Revisiting Rendezvous Protocols in the Context of
RDMA-capable Host Channel Adapters and Many-Core
Processors

Masamichi Takagi
Green Platform Research
Lab., NEC Corp.
m-takagi@ab.jp.nec.com

Balazs Gerofi
Dept. of Computer Science,
Univ. of Tokyo
bgerofi@il.is.s.u-
tokyo.ac.jp

ABSTRACT

We revisit RDMA-based rendezvous protocols in MPI in
the context of cluster computer with RDMA-capable HCA
and many-core processors, and propose two improved pro-
tocols. The conventional sender-initiate rendezvous proto-
cols cause costly processor-device communications via PCI
bus on detecting completion of RDMA transfer. The con-
ventional receiver-initiate rendezvous protocols need to send
extra control messages when a value of the memory-slot to
poll in the receive buffer has the same value as the send
buffer. The first proposed protocol implements polling on a
memory-slot in the receive buffer to eliminate the processor-
device communications. The second proposed protocol ran-
domizes the value of the memory-slot to poll to reduce extra
control messages. We have evaluated the proposed proto-
cols using micro-benchmarks and NAS Parallel Benchmarks.
One of the proposed protocols has a benefit compared to the
conventional protocols. And the second proposed protocol
reduces the execution time by up to 11.14% compared to the
first protocol.

Keywords
MPI, rendezvous protocol, RDMA, polling, HCA

1 Introduction

In HPC area, computers tend to employ cluster architecture
in which a large number of commodity PC servers are con-
nected via a network. This is because PC architecture has
an advantage in cost-performance compared to the custom-
built architecture. InfiniBand (IB) [3] is widely used as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroMPI ’13, September 15 - 18 2013, Madrid, Spain

Copyright 2013 ACM 978-1-4503-1903-4/13/09 ...$15.00.

85

Yuichi Nakamura
Green Platform Research
Lab., NEC Corp.
yuichi@az.jp.nec.com

Atsushi Hori
RIKEN Advanced Institute for
Computational Science
ahori@riken.jp

Yutaka Ishikawa
Dept. of Computer Science,
Univ. of Tokyo
ishikawa@is.s.u-
tokyo.ac.jp

network because it has a cost-performance advantage over
other network technologies, and its RDMA capability lowers
latency of large message transfer [5]. Furthermore, many-
core processors such as the Intel Xeon Phi Co-processor have
been adopted for the cluster computers because they have
an advantage in computation throughput compared to pro-
cessors with fewer cores.

One of the most important components in execution time
in HPC programs is communication latency. There are three
major approaches to reduce the communication latency. The
first approach is to improve the communication hardware,
e.g. increasing the throughput per wire. The second ap-
proach is to improve the software protocol to reduce the
overhead, e.g. reducing protocol processing computation
and control messages. The third approach is to refine the
communication pattern in the programs to reduce the num-
ber of messages and their sizes. We focus on the second
approach and we focus on improving the Message Passing
Interface (MPI) [6] protocol because MPI is the de facto
standard for writing parallel applications. In addition, we
focus on improving rendezvous protocol because a large por-
tion of communications is handled by it.

There are two major sources of latency overhead in ren-
dezvous protocol. The first source is processor-device com-
munications via PCI bus. That is, Host Channel Adapter
(HCA) issues a PCI command on the PCI bus to write a
value to a memory-slot. Such a communication occurs in a
rendezvous protocol with two purposes. The first purpose is
for the HCA to write contents of the MPI user buffer which
came through the network to the receive buffer. The second
purpose is for the HCA to notify the processor of completion
of an RDMA transfer. And the cost of a processor-device
communication amounts to hundreds of processor cycles.
The second source is sending control messages. The latency
caused by sending control messages is multiplied by tens in
the cluster architecture. This is because the latency is mul-
tiplied by the number of cores sharing one HCA and per-
forming simultaneous communications through it, and the
number has increased to tens.

