces of the same application in different setups. Nevertheless,
we will investigate the use of other lightweight phase detection systems in our
future work.

Binary instrumentation tools can also be used to track memory accesses,
filter them between the last-level cache and memory, and model the timing of
the instructions. Such solutions could be used as profilers for our trace-based
estimator. However, the overhead of binary instrumentation-based methods for
memory analysis tools has been shown to increase the number of instructions
to execute by 10 times [42]. Intel Pin [28] (3.21) is a binary instrumentation
framework shipped with a single-level cache emulator tool. Although it could be
used here as a profiler, in our experience the overhead of the tool is more on the
order of 100 to a 1000 times.

Ramulator [25], the memory simulator we used for evaluation, can also be
combined with other tools such as Siena [34] to simulate heterogeneous memory
systems. These tools can be used as an estimator to evaluate the impact of data
mapping on applications in a fashion similar to our own estimator. Unlike with
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our tool, however, where we can rely on sampled memory access traces, these
tools require a complete trace to provide an accurate timing estimation.

8 Conclusion and Future Work

As architectural complexity grows in HPC systems, it becomes increasingly chal-
lenging to efficiently utilize these platforms. Therefore, intelligent application-
transparent solutions are greatly desired. In particular, ML/AI techniques that
can discover solutions without labeled data may come to the rescue. However,
techniques such as reinforcement learning require a large number of interactions
with the environment; and thus, when applied to heterogeneous memory man-
agement, they require rapid execution time estimation of the application running
on a hybrid memory platform.

This paper has proposed a novel execution time estimation mechanism
that relies on comparing sampled memory access traces obtained on real hard-
ware from different memory devices. This relatively simple mechanism achieves
remarkably accurate runtime predictions (with an average error rate of 4.4%)
while running orders of magnitudes faster than high-fidelity architectural simu-
lators. Thus, the proposed mechanism opens up the opportunity to be deployed
in nonsupervised machine learning frameworks such as in RL.

Our immediate future work entails integrating the proposed estimator into
an RL framework to explore the feasibility of its application to heterogeneous
memory management. With respect to gem5, while it is not a suitable solution
for high-speed and low-overhead runtime estimation, we intend to use it in the
future as a validation platform for new architectures.
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