2698

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.9, SEPTEMBER 2016

Prefetching on Storage Servers through Mining
Access Patterns on Blocks

Jianwei Liao, Francois Trahay, Balazs Gerofi, and Yutaka Ishikawa, Member, IEEE

Abstract—Distributed file systems have been widely deployed as back-end storage systems to offer I/O services for parallel/
distributed applications that process large amounts of data. Data prefetching in distributed file systems is a well-known optimization
technique which can mask both network and disk latency and consequently boost I/O performance. Traditionally, data prefetching is
initiated by the client file systems, however, conventional prefetching schemes are not well suited for client machines that have limited
memory and computing capacity. To offer an efficient prefetching approach for resource-limited client machines, this paper proposes a
novel server-side prefetching mechanism. Specifically, we propose to piggyback client identification to I/O requests so that server side
block access history can be put into context. On the server side, we utilize the horizontal visibility graph technique to transform per-
client time series of block access sequences into a connected graph for which we employ Tarjan’s algorithm to disclose cut points in the
connected graph. We express these patterns with feature tuples and we propose the X-step pattern matching algorithm to find a
matching access pattern (i.e., a feature tuple) for a given block access history. Experimental results indicate that our newly proposed

prefetching mechanism can ease client machines and their applications from the process of data prefetching, boosting client
performance accordingly, and that it yields an attractive increase in data throughput as well.

Index Terms—Storage servers, distributed file systems, data prefetching, block access patterns, horizontal visibility graph

1 INTRODUCTION

ECHNOLOGICAL innovations in distributed systems have

been unfolding at an accelerated pace, resulting in: (1)
the prevalence of cloud computing, which provides a novel
pathway for utility computing with unlimited resource flex-
ibility, agility, and scalability; (2) widespread use of mobile
devices equipped with limited computing facilities; (3) and
the increasing speed of wireless networks [38]. The trend is,
effectively, to keep client devices simple and push complex-
ity to the cloud.

In turn, distributed file systems have been generally
adopted as back-end storage systems to offer I/O services
for parallel/distributed applications that need to process
large amounts of data. To satisfy the ever-growing demands
on I/0 services, it is therefore crucial to optimize distrib-
uted file systems for better performance.

Data prefetching is a widely used optimization for tra-
ditional disk based file systems, where fetching data from
the disk dominates the cost of read operations. Prefetch-
ing works particularly well for target applications that
have regular access patterns, such as database servers or

o |. Liao is with the College of Computer and Information Science, Southwest
University of China, Chongqing 400715, China, and the State Key Labora-
tory for Novel Software Technology Nanjing University, Jiangsu 210023,
China. E-mail: linojianwei@il.is.s.u-tokyo.ac.jp.

o F.Trahay is with Telecom SudParis, France.

E-mail: rancois.trahay@telecom-sudparis.eu.

e B. Gerofi is with the RIKEN Advanced Institute for Computational Sci-
ence, Japan. E-mail: bgerofi@riken.jp.

o Y. Ishikawa is with the University of Tokyo, Japan.

E-mail: ishikawa@is.s.u-tokyo.ac.jp.

Manuscript received 12 Dec. 2014; revised 19 Oct. 2015; accepted 25 Oct.
2015. Date of publication 30 Oct. 2015; date of current version 10 Aug. 2016.
Recommended for acceptance by M. Steinder.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2015.2496595

scientific computations [9], [10]. In a distributed setting, pre-
fetching can mask both network latency and disk latency,
and it has been successfully applied to a variety of modern
distributed file systems, e.g., the Hadoop Distributed File
System (HDEFS) [1] and WheelFS [30].

Traditionally, data prefetching in distributed file systems
is initiated by the client file system, where prefetch instruc-
tions are based on the recorded history of I/O operations.
However, conventional prefetching schemes are not well
suited for client machines that have limited memory and
computing capacity, because sophisticated prefetching algo-
rithms require considerable amount of log storage and com-
putation power (as we will demonstrate below), which can
cause negative effects on the application itself.

Moreover, it has been shown previously that even block
level' access history, available only on the storage servers,
can reveal sufficient information for boosting 1/O perfor-
mance. For instance, Li et al. showed that in a file server
back-end storage system, where file blocks are indexed by
their inode block, correlated blocks are apt to be requested
relatively close to each other [33].

To offer an efficient prefetching approach for resource-
limited client machines, this paper proposes a novel server-
side prefetching technique for distributed file systems. In
our previous work [11], [15], we proposed to map logical I/
O operations on the client side to the physical 1/O opera-
tions on the storage server in order to optimize data layout.
Building on top of this work, this paper attempts to improve
data prefetching by exploiting the combined information of
client identification and the storage side access logs.
Through analyzing per-client block access history, our

1. Note that in our scheme block numbers refer to the unique identifi-
cation of data chunks at the distributed file system level and not at the
disks that are local to each storage server.

. . o 1045-9219 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. .
Authorized licensed use limited to: T6kybtipgituteie¢elaghmoblogijordostaridadet tilicatbreiagyte3)@022rat i 0517e3F dM@idrom IEEE Xplore. Restrictions apply.

mailto:
mailto:
mailto:
mailto:

LIAO ET AL.: PREFETCHING ON STORAGE SERVERS THROUGH MINING ACCESS PATTERNS ON BLOCKS

proposed prefetching scheme can predict block addresses of
future read operations to guide reading block data in
advance, and push it to the corresponding client. As a con-
sequence, the client machines are not required to perform
prefeching-relevant computation, so that they can achieve
better performance. Specifically, we leverage the piggy-
backed client identifiers to separate block level access
streams on the server side, for which we employ the hori-
zontal visibility graph approach to transform the block
access sequence to a connected network. Then, according to
the principle of spatial locality [12], we classify block access
patterns within certain ranges of block number offsets and
express these patterns with feature tuples after pattern opti-
mization. Finally, we propose the X-step pattern matching
algorithm to find a matching access pattern (i.e., a feature
tuple) for the block access history in the given prediction
window. Consequently, the storage server is able to prefetch
block data by resorting to the matched pattern, and then
proactively forward the data to the relevant client file sys-
tem for satisfying potential future requests on client nodes.
In short, this paper makes the following contributions:

1) We piggyback client information on I/O requests to
the storage servers so that predicting future accesses
and prefetching block data can be performed entirely
on the server side without any interference to the cli-
ent file system or the application.

2) On the server side, we propose to utilize the horizon-
tal visibility graph technique to transform a time
series of block access events into a connected graph
and classify block access patterns by employing the
Tarjan algorithm, a graph theory technique to find
cut vertices in a connected graph [35].

3) Introducing a data structure of feature tuples to rep-
resent fixed access patterns, we propose the X-step
pattern matching algorithm to find matching access
patterns to the observed block access history in order
to predict future accesses quickly and accurately.

The remainder of this paper is structured as follows: the

related work regarding I/O access prediction and data pre-
fetching will be described in Section 2. The design and
implementation details of this newly proposed prefetching
mechanism are illustrated in Section 3. Section 4 introduces
the evaluation methodology and discusses experimental
results. At last, we make concluding remarks in Section 5.

2 RELATED WORK

The I/O subsystem is becoming the bottleneck of high perfor-
mance distributed systems, especially there are many com-
munication intensive applications in them [8]. In order to
achieve potential performance enhancements of storage sys-
tems, a variety of I/O history analysis-based 1/O optimiza-
tion mechanisms have been proposed previously [18], [19],
[20], [21], [22]. However, existing approaches on the basis of
I/0 access analysis including the above mentioned ones have
mostly focused on classifying I/O access patterns by analyz-
ing either the history of applications’ I/O requests [23], [24] or
the track of block access events [20], [21], so that the analyzed
results can be used for directing I/O optimization strategies,
such as data prefetching. The mechanism of data prefetching

2699

focuses on how to forecast future possible read requests, and
thus, the accuracy of request prediction is critical to the
effectiveness and applicability of data prefetching.