We revisit rendezvous protocols of MPI in the context of
reducing these kinds of latencies and propose two improved

Provide RDMmA info

Enter MPI_Isend (addr, 1B key, size)
7 I
8 . Enter MPI_Irecv
----------------------------- —
< |B request ——g—'—' o
o | |©@
< Detect RDMA
E 1 completion through
Last 1B ACK — o —P" o] processor-device
Detect RDOMA < e - © communication
[Pl . . .
completion by 3 Notify RDMA completion Exit MPI_Wait
control message

Exit MPI_Wait

Figure 1: Timeline diagram of conventional sender-
initiate rendezvous protocol.

protocols. The contribution of this paper is two-fold.

e A new sender-initiate rendezvous protocol which elimi-
nates one processor-device communication via PCI bus
is proposed. The conventional sender-initiate rendezvous
protocol involves a processor-device communication to de-
tect completion of an RDMA transfer. Our proposed pro-
tocol exploits the fact that RDMA transfer changes the
contents of the receive buffer and detects the completion
by polling the change to eliminate the communication.

e A new receiver-initiate rendezvous protocol is proposed,
which reduces the probability of sending an extra control
message. The conventional receiver-initiate rendezvous
protocol makes the receiver poll on a memory-slot in the
receiver buffer to monitor change of the value to detect
completion of an RDMA transfer. The sender needs to
send an extra control message in the situation when the

memory-slot has the same value as the corresponding memory-

slot in the send buffer and its value won’t be changed when
RDMA transfer copies the contents of the send buffer to
the receive buffer. The conventional protocol sets a con-
stant value to the memory-slot before an RDMA transfer.
However, the constant value might be the frequent value
appearing in the corresponding memory-slot in the send
buffer and hence resulting in causing the same-value sit-
uation frequently. Our protocol reduces the chance for
the situation to happen by randomizing the value in the
memory-slot.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss related work. In Section 3, we describe
our protocol design. In Section 4, we explain the evaluation
results. In Section 5, we conclude the paper.

2 Related Work

MPT utilizes a protocol called the rendezvous protocol when
sending a large message. The typical message size is over
several thousand bytes. Many studies proposed different
protocols and they are categorized in three types. We discuss
those conventional protocols following the types. We call the
memory area from which a user program send a message
send buffer and the memory area to which a user program
receive a message receive buffer. We call an MPI process
which tries to send a message sender side, which tries to
receive a message receiver side.

86

provide RDMA info y = Enter MPI_lrecv
. t byte & [Write a constant to
size, IB key, 1as
(addr, 4 2] end of receive buffer
Enter MPI_Isend

Detect RDMA
[~ completion by
polling
Detect RDMA
Completion through
processor-device
communication

Exit MPI_Wait

Detect RDMA
(= completion by
control message

[~ Exit MPI_Wait

| PS3 |PSZ PS1

Notify RDvA completion
when last byte won’t change

Figure 2: Timeline diagram of conventional receiver-
initiate rendezvous protocol.

2.1 Sender-Initiate Protocols

A protocol where the sender side first sends a control mes-
sage to the receiver side is called sender-initiate protocol.
We call the conventional sender-initiate protocol GETCQE.
Its steps are as follows [4, 12]. Fig. 1 shows a timeline
diagram of the protocol. GRn are performed by the receiver
side and GSn are performed by the sender side.

GS1 The sender side enters MPI_Isend and sends a con-
trol message to the receivers side requesting an RDMA
read. The control message contains the information
for RDMA (start address of the send buffer, its size,
memory protection information).

GS2 The sender side enters MPI_Wait and waits for a control
message of the RDMA read completion. And then it
exits MPI_Wait.

GR1 The receiver side enters MPI_Irecv and checks arrival
of the control message sent by the sender side. And
then it initiates an RDMA read.

GR2 The receiver side enters MPI_Wait. The HCA noti-
fies the processor of completion of the RDMA read by
a processor-device communication through a memory-
slot called Completion Queue Entry (CQE) and the re-
ceiver side monitors the CQE to detect the completion.
The receiver side sends a control message of RDMA
read completion to the sender side. The receiver side
exits MPI_Wait.

The protocol has an issue that it involves a costly processor-
device communication in step GR2.

Small et al. [10] proposed an improvement over the sender-
initiate protocol where the sender side exploits the knowl-
edge of the time when the receiver side enters MPI_Irecv to
reduce the time to exit MPI_Wait. The sender side copies the
contents of the send buffer to read-only memory area when
it knows that the receiver side will enter MPI_Irecv later.
The sender side can exit MPI_Wait without waiting for com-
pletion of the following RDMA read and this method can
reduce the time to exit MPI_Wait in this way. However, their
method still involves the processor-device communication.

2.2 Receiver-Initiate Protocols

A protocol where the receiver side first sends a control mes-
sage to the sender side is called receiver-initiate protocol.
We call the conventional receiver-initiate protocol PUTNR.
The steps are as follows [8, 2]. Fig. 2 shows a timeline
diagram of the protocol. PRn are performed by the receiver
side and PSn are performed by the sender side.

Enter MPI_lsend — Provide RDMA info

[| (addr, 1B i
H i e e st)
(U]

Send last byte of

send buffer b—— Enter MPI_Irecv

Write ~(last byte) to
end of receive buffer

|Brequest =— ?‘3 ""'=

gl—ih’
— =4 Detect RDMA
e
< LastIBACK == "7 completion by polling

Detect RDMA
completion by =
control message

| GR2' | |GR1’|

Exit MPI_Wait

Notify RDMA completion

Exit MPI_Wait el

D Improvementin this work

Figure 3: Timeline diagram of the GET protocol.

PR1 The receiver side enters MPI_Irecv. The receiver side
sets a constant value to the last byte-slot in the receive
buffer. The receiver side sends a control message to the
sender side denoting the transfer start and provides the
start address of RDMA its size, memory protection
information and the value of the last byte in the receive
buffer to the sender side through the control message.
Note that a sender-initiate protocol must be used when
MPI_Irecv with MPI_ANY_SOURCE is used because this
step requires that MPI_Irecv be able to specify the
sender side.

PR2 The receiver side waits either for change in the last
byte of the receive buffer by polling or for arrival of a
control message of transfer completion. The receiver
side cancels the polling when the receiver side receives
the control message. And then the receiver side exits
MPI_Wait. Note that change in the receive buffer is
observed to be occurring in-order in many processor-
HCA combinations [5] and we exploit it for detecting
the transfer completion.

PS1 The sender side enters MPI_Isend and checks arrival

of the control message of transfer start sent by the

receiver side. And then it initiates an RDMA write.

PS2 The sender side enqueues an IB command which sends
a control message of transfer completion when the last
byte in the receive buffer is the same as in the send
buffer.

PS3 The sender side waits for completion of the RDMA
write through processor-device communication via CQE.
The sender side exits MPI_Wait.

The protocol makes the receiver set a constant value to the
memory-slot residing at the end of the receive buffer. And
then the receiver side polls on the memory-slot to mon-
itor the change of value to detect completion of RDMA
write. It relies on the fact that the value of the memory-slot
is changed by the RDMA transfer. Therefore, the sender
needs to send an extra control message in the situation
the memory-slot has the same value as the corresponding
memory-slot in the send buffer. The protocol has an issue
that its effective latency is increased by up to the amount of
latency overhead of sending one control message when the
probability for the situation to happen is high. This would
be the case when the constant happens to be the value fre-
quently appears in the send buffer.

87

provide RDMA info Enter MPI_Irecv

PR1

(addr, size, 1B keY, last byte) Randomize

last byte

Enter MPI_ISend s

Detect RDMA
= completion by
polling
Detect RDMA
Completion through
processor-device
communication

Exit MPI_Wait

Detect RDMA
[~ completion by
control message

| PS3 |PSZ PS1

Notify RDmA completion
when |ast byte won’t change

[Exit MPI_Wait

D Improvementin this work

Figure 4: Timeline diagram of the PUT protocol.

2.3 Switching Protocols Exploiting Timing Dif-
ference

Many studies [11, 10, 9] proposed rendezvous protocols which
switch multiple protocols to reduce latency. Their methods
select one protocol out of three based on the time difference
between the time when the sender side enters MPI_Isend
and the time when the receiver side enters MPI_Irecv to ex-
ploit the time difference to reduce latency. Protocols for the
choice differ in which side (sender or receiver) initiates the
transfer and whether to copy the contents of the send buffer
to a read-only memory-area. However, each of the protocols
still has the same issue as described above.