There is a wide range of sophisticated approaches to ful-
fill data prefetching, which utilize hidden Markov models,
neural networks or other predictive algorithms to forecast
I/O operations by analyzing 1/O access patterns of the
application [23], [25], [26], [31], [34]. Simply speaking, these
mechanisms employ specific algorithms to predict the
application’s future I/O access requests based on past I/O
tracks for prefetching data. For example, J. Griffioen and
R. Appleton presented a new method for reducing file sys-
tem latency called automatic prefetching, which leverages a
heuristic-based algorithm for analyzing the knowledge of
past access events to predict future access requests without
application intervention [31]. Another technique, called
informed prefetching takes advantage of hints from the appli-
cation to determine what data should be read in advance,
assuming that file system performance can be improved by
using the information provided by the application [27], [28].
However, this kind of prefetching mechanisms cannot
make accurate decisions if there are no appropriate hints
from the applications, and the inaccurate predictions result
in negative effects on system performance.

Regarding data prefetching techniques on both local file
systems and distributed file systems, Z. Li et al. proposed a
data mining approach called C-miner to explore block corre-
lations in storage systems on a local machine, so that the file
system can make use of the discovered block correlations
for guiding I/O optimization strategies, such as data pre-
fetching or data movement [33]. We found that C-miner is
an inspiring work, which highly influenced us in proposing
a new prefetching mechanism, because the basic idea of C-
miner motivated us to study block access patterns on storage
servers. In fact, C-miner is able to discover the access pat-
terns with certain frequency on the same blocks, but it can-
not disclose the access patterns that target different blocks,
even though these blocks might have the same correlations
[33]. Similarly, S. Jiang et al. have implemented DiskSeen,
which employs a frequent sequence-based pattern model-
ing technique to classify block access pattern, and both tem-
poral and spatial correlations of block access events have
been taken into account, for improving the sequentiality of
disk accesses and overall prefetching performance [20], [21].
V. Padmanabhan and J. Mogul introduced a distributed pre-
fetching scheme with distinct roles for the clients and serv-
ers in World Wide Web. Their observation was that the web
servers, which are responsible to handle access requests
from several clients, can make predictions on which files are
most likely to be demanded in the near future [32]. I. Zhang
[29] has implemented types of prefetching schemes to
improve the performance of reading files and directories in
WheelFS, which is a FUSE-based distributed file system that
aims to offer flexible wide-area storage for distributed appli-
cations [30]. Recently, Y. Yin et al. have proposed the IOSIG
tool based on their previous work [23], which can keep track
of parallel I/O calls of an application and then analyze the
collected information to provide a clear understanding of 1/
O behavior of the application on the client machine [17]. As
a consequence, the client file systems can issue prefetching
requests or adjusting layout requests to the storage servers

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

2700

’ Application ’ Client file system ‘ ’ Storage server

Logging access event
i with piggybacked info.

Low level file system

i @ read (stripe_fe
*Piggybackeq

read (fd, 4096, 0) 4096, 0)

info.

Read latency

required data

Computing with
input data

For ing 1/0O access to
prefetch block data after
analyzing access history
& piggybacked info.

Caching & managing
prefetched data

%7 required data

Fig. 1. Overview of the proposed server-side data prefetching mecha-
nism. The assumed synopsis of a read operation is read(int fildes, size_t
size, off_t off).

Network

for I/O optimization after certain access predictions. How-
ever, tracing and analyzing I/O calls on the client node
causes extra space and time overhead, thus the IOSIG tool
may not be a good choice for configuration-limited client
machines to conduct I/O optimization operations.

Furthermore, C. Amza’s group [36] and X. Zhang’s group
[37] are the pioneers of storage server side prefetching in net-
work based file systems. Both groups proposed their pre-
fetching schemes running on storage servers, and their
evaluation verified the effectiveness of server-side prefetch-
ing. These schemes, however, either require modifications of
the applications or are only working for a very limited num-
ber of block access patterns. In brief, although block access
history reveals the behavior of disk traces, there are no gen-
eral storage server-side prefetching schemes that analyze
block access history in a distributed file system for yielding
better system performance. The well-known reasons for this
are the difficulties in modeling block access history to gener-
ate block access patterns, as well as the aporias in deciding
the destination client file system for pushing the prefetched
data from storage servers.

3 DATA PREFETCHING ON STORAGE SERVERS

In general, the sequence of block access on the storage
server is ordered in time, so that the block access sequence
can be split into successive parts by a constant time interval,
meaning that the sequence resembles typical time series
[13], [34]. This is a crucial fact for understanding the pro-
posal of this paper, which is a server-side data prefetching
mechanism that considers block access history on the stor-
age servers as a time series, and then tries to classify various
block access patterns from the series. Consequently, it pre-
dicts the future block access requests by matching the fixed
access patterns with current block access events in the pre-
diction window to guide reading block data in advance,
and finally the fetched data will be pushed to the relevant
client file systems to fulfill potential I/O requests on the cli-
ent side.

Fig. 1 presents the basic idea of our proposed server-side
prefetching mechanism, where the interaction between the
client file system and storage server can be described
through the following steps:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.9, SEPTEMBER 2016

1) After contacting the metadata server to know which
storage server needs to be accessed for the actual
data request, the client file system sends the corre-
sponding storage server an I/O request accompa-
nying with some additional information about the
application and the client file system (labeled as pig-
gybacked info.).

2) The storage server, fetches the requested data from
the low level file system, and records the block
access event along.

3) The application on the client machine can perform
computing tasks after receiving the required data
from the storage server.

4) Meanwhile, the storage server is able to forecast
future block I/O access requests by analyzing the
history of block I/O access events and the piggy-
backed client information. Therefore, the storage
server can issue relevant physical read requests to
the low level file system for reading data (that are
predicted to be accessed by the future I/O requests)
in advance.

5) Finally, the prefetched data are forwarded to the
corresponding client file system (determined by the
piggybacked client identification) proactively. As a
result, when the prediction of I/O access is success-
ful, the buffered data on the client file system can be
returned to the application instantly, and then read
latency can be reduced to a great extent.

In brief, the storage server can predict the future block I/O
access by referring the matched pattern, and then directly
issue a low-level read request to fetch the data in advance
after analyzing the piggybacked information sent by the client
file systems. The fetched data will be eventually pushed to the
associated client file system for satisfying potential applica-
tion I/O requests. The specifications of the piggybacking
mechanism, which is leveraged to map client I/O requests to
the block access events on the servers, are presented in Section
3.1; Section 3.2 describes the prefetching algorithm; the imple-
mentation details are explained in Section 3.3.

3.1 Piggybacking Mechanism

In our proposed server-side prefetching mechanism, the
knowledge of mapping logical I/O requests on client
machines to the actual physical block access on storage serv-
ers is an obligatory precondition. In other words, the storage
servers need to know certain information about client file
systems and applications. Although we have proposed a
mapping mechanism in our previous work, it requires the
client file systems to keep track of logical access information
and send the logs to the server side [15]. To reduce the over-
head resulted by client logging, in this paper we leverage a
piggybacking mechanism, illustrated in Fig. 2, to transfer
the related information from client file systems to storage
servers for contributing to build the mapping relationship
between logical access and physical access. As it is
described in Fig. 2, when sending a logical I/O request to
the storage server, the client file system piggybacks the
information about the client file system and the application
with the request. As a consequence, the history of block
access events can be put into a client specific context so that
the storage servers can perform prediction of future block

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

LIAO ET AL.: PREFETCHING ON STORAGE SERVERS THROUGH MINING ACCESS PATTERNS ON BLOCKS

Low level file system

Client file system ‘ ’ Storage server

Client Piggybacking info:
client info. & app. info.

& logical I/0 access info.

Run application

Separate real I/O req. ‘
&forward the req.

Logical I/0 Req. &
piggybacked info.
Physical I/0 req.

Mapping physical I/
O with piggybacking
info. from logical /O

ACK

Fig. 2. The piggybacking mechanism for mapping client I/O requests to
block access events occurred on the servers.

access requests, and then push the prefetched data to the
relevant client file systems proactively.