3 Protocol Design

We propose two improved protocols. The first one is an
improved version of the GETCQE protocol and we call it
the GET protocol. The second one is an improved version
of the PUTNR protocol and we call it the PUT protocol.
We explain them in the followings.

3.1 GET Protocol

We explain how to improve the GETCQE protocol to obtain
the GET protocol. Step GR2 involves a costly processor-
device communication via PCI bus. We replace it with a
polling on the last byte of the receive buffer to eliminate
the communication. We modify the related steps of the
GETCQE protocol as in the followings to achieve it to ob-
tain the GET protocol. Fig. 3 shows a timeline diagram of
the GET protocol.

GS1’ The sender side enters MPI_Isend and sends a con-
trol message to the receiver side requesting an RDMA
read. The control message contains the information
for RDMA (start address of the send buffer, its size,
memory protection information) and the value of the
last byte in the send buffer.

GR1’ The receiver side enters MPI_Irecv and checks arrival
of the control message sent by the sender side. It writes
the negative of the last byte in the control message to
the last byte-slot of the receive buffer so that it can
detect completion of the following RDMA read. And
then it initiates an RDMA read.

GR2’ The receiver side enters MPI_Wait. The receiver side
polls on the last byte of the receive buffer to detect
completion of the RDMA read. The receiver side sends
a control message of the RDMA read completion to the
sender side. The receiver side exits MPI_Wait.

Table 1: Parameters for evaluation environment

| Component | Parameters |
Node Intel Xeon E5-2670, 2.601 GHz,
processor | 8-physical core, 16-logical core, 2-socket
HCA Mellanox ConnectX-3, 6.79 GB/s
I/0 bus PCI Express 3.0, 8-lane, 7.88 GB/s

3.2 PUT Protocol

We explain how to improve the PUTNR protocol to obtain
the PUT protocol. Step PS2 needs to send an extra con-
trol message when the last byte of the receive buffer has
the same value as the send buffer. The probability would
be high when using a constant value as the initial value of
the last byte-slot in the receive buffer in step PR1 because
the constant might be the value frequently appearing in the
corresponding memory-slot in the send buffer. We random-
ize the initial value to reduce the probability. We modify
the related step of the PUTNR protocol as in the followings
to achieve it to obtain the PUT protocol. Fig. 4 shows a
timeline diagram of the PUT protocol.

PR1’ The receiver side enters MPI_Irecv. And then it ran-
domizes the last byte of the receive buffer. It sends a
control message to the sender side denoting the trans-
fer start and provides the start address of RDMA, its
size, memory protection information and the value of
the last byte in the receive buffer to the sender side
through the control message.

4 Evaluation

We have conducted three types of evaluations. The first
evaluation was conducted to compare the GET and PUT
protocols with conventional protocols by utilizing a micro-
benchmark which performs communications with a typical
pattern. The second evaluation was conducted to compare
the GET protocol with the PUT protocol by utilizing two
micro-benchmarks and programs from NAS Parallel Bench-
marks [7]. The third evaluation was conducted to compare
the GET and PUT protocols with MVAPICH [5] by utiliz-
ing the first micro-benchmark. We explain the evaluation
methodology common to all the evaluations.

We implemented a plug-in module controlling IB HCA
for MPICH 3.0.1 [1] and implemented the proposed pro-
tocols by modifying MPICH with it. MPICH is compiled
with Intel C Compiler version 13.0.0 20120731 with the con-
figure option of -enable-fast=02, nochkmsg, notiming,
ndebug. We used a cluster computer with the specifica-
tions listed in Table 1. The arrangement of processes is
intended to emulate the architecture of future cluster com-
puters where many processes on a compute node share one
HCA. Sixteen MPI processes are run on sixteen logical cores
(hyper-threading cores) on one CPU-socket for this purpose.
Logical cores are used to increase the number of cores per
processor to emulate the architecture.

4.1 Comparing GET and PUT with conven-
tional protocols
4.1.1 Comparing GET with conventional protocols

We first compared the communication latency of the GET
protocol with that of the GETCQE protocol. We utilize
a micro-benchmark, we call it BOWTIE, for this purpose.

88

CPU-socket

Physical core Physical core

Logical core Logical core Logical core Logical core

| MPI process | | MPI process | | MPI process || MPI process |

--- Compute node --

InfiniBand HCA
[T 1 1

InfiniBand switch

[1 11
InfiniBand HCA

+ '3 r
MPI process | | MPI process | | MPI process || MPI process

Logical core Logical core Logical core Logical core

Physical core Physical core

-- Compute node --

CPU-socket

Figure 5: MPI process arrangement in the BOWTIE
micro-benchmark.

‘2’10 60

E a,/‘“U""’/a 40

£ 5 ~-GET 20 ©-GET

£ o -x-GETCQE 0 - -X-GETCQE
§ 1024 2048 4096 8K 16K 32K

Message size (byte) Message size (byte)

Figure 6: Latency of the BOWTIE micro-
benchmark where 16 process-pairs are perform-
ing bidirectional communication using one pair of
HCAs.

It utilzes 32 MPI processes. They utilize two compute nodes
and the processes are arranged as shown in Fig. 5. BOWTIE
makes each end of a process pair send messages toward the
other end at the same time and waits for completion of the
communication. The pseudo-code of BOWTIE is as follows.

/* nprocs: the number of processes */

/* each process with rank "r" performs this */

for(i = 0; i < NTRIAL; ++i) {
MPI_Irecv from (nprocs >> 1) ~ r;
MPI_Isend to (nprocs >> 1) ~ r;
MPI_Waitall;

}

The MPI library is modified so that all message transfers
are performed by rendezvous protocol.

Fig. 6 shows the results. The X-axis shows the MPI mes-
sage size specified by the user program. The GET protocol
has almost the same latency compared to the GETCQE pro-
tocol even though it eliminates one processor-device commu-
nication from the GETCQE protocol. We explain the rea-
son. Latency added to a rendezvous protocol by a processor-
device communication is divided into two components and
they are caused as follows. (1) HCA issues a PCI command
and blocks other PCI commands and (2) processor issues
a load instruction and causes a cache-miss. And (1) has
a much larger effect than (2). The implementation of the
GET protocol eliminates (2) but cannot eliminate (1) be-
cause of the restriction of the HCA utilized. Therefore, the
improvement is limited.

4.1.2 Comparing PUT with conventional protocols

We compare the communication latency of the PUT proto-
col with that of the PUTNR protocol under the worst-case
scenario. The worst-case scenario is the case where the last

_15 80 - A
Q 47
X
: B 60
= 10 __—x":.»"" 2
2 - a7 40 - -
.8 g ‘_‘:-""-
ke 5 7 .gput 20 4 ®<g-puT
g -%-PUTNR (worst case) ~X-PUTNR (worst case)
o T T T 1
© 1024 2048 4096 8K 16K 32K

Message size (byte) Message size (byte)

Figure T7: Latency of the BOWTIE micro-
benchmark.
14 -
<12 - 80
%10
2 60 -
> 8 -
36 - 40 -
£ 4
e 4 20 -
€ 2 1 -8PUT -GET -2-PUT -e-GET
o
o 0 T T 0 T T 1
1024 2048 4096 8K 16K 32K

Message size (byte)
BOWTIE micro-

Message size (byte)

Figure 8:
benchmark.

Latency of the

byte of the receive buffer always has the same value as the
send buffer. We are trying to evaluate the maximum benefit
of the PUT protocol over the PUTNR protocol in this way.
We utilize BOWTIE for this purpose.

Fig. 7 shows the results. The PUT protocol reduces the
latency by up to 24.60%. This is because the PUTNR proto-
col needs to send one extra control message when compared
to the PUT protocol.

4.2 Comparing GET with PUT

We compare the GET protocol with the PUT protocol. We
utilize BOWTIE micro-benchmark, MPI_Alltoall micro--
benchmark and programs from NAS Parallel Benchmarks.

42.1 BOWTIE

First we compare the GET and PUT protocols by utilizing
BOWTIE. Fig. 8 shows the results. The PUT protocol re-
duces latency by up to 16.37% for messages of 1 KB, 2 KB,
16 KB and 32KB and has almost the same latency for mes-
sages of 4 KB and 8 KB compared to the GET protocol. This
is because the PUT protocol sends fewer number of control
messages than the GET protocol. Note that running many
processes performing the same kind of IB message transfer
at the same time accumulates latency overhead of individual
processes, in this case overhead of sending an extra control
message, when they are sharing a single resource with the
least throughput, in this case the network wire. The accu-
mulation occurs because sending an extra IB packet occupies
the shared resource in an exclusive way to block IB message
transfers of other processes.