To describe this mechanism from another angle, the cli-
ent file system is responsible for keeping extra information
about the application and client file system; it then piggy-
backs the extra information to client I/O requests, and
sends them to the corresponding storage server. On the
other hand, the storage server parses the request to separate
the piggybacked information and the real I/O request
from the client request. Apart from forwarding the 1/O
request to the low level file system, the storage server has to
log the disk I/O access event with the piggybacked informa-
tion regarding the corresponding logical I/O access. As a
result, the storage server is able to make a record for each
block access event accompanying the client context piggy-
backed by the corresponding client I/O request. Fig. 3
details the actual data fields that are included in each log
record in our proposed prefetching scheme. As the figure
shows, the field of client file system info in the piggybacked
information contains the IP address, and the ID of client file
system, etc., which are required for pushing prefetched
data to the corresponding client file system.

3.2 Prefetching Algorithm

Our prefetching mechanism intends to identify block access
patterns on the storage servers for guiding read operations
in advance. In this section, we first demonstrate the effec-
tiveness of block access patterns, and then discuss the
details of the prefetching algorithm.

3.2.1 Effectiveness of Block Access Patterns

Client I/O requests that belong to the same application usu-
ally have certain logical relationship, and there are many

{Piggybacked Info.

Block Access Info.]

inode Offset

[fd

client file system info] [Time

R/W‘ Block Info.

Req. Size]

[Storagc server ID ‘ Disk ID

Stripe ID‘ Block No. }

Fig. 3. Details of the logged information attached to server side block
accesses.

2701

Client

% | ClientBuffer | / /

Storage Server

Fig. 4. Relationship between logical and block level access patterns.

client side prefetching techniques which exploit this obser-
vation, e.g., IOsig+ [17], [23]. On the other hand, block level
access patterns usually lack the logical connection to appli-
cation context, which makes it difficult to use them for
directing data prefetching in practice. We have conducted
multiple case studies and experiments, and found that block
access patterns may have certain relationship with logical
access patterns occurred on the client side, though they are
not a one-to-one relationship.

By referring to Fig. 4, one can clearly see why block
access patterns are effective to guide data prefetching.
Assume that there is a client access pattern [Reql, Regq2,
Req3, Req4, Req5, Req6], in which the requested data of Reg3
and Reg4 are satisfied with the data buffered in the client
cache. We can easily predict the future access request, i.e.,
Req6 for directing client side data prefetching when Reql,
Req2, Req3, Req4, and Req5 have been observed. On the other
hand, assume that we can classify [B1, B2, B3, B4, B5, B6] as
a block access pattern on the storage server for the afore-
mentioned client access pattern when it appears first (i.e.,
there is no cached data at that time). In case two of the client
requests have been already satisfied with the cached data,
there corresponding block access pattern on the storage
servers will be [B1, B2, B5, B6]. It is then possible to forecast
that there might be another block access request to B6 in the
future in case the observed access sequence was B1, B2, and
B5; thus, it is possible to guide prefetching the data of block
B6 in advance from the viewpoint of the storage server.

3.2.2 Pre-Processing Time Series of Block Access

For the purpose of providing basic data about block access
events to classify access patterns, we use the horizontal visi-
bility graph technique, which was proposed to generate
mapping networks from time series [14]. A sequence of
observed block access events can be transformed to a con-
nected graph, in which a node is utilized to represent a
block access event, for modeling block access patterns. Spe-
cifically, a data point in the time series of block access events
can be expressed as a node of (time, offset, size), which indi-
cates the access request arrived at time, starting at address
of offset and with a request size of size. Because offset is the
most important field in an access event, we set the value of
each node as the offset of the corresponding access event.
Two nodes in the horizontal visibility graph are connected
when one can draw a horizontal line in the time series.
Namely, all nodes must follow the connection rule, which is
defined in Definition 1, to decide whether a node can be

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

2702 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.9, SEPTEMBER 2016
2007 range I range
5 range range range
Jé 150 -
= A—P
Z >t >
o 100 4 R » R
Q o - » >
= . R >
m 501 &> | >
0 1
1 3 5 7 9 11 13 15 17 19

Access Event ID in the Sequence

(a) Horizontal visibility graph of block accesses

Pattern I Pattern I

Pattern 111 Pattern [

Pattern II

(b) Access pattern sub-graphs

Fig. 5. Horizontal visibility graph of block access events and their corresponding access patterns.

connected with another one or not. Fig. 5a illustrates an
example of a horizontal visibility graph that is trans-
formed from a given time series of block access events.
Fig. 5b shows how to present the horizontal visibility
graph by employing a connected graph, because we
intend to use advanced approaches or algorithms in
graph theory to classify access patterns and perform pat-
tern matching subsequently.

Definition 1. Connection Rule: when node(t,,off,, size,) is
connected with node(ty, offy, sizey) in the visibility graph, if
and only if for an arbitrary node(t., off., size.) that occurred
between the aforementioned two nodes having off, > off.
and offy > off. when (t, < t. < tp).

3.2.3 Classifying and Modeling Access Patterns

After transforming a sequence of block accesses into a hori-
zontal visibility graph, we can classify access patterns and
represent them as sub-figures. Therefore, extracting block
access patterns from the history of block access events can
be fulfilled by identifying sub-graphs in the corresponding
horizontal visibility graph. Besides demonstrating how
block access patterns can be helpful for data prefetching,
this section also discusses the approach to classify access
patterns introducing a novel data structure for access pat-
tern management.

(1) Classifying Access Patterns. According to the locality of
reference, which suggests that access events which belong
to the same client request are likely to occur within a limited
block range, we propose a range-based approach to identify
access patterns in the horizontal visibility graph. Specifi-
cally, the process of exploring access patterns can be
addressed by the following two steps:

Step 1: Identifying Access Patterns. To identify access pat-
terns from the horizontal visibility graph including all
observed block access events, we utilize a modified version
of the Tarjan algorithm [35], which pinpoints cut vertices in
a connected graph, that corresponds to the horizontal visi-
bility graph. The basic idea of the Tarjan algorithm is to
employ DFS (Depth First Search). First, we follow vertices

in a tree representation called the DFS tree. In the DFS tree,
a vertex u is parent of another vertex v, when v is disclosed
by u (obviously v is adjacent of u in graph). Finally, in the
DFS tree, a vertex u is a cut point when one of the following
two conditions is satisfied:

1) u is the root of DFS tree and it has at least two
children.
2) uis not the root of DFS tree, but it has a child v, and

this node has a back edge to one of the ancestors (in
DFS tree) of u, moreover, no vertex in the sub-tree is
rooted with v.

As a consequence, we can obtain a number of sub-graphs
divided by the cut vertices with the time complexity of
O(V + E), where V is the number of nodes, and F is the
number of edges. We define as the identified access pattern. a
connected sub-graph with several nodes in the horizontal
visibility graph

Step 2: Optimizing Access Patterns. In the first step
described above, it is possible to obtain many independent
or repeated access patterns. For the purpose of refining
them, the second step intends to optimize and extend those
patterns. To this end, we check the access pattern that fol-
lows each occurrence of an identified pattern, and attempt
to extend it. As illustrated in Fig. 6, when pattern I's next
pattern is always pattern II, the later one can be integrated
into the former one. Thus, a new access pattern, i.e., pattern
IV is created to replace two adjacent patterns.

Furthermore, to accelerate the speed of access pattern
matching and to improve prediction accuracy when con-
ducting server-side prefetching, it is better to set a range for
the number of block access events in a fixed access pattern.
That means the patterns should be shifted if the numbers of

| Pattern [I—H Pattern I H Pattern I H—'| Pattern [T Hl Pattern T I—’| Pattern IT "
(e -)~

Fig. 6. Extending existing access patterns.

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

LIAO ET AL.: PREFETCHING ON STORAGE SERVERS THROUGH MINING ACCESS PATTERNS ON BLOCKS

Node List
3 | 011,101,110 !

4
5 | 01011, 10100, 01010, 10101, 10010 }—j 01111, 10110, 11010, 11101, 10010 i—h - |
6

(a) Data structure for processing feature tuples

2703

Node List
3 F—» o11,101,110 !

......

Vs N
d v Y I S — N
5 |— 01111,10110, 11010, 11101, 10010 j/—»; 01011, 10100, 01010, 10101, 10010 (—; - i
6

(b) Adjustment of data structure if a pattern is hit

Fig. 8. Data structure for managing feature tuples and its relevant adjustment.

access events in the patterns are out of the pre-defined
range. Besides, no extension to the access patterns should
be performed if the number of access events in the extended
pattern would exceed the upper limit.

(2) Representing Patterns as Feature tuples. In order to model
access patterns for quick and accurate pattern matching, we
have introduced a novel data structure, derived from a
matrix-based mechanism, and named it as feature tuple. The
data structure definition of a feature tuple can be found in
Definition 2.

Definition 2. A feature tuple of an adjacency matrix of the sub-
graph is defined as a vector with the elements: [Numy,,q,
Sum;, Sums, ..., Sumy], where Num,,q. indicates the num-
ber of total nodes in the connected sub-graph, i.e., the number
of access events in the pattern, and Sum; is a binary value
related to the connection relationship among the elements in
Row i of the adjacent matrix.

As a matter of fact, the data structure of feature tuple can
reflect the connection structure of an identified sub-graph,
which is derived from its corresponding access pattern.
Moreover, a feature tuple can be used to complete pattern
matching with less time complexity and it requires less
space for storing the adjacency matrix of a connected graph.
Fig. 7 demonstrates the mechanism of mapping an access
pattern to the corresponding adjacency matrix by employ-
ing a connected graph to represent the fixed Access pattern I.
For example, according to the Definition 2, Access pattern I
can be represented by the feature tuple of [5, 01111, 10100,
11010, 10101, 10010].

After analyzing the occurred block access events, we can
obtain multiple valid access patterns and their relevant fea-
ture tuples. For the purpose of matching access patterns
effectively, feature tuples are managed as a linked list, which
can be quickly adjusted on the basis of the matching fre-
quency of access patterns. Fig. 8a demonstrates the data
structure for storing the feature tuples of fixed access pat-
terns. The element in the Node List array indicates the num-
ber of nodes in the access pattern, and the linked list
belonging to an element in the array means the access pat-
terns that involve the same number of I/O events. Moreover,
for boosting matching accuracy and reducing the matching
overhead, the linked list can be adjusted dynamically. For

V2

Vi Vy V3 oVyoovs

—_—o = o =
o= o o —

1
1
0
1
0

—_——— = O
co—~ o ~

Vs

(a) Access pattern I (b) Connected graph (c) Adjacency matrix

Fig. 7. Mapping an access pattern to its corresponding adjacency matrix.

instance, an adjustment case of the data structure is illus-
trated in Fig. 8b. When the access pattern of [5, 01111,
10110, 11010, 11101, 10010] has been hit recently, the pat-
tern should exchange its position with the previous one.
Owing to this dynamic adjustment mechanism, the most
frequently hit patterns are located in front of the list, which
accelerates pattern matching.

3.2.4 The X-Step Matching Algorithm

As we discussed before, data prefetching is a widely used
technique for hiding data access latency by referring to
identified access patterns. However, the effectiveness of
prefetching is primarily dependent on the prediction accu-
racy of future access requests [16], [33]. Furthermore, the
speed of predictions on future requests is also critical to the
effectiveness of the prefetching mechanism. Therefore, in
order to obtain attractive performance improvements
brought by server-side data prefetching, we have intro-
duced a novel pattern matching algorithm, which we call
the X-step matching algorithm. X-step compares the feature
tuple of an observed block access with the feature tuples of
previously identified access patterns.

Algorithm 1 illustrates the process of the X-step matching
mechanism in detail, which can forecast X successive block
access events that might occur in the near future. The basic
idea of this algorithm is to compare the block correlations
among access events in the given prediction window, in
which there are a number of access events utilized for con-
ducting prediction (labeled as cur_tuple), with the block cor-
relations among the first few access events of the identified
access patterns (labeled as tuple). By referring to Fig. 8a,
there is an example that shows how to forecast two subse-
quent access events by using the presented X-step predic-
tion algorithm, when there are three access events in the
prediction window. First, it is necessary to build the correla-
tions among the three access events in prediction window,
and we assume that these three events are strongly con-
nected in the graph, i.e., cur_tuple is [3, 011, 101, 110]. Then,
we need to locate the list of fixed patterns, in which each
pattern has 5 (i.e., 3+2) access events in total. Next, we con-
duct a right shift of two bit positions on each element of the
tuple corresponding to the identified pattern in the list and
compare the elements in tuple with the elements in
cur_tuple. Obviously, the first tuple in the list with five
nodes is not a match to cur_tuple, so we proceed with check-
ing the subsequent ones in the same way. Finally, the algo-
rithm will finish only if the match is found or the entire list
has been traversed.

We have also studied the time complexity of the newly
proposed matching algorithm: since it is supposed to tra-
verse the linked list, in which all access patterns have the
expected number of involved access events. Consider that

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

2704

we have a total of M identified access patterns, and the larg-
est number of access events in the pattern is N. The newly
proposed algorithm will require O(MN) time overhead,
and O(MN) extra-space in the worst case. In fact, most of
space is used to store the feature tuples of the already iden-
tified access patterns.

Algorithm 1. X-Step Matching Algorithm

Initialization:
1) available node_list with the feature tuples of the fixed
access patterns;
2) the built cur_tuple of the current block access events in
the prediction window;
3) int num = 0; int i= 0;
Iteration:
1: while true do

2: num = get_number_o f_node(cur_tuple);
3: /*try to match the patterns having num + X access */
4. num = num + X;
5: if num is not in the range of node_list then
6: return null; /* no matched pattern */
7: end if
8: while node_list[num| — next # null do
9: tuple = node_list[num| — next
10: /*comparing first num events of tuple with all events
of cur_tuple*/
11: while ((tuple[i] > > X)) == cur_tuple[i] do
12: if + + i == num then
13: return tuple; /*matched pattern found*/
14: end if
15: end while
16: tuple = tuple — next; /*try next pattern*/
17: i =0;
18: end while
19: return null; /*no matched access pattern*/
20: end while
Output:
null or the matched access pattern, i.e., tuple.
3.3 Implementation

We have implemented the proposed prefetching mechanism
in the PARTE file system [11]. PARTE has been implemented
from scratch and it provides POSIX support. The implemen-
tation has three modules running at the user level:

e partemds: the module of active metadata server,
which aims to offer metadata service, and it does not
have any relationship with data prefetching.

e parteost: the module of storage server is responsible
for the management of real file data; moreover, the
server-side prefetching are also implemented in this
module.

e partecfs: the module of client file system has been
designed and implemented based on FUSE [6]. The
client file system buffers and manages prefetched
data, and returns them to applications’ I/O requests.

As a matter of fact, our implementation of server-side pre-

fetching scheme in PARTE aims to illustrate the feasibility
and applicability of the proposed mechanism. For fairness of
comparison in experiments, we have also implemented other
prefetching schemes in the PARTE file system.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.9, SEPTEMBER 2016

TABLE 1
Node Specification of the Storage Servers and the Clients
Storage Servers Clients
CPU 2xIntel E5410 2.33GHz Intel E5800 3.20GHz
Memory 1x4GB 1066MHz/DDR3 4GB DDR3-SDRAM
Disk 6x114GB 7200rpm SATA 500GB 7200rpm SATA
Network Intel 82598EB, 10GbE 1000Mb or 100 Mb
(O] Ubuntu 13.10 Debian 6.0.4

4 EVALUATION

This section describes the experimental methodology for
evaluating the proposed prefetching mechanism, and reports
the experimental results. First, we describe the experimental
setup; next, the experimental results about both positive and
negative effects brought about by different prefetching
schemes are presented to show the applicability of server-
side prefetching. Then, we analyze the prediction accuracy
caused by the server-side prefetching mechanism and report
the relevant results. At last, we conduct a case study with real
block traces to illustrate the feasibility of the newly proposed
prefetching mechanism in practice.