422 MPI Alltoall

We compare the GET and PUT protocols by utilizing a
micro-benchmark which performs MPI_Alltoall. It utilizes
32 MPI processes. They utilize two compute nodes, and

89

700 - 2,500 -+

§ 600 - 2,000 -

5500 -

>400 - 1,500 -

300 - 1,000 -

2200 - 500

ElOO 1 --PUT -o-GET -2-PUT -o-GET

8 0 T T 1 0 T T
1024 2048 4096 8K 16K 32K

Message size (byte) Message size (byte)

Figure 9: Latency of micro-benchmark where 32
processes are performing MPI_Alltoall.

350 -

_ 40 300 -
o Q
83530 - mPUT 2 250 - mPUT
52 GET E200 - GET
2220 1 £150 -

£ = _
SS10 - §'%
[= 50 -
'cg L 3
g> 0 - g 0 -
o [¥E]

cg sp ft dt lu bt
Benchmark program
(A) (B)

Figure 10: (A) Rendezvous protocol wait time and
(B) execution time of programs from NAS Parallel
Benchmarks.

cg sp ft dt Ilu bt
Benchmark program

sixteen processes utilize sixteen logical cores on each of the

nodes. The following pseudo-code shows the steps of MPT_Alltoall.

/* nprocs: the number of processes */
/* each process with rank "r" performs this */
/* showing only the case nprocs % 4 == 0 */
for(j = 0; j < mprocs; j += 4) {
for(k = 0; k < 4; ++k) {
MPI_Isend to (r + j + k) % nprocs;
MPI_Irecv from (r - j - k) % nprocs;
}
MPI_Waitall;
}

The MPI library is modified so that all message transfers
are performed by rendezvous protocol. Fig. 9 shows the
results. The PUT protocol reduces latency by up to 26.13%
compared to the GET protocol. This is because the PUT
protocol sends fewer number of control messages than the
GET protocol.

4.2.3 NAS Parallel Benchmarks

We compare the GET protocol with the PUT protocol by
comparing execution times of programs from NAS Parallel
Benchmarks 3.3.1. We choose six programs, cg, sp, ft dt,
lu and bt. Class W is used as the input data size. All pro-
grams are compiled with Intel C/Fortran Compiler version
13.0.0 20120731 with the option of -03 -xavx. 64 MPI pro-
cesses are utilized in all programs. 16 MPI processes run
on sixteen logical cores and 4 compute nodes were utilized.
The MPI library switches from the eager protocol to ren-
dezvous protocol when a message size is larger than 4047

?20 A 80 -

Q LA

515 60 -

> A

g 10 - --- 40

& 5 - g-PUT 20 -

= -©-GET

g 0 : -A-M\I/APICH 0 —A-MYAPICH ‘
O 1024 2048 4096 8K 16K 32K

Message size (byte) Message size (byte)

Figure 11: Latency of BOWTIE micro-benchmark.

bytes. We measure performance in two metrics. The first
one is execution time of the program and the second one
is time spent to wait for completion of rendezvous protocol
sending messages across compute nodes. Note that it is the
same as latency of rendezvous protocol minus the time of
overlapped computation. We call this rendezvous protocol
wait time.

Fig. 10 shows the rendezvous protocol wait time. The
X-axis shows the program name and the Y-axis shows the
time. The PUT protocol reduces rendezvous protocol wait
time by up to 41.72% compared to the GET protocol. This
is because the PUT protocol reduces one control message
transfer compared to the GET protocol. cg, sp, ft, lu
and bt exhibits relatively large reduction because they send
many messages large enough to utilize rendezvous protocol
and small enough to increase ratio of overhead of sending a
control message to the total protocol latency.

Fig. 10 shows the execution time. The PUT protocol
reduces the execution time by up to 11.14%. cg and ft ex-
hibit relatively large reduction. This is because rendezvous
wait time occupies a large portion of execution time in them
and the reduction of rendezvous wait time is relatively large
in them.