4.1 Experimental Setup
4.1.1 Experimental Platform

We employed one cluster and two local area networks
(LANs) to conduct evaluation experiments. One active
metadata server with four storage servers of the distributed
file system are deployed on a five nodes server cluster, and
all client file systems are installed on 12 nodes of two sepa-
rate LANSs. Specifically, for the purpose of emulating a dis-
tributed computing environment, six of the client file
systems were installed on a LAN that is connected with the
server cluster by a 1 GigE Ethernet; while the other six client
file systems were installed on a LAN that is connected with
the cluster by a 100 M Ethernet. Table 1 shows the specifica-
tions of nodes on the server cluster as well as on the two
LANSs. All clients are equipped with MPICH2-1.4.1.

4.1.2 Prefetching Configurations

The following prefetching configurations have been used
for evaluation.

e Non-prefetching indicates a distributed file system
without any data prefetching mechanisms, i.e., the
original implementation of PARTE. In other words,
there is no block access tracing and no analyzing
facility is enabled in the file system.

e Readahead prefetching is a typical sequential pre-
fetching mechanism on the storage servers. If there
are non-consecutive misses to the server, the file sys-
tem is supposed to issue a prefetch request to read
certain consecutive blocks in advance [33]. We fixed
the number of prefetched blocks in our evaluation
experiments as 4 and 32, respectively.

e Signature-based prefetching is a typical data prefetch-
ing scheme on the client file systems that analyzes the
occurred I/O requests of applications. Our implemen-
tation in PARTE is based on the source code that is
publicly available [2]. This prefetching approach

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

LIAO ET AL.: PREFETCHING ON STORAGE SERVERS THROUGH MINING ACCESS PATTERNS ON BLOCKS

Read & write

’ Matrix A ‘ ’ Matrix B ‘ ’ AB ‘ ’ B(AB) ‘ ’AB(B(AB))‘ on file system

|]| [|
[L L]

Computing
on client node

AB B(AB) iAB(B(AB))i

Fig. 9. The algorithm of matrix multiplication in our benchmark: there are
three consecutive multiplications, and the intermediate results are
flushed back to the file system. In other words, all input data should be
read from the file system.

allows users or client file systems to characterize
access patterns of an application in two steps: 1) a trace
collecting tool gets the trace of all the I/O events of the
application; 2) through offline analysis of the traces,
the analyzing tool determines the I/O signature to
guide data prefetching on the client side [17], [23].

e Server-side prefetching is our newly proposed mecha-
nism. It performs block access prediction to guide
data prefetching on storage servers. This mechanism
employs several sophisticated algorithms in graph
theory to manage access patterns and to accomplish
pattern matching.

4.1.3 Benchmarks

To show the merits resulted by our proposed server-side
prefetching technique, as well as the overhead caused by
tracing and analyzing block access history to predict future
block access requests, the following benchmarks were
employed in the evaluation experiments:

e Sysbench is a commonly used multi-threaded bench-
mark tool for evaluating OS parameters that are criti-
cal for a system running a database under intensive
workloads [3]. Sysbench contains certain programs
and each program aims to explore the performance of
the specific aspect under Online Transaction Process-
ing (OLTP) workloads. Thus, we utilized this bench-
mark to measure transaction throughput and 1/0O
response time used for handling online transactions.

e [Ozone is a popular micro-benchmark, and widely
used to evaluate the performance of a file system by
employing a collection of I/O access patterns, such as
sequential, random, reverse order, and strided [4].
Therefore, we used it to measure read data throughput
of the file system with different prefetching schemes
when there are various type of access patterns.

e Matrix multiplication is a test computation program
developed by ourselves. It reads the matrix elements
from files stored on the distributed file system to per-
form multiplication tasks, and Fig. 9 demonstrates its
work flow clearly. After running the benchmark for
multiplying the matrices with varying sizes, we mea-
sured the time needed for completing the multiplica-
tion tasks to show whether the newly presented
prefetching scheme can save computing power on
the client nodes or not, as well as how much benefits
can be yielded by the proposed prefetching scheme
if it can save certain resource usage.

4.1.4 Parameter Settings

In all experiments, considering that the client nodes might be
resource-limited, size of the prefetching buffer on the client
was configured to 128 blocks (indicating that the client file

2705

system can cache 128 blocks of data), for which the Least
Recently Used (LRU) replacement policy was used to replace
cache blocks. The range of block access events in the fixed
access patterns was set as [8, 16]. The value of X in the X-step
matching algorithm was set as 4, which means we tried to
forecast 4 successive block access events, and then read 4
block data in advance. As a consequence, the size of the pre-
diction window is calibrated to stay in the range of [4, 12].
After running multiple experiments, the size of slides
window in the sequence of block access, which is used for
classifying access patterns, was configured to 8 times the
lower boundary of the range of block access events in the pat-
terns. In other words, we set the range of block access events
in the fixed access patterns as [8, 16], which indicates the size
of slides window is consequently fixed as 8 x 8 = 64. There-
fore, the newly proposed prefetching scheme does not start
modeling access patterns until there are 64 occurred block
access events at the beginning of the execution for directing
data prefetching. Meantime, during the execution of the
application, our scheme will model block access patterns
again (i.e., refreshing block access patterns) if the recently
occurred 64 block access events do not match any fixed
access patterns. Besides, the maximum number of block
access events used for modeling patterns is fixed as 2,048,
which means only the recently occurred 2,048 block access
events are taken into account for classifying access patterns.

4.2 Experimental Results

This section reveals both positive and negative effects
induced by the newly proposed server-side prefetching
mechanism.

4.2.1 1I/O Response Time

First, we tested Sysbench-0.5 multi-table OLTP with
MySQL-5.6.10 [5] as the back-end database. In the experi-
ments, each client machine had its own database, and the
configuration was eight tables with total 10 G of data and
around 20 million tuples; besides, the I/O capacity was set
as 1,000. Fig. 10 presents the experimental results about
transaction throughput and I/O response time specifically
when the running modes are read only and read/write. In
the legend of the figure, Readahead-4 and Readahead-32
means prefetching 4 and 32 blocks of data, respectively,
when employing the Readahead prefetching.

The results reported in the figure show that prefetching
mechanisms are beneficial for database-relevant applica-
tions, because we could achieve better system throughput,
i.e., transactions per second, as well as lower 1/O response
time. Moreover, in contrast to Readahead prefetching and
Signature-based prefetching, the newly proposed Server-side
prefetching was able to yield the lowest I/O response time
and the highest transaction throughput in the majority of
cases, in which there were a varying numbers of threads on
every client machines, and all threads issued 1/O requests
to the file system in parallel.

4.2.2 Data Throughput

After evaluating the effectiveness of the proposed prefetching
mechanism when executing database-related applications,
this section aims to measure the read data throughput by

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

2706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.9, SEPTEMBER 2016
5000 T 200 T T E— T T T
—+— Non-prefetching
4500 : ---4--- Readahead-4
B | i ---o--- Readahead-32 /]
g 4000 & 160 *- Signature-based
g 3500 - £ --e--- Server-side
o RS
5 3000 | g 120 -
o =
@ 2500 °
2]
£ 2000 |- S 80l
© Q
% 1500 —+— Non-prefetching &
E 1000 ---4--- Readahead-4 o 40 b
---0--- Readahead-32 :
500 ¥ Signature-based i -
----+--- Server-side 4)
0 1 1 1 I I I 0 1
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of Threads Number of Threads
(a) OLTP Multiple Table (read only, transactions per second) (b) OLTP Multiple Table (read only, response time)
5000 T T T T T T T 100000 T T | S—— T T
—+— Non-prefetching
4500 1 i ---2--- Readahead-4)
e i i ---o--- Readahead-32 9
-(gj 4000 & "k % 10000 [% Signature-based pd
$ 3500 - e . £ -o-e-o- Server-side
@ [0}
5 3000 | 2
o =
@ 2500 - © 1000 B
o (%]
'§ 2000 §_
2 1500 U Non-prefetching g
£ 1000 ---4--- Readahead-4 00 7
---0--- Readahead-32 ;
500 *- Signature-based i
----¢--- Server-side |
0 1 1 1 I I I 10
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

Number of Threads

(c) OLTP Multiple Table (read/write, transactions per second)

Number of Threads

(d) OLTP Multiple Table (read/write, response time)

Fig. 10. Throughput and /O response time results when running Sysbench.

running a parallel I/O benchmark, i.e.IOzone. Although
IOzone has several read and write patterns to evaluate the per-
formance of file systems from specific aspects, we only focus
on access patterns that are suitable for read operations
because prefetching only benefits read requests.

Fig. 11 shows the read data throughput reported when
running the /Ozone benchmark with various access patterns.
The experimental results show that the proposed prefetching
scheme performed the best in most cases when running the
IOzone benchmark. Especially, when conducting both back-
ward reads and stride reads, for which the corresponding
results of read data throughput are demonstrated in Figs. 11b
and 1lc, respectively, the Server-side prefetching scheme
achieved from 16.29 to 162.37 percent higher read data
throughput, in contrast to the Readahead and the Non-prefetch-
ing schemes. Moreover, the Signature-based prefetching
scheme, which is a typical client-side prefetching scheme,
did not work better than the Non-prefetching scheme in most
of the cases, which we believe is due to the fact that it does
not have any means to classify access patterns on client I/O
requests or any practical implementation of this notion [17].

4.2.3 Accelerating Computation

We emphasized that server-side prefetching can alleviate
client machines from the process of data prefetching. In
order to illustrate the benefits for client machines resulted
by server-side prefetching, we executed a matrix multipli-
cation benchmark, and recorded its execution time. Fig. 12
reports the time required for performing the matrix
multiplication, where the input data was stored on the

distributed file systems running with different prefetching
schemes. The Figure shows detailed breakdown of the exe-
cution time, including the time needed for performing
computation, the time required for I/O operations, and the
time used for predicting future I/O requests on the client
side, if applicable. Since only the Signature-based mecha-
nism performs client-side request prediction, it is the only
mechanism for which the forecasting time on the client
side is non-zero.

The results show that the newly presented server-side
prefetching scheme required the shortest time for conduct-
ing multiplication tasks when the matrix size is greater
than 200. For instance, if the matrix size is 1,000, which
means there are 1,000 x 1,000 matrix elements, the Server-
side prefetching scheme could reduce the completion time
by more than 24.75 percent compared to Non-prefetching,
Readahead-4 and Signature-based prefetching. The results
show that while the computation time remains constant
for all the prefetching mechanisms, the time spent on per-
forming 1/O varies greatly. Consequently, the Server-side
prefetching mechanism, which achieves the greatest
I/0 time reduction, improves the overall performance of
the application.

Another interesting observation revealed in the figure is
that Readahead-32 prefetching worked better than Readahead-4
prefetching. Because the matrix multiplication benchmark
reads input data regularly, the more data are cached on the
client machine the greater benefit becomes. In other words,
Readahead-32 fetches data from the server eight times less
often than Readahead-4. The 1/0O latency for Readahead-32 is

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

LIAO ET AL.: PREFETCHING ON STORAGE SERVERS THROUGH MINING ACCESS PATTERNS ON BLOCKS 2707
300 60 T T T T
—+— Non-prefetching
---4--- Readahead-4
250 | R 50 [---e--- Readahead-32
*-- Signature-based
o+ Server-side
@ 200 #- o 40 B
=) =
g tTe | T e
g 150 8 30
o o
8 100) 1 82 e E
—+— Non-prefetching
---4--- Readahead-4 -
50 | ---0--- Readahead-32 5 10 | B
*-- Signature-based
e Server-side
0 Il Il Il 1 ! 1 [0 Il Il Il Il Il Il Il
64 128 256 512 1024 2048 4096 8192 16384 64 128 256 512 1024 2048 4096 8192 16384
Record Size (KB) Record Size (KB)
(a) Reader report (b) Random read report
300 T T T T 300 "
—+— Non-prefetching e
---4--- Readahead-4
250 i ---o--- Readahead-32 1
*-- Signature-based
. e Serversside o P
) - o
= =
L L
© ©
o o c
g g b
© ©
100 .
e e —+— Non-prefetching
---4--- Readahead-4
50 | ---o--- Readahead-32 5
*-- Signature-based
- Server-side
0 Il Il Il Il Il Il Il 0 Il Il Il 1 I I 1
64 128 256 512 1024 2048 4096 8192 16384 64 128 256 512 1024 2048 4096 8192 16384

Record Size (KB)
(c) Backward read report

Record Size (KB)
(d) Stride read report

Fig. 11. Read data throughput on various access patterns measured by 10zone.

therefore greatly reduced. Furthermore, for the Signature-
based prefetching scheme, the overhead caused by the predic-
tion mechanism on the client-side is such that there is only lit-
tle gain compared to the Non-prefetching policy. The matrix
multiplication application reads the matrix elements regu-
larly, so that the percentage of prediction hits is high, but the
benefits brought by client-side prefetching could merely
compensate the overhead of conducting prediction on the cli-
ent machines. As a result, Signature-based prefetching per-
formed worse than the Server-side prefetching mechanism
that we propose.

4.2.4 Server Side Overhead

We have demonstrated that server-side prefetching can
effectively and practically forecast future disk read opera-
tions to guide data prefetching for different workloads, but
it is also necessary to measure the overhead resulted by the
proposed prefetching scheme. Table 2 illustrates the

T T T T
Computation Time]
6000 | Forecasting Time]
‘orecasting Time
1/0O Time)
Non-prefetching
5000 - Readahead-4 7
. Readahead-32
2
E 4000 | Signature-based |
g Server-side
£
& 3000 | 400 ! f
E|
3 300
2 (e
2000 |- 200 1
100
L oot L1 L1 L1 LI o v i
1000 200(0.4M) 400(1.6M)
; -
0
200(0.4M) 400(1.6M) 600(3.7M) 800(6.6M) 1000(10.4M)
Matrix Size (File Size)
Fig. 12. Time required for executing matrix multiplications.

execution time and space overhead on the storage servers
caused by the newly presented prefetching technique.
Because [Ozone is a representative I/O benchmark to test
1/0 performance of a storage system, prefetching and trans-
ferring the prefetched data cause more than 9.3 percent of
time overhead. However, the overhead due to our proposed
mechanism for compute-intensive applications and OLTP
workloads remains limited so that it does not degrade the
performance on the server-side. For example, when the
workload is matrix multiplication, the time required for pre-
dicting future disk operations to guide data prefetching and
then forward the data to the corresponding client file sys-
tems is around 3.0 percent of the total processing time on
the storage servers. Namely, a major part of processing time
can be devoted to handle I/O processing; therefore, the
server-side prefetching mechanism is still practical for
storage systems in distributed computing environments,
though it indeed introduces some overhead.