4.3 Comparing with MVAPICH

We compared the latency of the GET protocol and the PUT
protocol with MVAPICH2-1.9b [5], which is used for many
HPC cluster computers to see the practicality of the pro-
posed protocols. We use BOWTIE for this purpose. The de-
fault rendezvous protocol of MVAPICH is as follows. (1) the
sender side first sends a control message to the receiver side
when the sender side enters MPI_Isend, (2) the receiver side
responds to the control message and sends the second con-
trol message to the sender side, (3) the sender side responds
to the second control message and initiates an RDMA write
and sends the third control message of RDMA completion
to the receiver, (4) the receiver side responds to the third
control message and exits MPI_Wait, (5) the sender side con-
firms completion of RDMA write through processor-device
communication via CQE and exits MPI_Wait.

Fig. 11 shows the results. The PUT and GET proto-
cols reduces the latencies by up to 37.84% and 25.67% over
MVAPICH. This is mainly because they reduce one or two
control message transfers.

5 Conclusions

We revisited RDMA-based rendezvous protocols in MPI in
the context of cluster computers with RDMA-capable HCA

90

with many-core processors, and proposed two improved pro-
tocols. The conventional sender-initiate rendezvous proto-
cols involve costly processor-device communications via PCI
bus on detecting completion of RDMA transfer. The con-
ventional receiver-initiate rendezvous protocols need to send
extra control messages when the last byte of the receive
buffer has the same value as the send buffer. These add
latency to execution time of HPC applications. To elim-
inate processor-device communications, the first proposed
protocol, GET, implements polling on a memory-slot in the
receive buffer. In addition, to reduce extra control messages
the second proposed protocol, PUT, randomizes the value
of a memory-slot to poll in the receive buffer. We evaluated
the benefit of the proposed protocols over the conventional
methods by utilizing micro-benchmarks and have confirmed
effectiveness of the GET protocol. And then we compared
the GET protocol with the PUT protocol by utilizing pro-
grams from NAS Parallel Benchmarks. The results show
that the PUT protocol reduces the execution times by up to
11.14%.

6 Acknowledgments

This research is partly funded by the National Project of
MEXT called Feasibility Study on Advanced and Efficient
Latency Core Architecture.

7 References

[1] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
High-Performance, Portable Implementation of the MPI,
Message Passing Interface Standard. Parallel Computing,
22(6):789-828, 1996.

[2] T. Hoefler and T. Schneider. Optimization Principles for
Collective Neighborhood Communications. In Proc. of
SC’12, Article No. 98, 2012.

[3] InfiniBand Trade Association Std. InfiniBand "
Architecture Specification, Vol. 1, Rel. 1.2.1, 2007.

[4] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,
D. Buntinas, W. Gropp, and B. Toonen. Design and
Implementation of MPICH2 over InfiniBand with RDMA
Support. In Proc. of IPDPS’04, 2004.

[5] J. Liu, J. Wu, and D. K. Panda. High Peformance
RDMA-Based MPI Implementation over InfiniBand. In
Proc. of ICS’03, pages 295-304, 2003.

[6] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, 2012.
http://www.mpi-forum.org/docs/mpi-3.0/.

[7] NASA. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Resources/Software /npb.html.

[8] S. Pakin. Receiver-initiated Message Passing over RDMA
Networks. In Proc. of IPDPS’08, pages 1-12, 2008.

[9] M. J. Rashti and A. Afsahi. Improving Communication
Progress and Overlap in MPI Rendezvous Protocol over
RDMA-enabled Interconnects. In Proc. of HPCS’08, pages
95-101, 2008.

[10] M. Small, Z. Gu, and X. Yuan. Near-optimal Rendezvous
Protocols for RDMA-enabled Clusters. In Proc. of
ICPP’10, pages 644-652, 2010.

[11] M. Small and X. Yuan. Maximizing MPI Point-to-Point
Communication Performance on RDMA-enabled Clusters
with Customized Protocols. In Proc. of ICS’09, pages
306-315, 2009.

[12] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA Read
Based Rendezvous Protocol for MPI over InfiniBand:
Design Alternatives and Benefits. In Proc. of PPoPP’06,
pages 32-39, 2006.