Furthermore, the consumed space for storing disk traces
to conduct I/O prediction is reported in Table 2. The newly
presented server-side prefetching is efficient in terms of
space overhead for the majority of traces. Though running
the IOzone benchmark resulted in more than 100 MB
but less than 170 MB tracing logs, as it is a typical 1I/O

TABLE 2
Server-Side Prefetching Overhead
Benchmark Time (%) Space (MB)
IOzone 9.18 168.32
Sysbench 3.22 81.08
Matrix (400 x 400) 3.26 0.66
Matrix (1,000 x 1,000) 217 422

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

2708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.9, SEPTEMBER 2016
TABLE 3 TABLE 4

Prediction Hit Ratio Workload Characteristics of the Selected Traces
Benchmark Reads Predictions Hits (Percentage) Trace # of Reads Average read
[Ozone:read 2,097,184 116,158 940,766 (80.99%) _ Requests _ (Percentage) size (blocks)
[0zone:backward-read 1,048,576 961,672 840,329 (87.38%) Financiall 5,334,987 1,235,633 (23.16%) 4.50
10zone:stride-read 1,048,576 961,680 840,332 (87.38%) Financial2 - 3,699,194 3,046,112 (82.35%) 4.56
[0zone:random-read 2,097,152 219,221 105,423 (48.09%) WebSearchl 1,055,448 1,055,236 (99.98%) 30.29
Sysbench:read& write 3,326,112 2,098,463 1,729,863 (82.43%) WebSearch2 4,579,809 4,578,819 (99.98%) 30.14
Sysbench:read-only 2,372,024 1,319,833 1,073,502 (81.33%) WebSearch3 4,261,709 4,260,499 (99.97%) 30.81
Matrix (200x200) 91 27 26 (100 %)
Matrix (400x400) 355 291 289 (96.29 %)
Matrix (600x600) 795 784 781 (99.61 %) by a popular search engine, which are relatively more ran-
Matrix (800x800) 1,410 1,346 1,334 (99.11 %) dom. Table 4 presents a summary statistics of these traces
Matrix (1000x1000) 2,201 2,137 2,127 (99.53 %)

benchmark and focuses on I/O operations rather than com-
puting tasks. The results show that less than 82 MB space
was used for storing disk traces to forecast future disk I/Os
when the benchmark was Sysbench (i.e., the OLTP work-
loads). In a word, analyzing disk traces and prefetching
block data can run on the same machine as the storage sys-
tem without causing too much memory and disk overhead.
For long-running applications, the size of trace logs may
become extraordinary large, in this case, Server-side pre-
fetching may discard certain logs that occurred earlier,
because disk block correlations are relatively stable during
a given period, and disk access logs from earlier stages are
not instructive for forecasting future disk access events [33].

4.3 Prediction Analysis
After reporting the merits and demerits brought by the
server-side prefetching scheme, we present the prediction
error/deviation when applying our estimation models on
the different benchmarks, to show the feasibility of the pre-
diction algorithms. Therefore, we also counted the number
of prediction hits, the numbers of predictions and total
occurred read operations, when running the benchmarks.
The experimental results of related statistics are elabo-
rated in Table 3. From the reported data in the table, we can
conclude that our prediction model is not capable of pre-
dicting all future read operations on the disk. Namely, only
when the current block I/O events in the given prediction
window can match part of the block access events in a fixed
access pattern, will the read predictions be performed. The
proposed prediction algorithm can achieve acceptable pre-
diction hits, though as one would expect, it attains worse
prediction of future block accesses if the access pattern is
random. In summary, the proposed prediction algorithm is
able to yield preferable prediction accuracy, so that it can
result in better system performance, which had been also
proven in our evaluation experiments.

4.4 Case Study with Real Block Traces

For conducting a more objective evaluation to verify the
applicability and feasibility of the proposed mechanism in
practice, we selected several real block traces published by
Storage Performance Council (SPC) consisting of Financial
traces and WebSearch traces [7]. The Financial traces are from
OLTP applications at two large financial institutions, which
are relatively sequential, and WebSearch traces are generated

about read events, as the prefetching mechanism only helps
with read requests. To be specific, the total number of
requests, the number of read events, the percentage of read
events, and the average read size in blocks of each block
trace are reported.

In the experiments, the client file system issues 1/0O
requests to the storage servers for writing/reading block
data, according to the records in the traces. Fig. 13 shows
the average reponse time to read requests in the selected
five block traces. The write requests are not considered here
since the prefetching schemes do not benefit write requests.
In the figure, the X-axis shows the name of the selected
block trace, and the Y-axis illustrates the average 1/O
response time (the lower the better). As seen, our proposed
prefetching mechanism outperforms others because of its
accurate block access prediction, which shortens response
time of the application I/O requests. To put it from another
angle, Server-side prefetching decreases the average I/0O
response time by 24.18-34.07 percent in contrast to the com-
monly used Readahead prefetching, and 18.92-20.22 percent
compared to Signature-based prefetching. Furthermore, the
experimental results also illustrate that Readahead prefetch-
ing did worse than Non-prefetching for the WebSearch traces.
That is because less than 3 percent of the access events from
the WebSearch traces are sequential. As a result, the consecu-
tively fetched data are rarely used for responding to appli-
cations requests, which places negative effects on the
system performance.

5 CONCLUDING REMARKS

This paper has proposed, implemented and evaluated a
server-side prefetching mechanism, which does not require
any client file system or application side participation in

16 T T T

Non—prefetching -
Readahead—4
Readahead-32
Signature—based
Server—side

SEOOE

Average /O response time (ms)
) - (=) oo
T T T T
I
]

’
/|
/|
/|
/|
/|
;
/|

ANNNNNNNN
ONNONRNNY
NORONNANNNN

Finacial2 WebSearchl WebSearch2 WebSearch3

Finaciall

The name of block trace

Fig. 13. The average response time in the selected traces.

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

LIAO ET AL.: PREFETCHING ON STORAGE SERVERS THROUGH MINING ACCESS PATTERNS ON BLOCKS

prefetching block data. In our proposed mechanism, client
identification is piggybacked to I/O requests and on the
server side the offset sequence of block access events is
transformed into a horizontal visibility graph. We translate
a time series of block access events into a connected graph
and classify block access patterns by employing the Tarjan
algorithm, a graph theory technique to find cut vertices in a
connected graph. Furthermore, we represent access patterns
in feature tuples in order to save memory space and to con-
duct pattern matching quickly and accurately. The experi-
mental results with micro-benchmarks and real-system
block traces have shown that our server-side prefetching
mechanism can reduce I/O response time and improve
read data throughput compared to Non-prefetching, Read-
ahead prefetching and Signature-based prefetching. We have
also confirmed that both time and space overhead of the
newly proposed mechanism are acceptable, as all analysis is
moved to the storage server side. We also emphasize, that
the idea of storage server-side data prefetching presented in
this paper can be naturally applied to other conventional
distributed /parallel file systems such as Lustre, the Google
file system, PVFS or the Hadoop distributed file system.

Our current implementation of the prefetching mecha-
nism requires the client file system to contact the metadata
server for obtaining information on storage servers regard-
less of the cached data is hit or not. In the future, we intend
to optimize PARTE’s implementation of the client file sys-
tem so that it examines buffered data before communicating
to the metadata server. Moreover, client file systems do not
currently piggyback any information regarding which
pieces of the prefetched data blocks have been hit, and thus,
the storage servers have no knowledge on the effectiveness
of the prefetching mechanism. In the future, we are planing
to piggyback cache hit information on the I/O requests of
the client file system, so that storage servers can keep track
of the quality of service and guide further optimization
adjustments on their prefetching polices.

ACKNOWLEDGMENTS

This work was partially supported by “National Natural
Science Foundation of China (No. 61303038 & No.
61303227)”, “Natural Science Foundation Project of CQ
CSTC (No. CSTC2013]JCYJA40050)”, “the Scientific Research
Foundation for the Returned Overseas Chinese Scholars,
State Education Ministry”, and “the Opening Project of State
Key Laboratory for Novel Software Technology (No.
KFKT2014B17)”. The authors would like to thank anony-
mous reviewers for their thorough reviews and highly
appreciate the comments and suggestions, which signifi-
cantly contributed to revise this paper.

REFERENCES

[1] (2014). HDFS: Hadoop distributed file system [Online]. Available:
https:/ /hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[2] (2012). IOSIG+ software [Online]. Available: https://code.google.
com/p/iosig/

[3] (2013). SysBench benchmark [Online]. Available: http:/ /sysbench.
sourceforge.net

[4] (2013). IOzone filesystem benchmark [Online]. Available: http://
www.iozone.org

[5] (2013). MySQL database server [Online]. Available: http://dev.
mysql.com/

(6]
[71

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

2709

(2010). Filesystem in userspace [Online]. Available: http://fuse.
sourceforge.net/

(2015, Apr. 4). UMass trace repository: OLTP application I/O and
search engine I/O [Online]. Available: http://traces.cs.umass.
edu/index.php/Storage/Storage

S. Wu, F. Wang, X. Shi, H. Jin, et al., “Network I/O load based vir-
tual machine placement algorithm in HPC cloud,” Sci. China Inf.
Sci., vol. 42, no. 3, pp- 290-302, 2012.

H. Lei and D. Duchamp, “An analytical approach to file pre-
fetching,” in Proc. USENIX Annu. Tech. Conf., 1997, p. 21.

E. Shriver, C. Small, and K. Smith, “Why does file system pre-
fetching work?,” in Proc. USENIX Annu. Tech. Conf., 1999, p. 6.

J. Liao, L. Li, H. Chen, et al., “Adaptive replica synchronization for
distributed file systems,” IEEE Syst.]., vol. 9, no. 3, pp. 865-877,
Sep. 2015.

P. J. Denning, “The locality principle,” Commun. ACM, vol. 48,
no. 7, pp. 19-24, 2005.

H. M. Song, Y. Yin, X. H. Sun, R. Thakur, et al., “Server-side I/O
coordination for parallel file systems,” in Proc. Int. Conf. High Per-
form. Comput., Netw., Storage Anal., 2011, pp. 1-11.

B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visi-
bility graphs: Exact results for random time series,” Phys. Rev.,
vol. 80, no. 4, article 046103, 2009.

J. Liao, “Self-tuning optimization on storage servers in parallel file
system,” | Circuits, Syst. Comput., vol. 30, no. 4, p. 21, 2014.

S. P. Vanderwiel and D.]. Lilja, “Data prefetch mechanisms,”
ACM Comput. Surveys, vol. 32, no. 2, pp. 174-199, 2000.

Y. Yin, S. Byna, H. Song, X. Sun, and R. Thakur, “Boosting
application-specific parallel I/O optimization using IOSIG,” in
Proc. IEEEJACM Int. Symp. Cluster, Cloud Grid Comput., 2012,
pp- 196-203.

P. Lu and K. Shen, “Multi-layer event trace analysis for parallel
I/0 performance tuning,” in Proc. Int. Conf. Parallel Process., 2007,
pp- 12-21.

A. Konwinski, J. Bent, J. Nunez, and M. Quist, “Towards an /O
tracing framework taxonomy,” in Proc. 2nd Int. Workshop Petascale
Data Storage, 2007, pp. 56—62.

X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “DiskSeen:
Exploiting disk layout and access history to enhance I/O pre-
fetch,” in Proc. USENIX Annu. Tech. Conf., 2007, p. 261-274.

S. Jiang, X. Ding, Y. Xu, and K. Davis, “A prefetching scheme
exploiting both data layout and access history on disk,” ACM
Trans. Storage, article 10, vol. 9, no. 3, 2013.

K. Vijayakumar, F. Mueller, X. Ma, and P. Roth, “Scalable I/O
tracing and analysis,” in Proc. 4th Annu. Workshop Petascale Data
Storage, 2009, pp. 26-31.

S. Byna, Y. Chen, X. Sun, and W. Gropp, et al., “Parallel I/O pre-
fetching using MPI file caching and I/O signatures,” in Proc.
ACM/IEEE Conf. Supercomput., 2008, pp. 1-12.

T. Madhyastha and D. Reed, “Learning to classify parallel input/
output access patterns,” IEEE Trans. Parallel Distrib. Syst., 2002,
pp- 802-813.

J. He, J. Bent, A. Torres, and X. Sun, “I/O acceleration with pattern
detection,” in Proc. 22nd Int. ACM Symp. High Perform. Parallel Dis-
trib. Comput., 2013, pp. 26-35.

J. Lewis, M. Alghamdi, M. Al Assaf, and X. Qin, “An automatic
prefetching and caching system,” in Proc. 29th Int. Perform. Com-
put. Commun. Conf., 2010, pp. 180-187.

R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed prefetching and caching,” in Proc. 15th ACM Symp.
Operat. Syst. Principles, 1995, pp. 79-95.

M. Al Assaf, X. Jiang, M. Abid, and X. Qin, “Eco-Storage: A hybrid
storage system with energy-efficient informed prefetching,” J.
Signal Process. Syst., vol. 72, no. 3, pp. 165-180, 2013.

I. Zhang, “Efficient file distribution in a flexible,” Ph.D. disserta-
tion, Massachusetts Inst. Technol., Cambridge, MA, USA, 2009.

J. Stribling, Y. Sovran, et al., “Flexible, wide-area storage for dis-
tributed systems with WheelFS,” in Proc. 6th USENIX Symp. Netw.
Syst. Des. Implementation, 2009, pp. 43-58.

J. Griffioen and R. Appleton, “Reducing file system latency using
a predictive approach,” in Proc. USENIX Summer 1994 Tech. Conf.,
1994, pp. 197-207.

V. Padmanabhan and J. Mogul, “Using predictive prefetching to
improve world wide web latency,” ACM SIGCOMM Comput.
Commun. Rev., vol. 26, no. 3, pp. 22-36, 1996.

Z.Li, Z.Chen, S. Srinivasan, and Y. Zhou, “C-Miner: Mining block
correlations in storage systems,” in Proc. 3rd USENIX Conf. File
Storage Technol., 2004, pp. 173-186.

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

2710

[34]

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.9, SEPTEMBER 2016

N. Tran and D. Reed, “Automatic ARIMA time series modeling
for adaptive 1/O prefetching,” IEEE Trans. Parallel Distrib. Syst.,
vol. 15, no. 4, pp. 362-377, Apr. 2004.

R. Tarjan and U. Vishkin, “An efficient parallel biconnectivity
algorithm,” SIAM J. Comput., vol. 14, no. 4, pp. 862-874, 1985.

G. Soundararajan, M. Mihailescu, and C. Amza, “Context-aware
prefetching at the storage server,” in Proc. USENIX Annu. Tech.
Conf., 2008, pp. 377-390.

S. Liang, J. Song, and X. Zhang, “STEP: Sequentiality and thrash-
ing detection based prefetching to improve performance of net-
worked storage servers,” in Proc. IEEE 27th Int. Conf. Distrib.
Comput. Syst., 2007, p. 64.

D. Pompili, “Uncertainty-aware autonomic resource provisioning
for mobile cloud computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 8, pp. 23632372, Aug. 2015.

Jianwei Liao received the MS degree in com-
puter science from the University of Electronic
Science and Technology, China, in 2006, and
then received the PhD degree in computer sci-
ence from the University of Tokyo, Japan, in
2012. Now, he works for the college of computer
and information science, Southwest University,
China. His research interests are dependable
operating systems and high performance storage
systems for distributed computing environments.

Francois Trahay received the MS and PhD
degrees in computer science from the University
of Bordeaux, France, in 2006 and 2009, respec-
tively. He is currently working as an associate
professor at Telecom SudParis, France. He was
a postdoc researcher at the RIKEN Institute in
the Ishikawa Lab, University of Tokyo, in 2010.
His research interests include runtime systems
for high performance computing (HPC) and per-
formance analysis.

Balazs Gerofi received the MS and PhD degrees
in computer science from the Vrije Universiteit
Amsterdam, in 2006 and The University of Tokyo,
in 2012, respectively. He is currently working as a
research scientist in the RIKEN Advanced Insti-
tute for Computational Science. His research is
mainly focused on operating systems, high-per-
formance computing, cloud-computing, and fault
tolerant computing. He is a member of the IEEE
Computer Society and the Association for Com-
puting Machinery (ACM).

Yutaka Ishikawa received the BE, MTech and
PhD degrees in electrical engineering from the
Keio University, Japan, in 1982, 1984, and 1987,
respectively. He is a professor at the Department
of Computer Science, the University of Tokyo,
Japan. He was a visiting scientist in the School of
Computer Science, Carnegie Mellon University
from 1988 to 1989. His current research interests
include parallel/distributed systems and depend-
able system software. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:17:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

