
Toward a General I/O Arbitration Framework
for netCDF based Big Data Processing

Jianwei Liao, Balazs Gerofi, Guo-Yuan Lien, Seiya Nishizawa,
Takemasa Miyoshi, Hirofumi Tomita and Yutaka Ishikawa

RIKEN Advanced Institute for Computational Science, JAPAN

Abstract. On the verge of the convergence between high performance
computing (HPC) and Big Data processing, it has become increasingly
prevalent to deploy large-scale data analytics workloads on high-end su-
percomputers. Such applications often come in the form of complex work-
flows with various different components, assimilating data from scientific
simulations as well as from measurements streamed from sensor net-
works, such as radars and satellites. For example, as part of the next
generation flagship (post-K) supercomputer project of Japan, RIKEN
is investigating the feasibility of a highly accurate weather forecasting
system that would provide a real-time outlook for severe guerrilla rain-
storms. One of the main performance bottlenecks of this application is
the lack of efficient communication among workflow components, which
currently takes place over the parallel file system.
In this paper, we present an initial study of a direct communication
framework designed for complex workflows that eliminates unnecessary
file I/O among components. Specifically, we propose an I/O arbitrator
layer that provides direct parallel data transfer among job components
that rely on the netCDF interface for performing I/O operations, with
only minimal modifications to application code. We present the design
and an early evaluation of the framework on the K Computer using up to
4800 nodes running RIKEN’s experimental weather forecasting workflow
as a case study.

1 Introduction

With the accelerating convergence between high performance computing (HPC)
and a new generation of Big Data technologies, high-end supercomputers are
increasingly being leveraged for processing the unprecedented amount of data
scientific simulations and sensor networks produce [4]. Consequently, the high-
performance computing community has been heavily focusing on how to provide
the appropriate execution environment for Big Data workloads on large scale
HPC systems.

A motivating example, as well as our case study in this paper, is SCALE-
LETKF [25], a complex weather forecasting application that is being devel-
oped at RIKEN. With the next generation Japanese flagship supercomputer
(post-K) as its primary target platform, SCALE-LETKF is intended to pro-
vide high-resolution, real-time weather forecasting of severe guerrilla rainstorms

in Japan. Similar to other operational weather forecasting applications, the
SCALE-LETKF mainly consist of two components developed separately: a nu-
merical weather prediction (NWP) model and a data assimilation system. The
NWP model used here is the SCALE-LES (Scalable Computing for Advanced
Library and Environment-LES [7]), which simulate the time evolution of the
weather-related atmosphere and land/sea surfaces based on physical equations
(hereafter “Simulation”). Meanwhile, the data assimilation method used here
is the Local Ensemble Transform Kalman Filter (LETKF [6]), which assimilate
observation data taken from the real world into the simulated state to produce a
better initial condition for the model (hereafter “Assimilation”). The two com-
ponents run in a cyclic way: after the simulation finishes, the data assimilation
starts taking the results from the simulation as its input data, and after the
data assimilation finishes, the simulation of the next cycle follows, depending
on the results from the data assimilation. Additionally, since the observation
data are required in each cycle, they need to be streamed directly into RIKEN’s
supercomputing facility when executing the workflow in real-time.

Both the simulation (SCALE) and data assimilation (LETKF) components
in the current workflow rely on netCDF for I/O operations using the parallel file
system. netCDF is a self-describing, portable, scalable, appendable and share-
able file format, which is widely used to exchange array-oriented scientific data,
such as grids and time-series [1]. Historically, the decision for file based data
exchange was mainly driven by the fact that these models are being developed
and maintained by independent research entities and it’s been strongly desired
not to modify either of the component models purely for the purpose of building
a coupled forecasting system.

The prediction of guerrilla heavy rains, however, is a strictly time constrained
procedure and we identified that file I/O based data transfer between the two
components is one of the hindering factors for acquiring the needed realtime-
ness. A large number of coupling tools, targeting effective integration of sepa-
rately developed models or applications, have been proposed [9], [15], [16], [23],
nevertheless, all of them require numerous modifications to the applications.

Our main focus in this paper is to provide an I/O arbitration framework that
can enable high-performance, direct data exchange among workflow components
which process large amounts of data and use netCDF for their underlying data
format. Furthermore, we seek to provide a solution that retains the original
netCDF API and requires only minimal changes to existing application code.
Specifically, this paper makes the following contributions:

– General I/O Arbitration Middleware. We propose a general I/O arbitration
middleware, i.e., a software library that enables direct parallel data transfer
among workflow components that utilize netCDF for their data represen-
tation. Our library is customizable through configuration files and requires
only slight modifications to the source code of existing applications.

– Support for Integration of Existing Models. Our middleware benefits the in-
tegration of existing, separately developed models for solving complicated
problems. Individual models or applications are usually developed to tackle

specific scientific issues and easy integration of existing models into complex
workflows enables solving more intricate problems.

– Accelerated Data Exchange in Coupled Systems. Compared to file based data
exchanging the proposed middleware adopts communication pattern-based
optimization to efficiently support direct data transfer. It shortens data ex-
change time among the components so that rigid time constraints of real-time
applications can be satisfied.

The remainder of the paper is structured as follows. Related work is described
in Section 2. The design and implementation of the proposed middleware are
explained in Section 3. Section 4 shows the evaluation methodology and discusses
experimental results. At last, concluding remarks are given in Section 5.

2 Related work

In weather forecasting and geoscientific systems, individual models usually deal
with analyzing a sinlge, specific phenomenon. On the other hand, a practical
forecasting system takes various aspects into account, and thus it normally em-
ploys several models to achieve its final goal. This section introduces related work
focusing on coupling existing models or applications, as well as on related work
about conducting data transfer among the component models or applications in
such systems.

1©Integration mechanisms for individual models. The intricate global climate
problems motivate researchers from different scientific disciplines to integrate ex-
isting multi-physics computation models or applications for exhaustive modeling
by using a software framework or a coupled system [19]. The Model Coupling
Toolkit (MCT) [15] is a library providing routines and datatypes for creating
a coupled system, and it is mainly used in Community Climate System Model
(CCSM) [16]. Hereafter, S. Valcke et al. [8] have summarized major coupling
technologies used in Earth System Modeling, and their paper shows common
features of the existing coupling approaches including the functionality to com-
municate and re-grid data.

The OASIS coupler is another related study (the latest version is OASIS3),
which is able to process synchronized exchanges of coupling information gen-
erated by different components in a climate system, and the coupler mediates
communication among the components [18]. But, the OASIS coupler has its
own interface, and is not a solution for general cases. C. Armstrong et al. [17]
have designed an approach to separate the code of models from the coupling
infrastructure, but it does not provide coupling functions such as data transfer.
However, it enables users to choose the underlying coupling functions from other
couplers, such as the OASIS coupler. Besides, there are numerous existing mid-
dlewares for coupling specific models, such as ESMF [10], and C-Coupler1 [11],
which adopt similar integration schemes to the above mentioned solutions, but
unfortunately they also require application modifications.

Moreover, G. Waston et al. [21] proposed the scheme to us parallel cou-
pling tool for effectively integrating the existing programming and performance

tools, to benefit the development of parallel applications. Dorier et al. [24] have
summarized several tools developed by themselves, which can flexibly couple
simulations with visualization packages or analysis workflows.

2©Data transfer approaches in coupling or other large-scale systems. Many
integrated approaches employ file-based I/O to exchange data, since the data
stored on the global file system can be easily accessed by all participating compo-
nents [8]. It is worth mentioning the MCT framework again, which also enables
data transfer among different components via MPI communication [20] rather
than file based I/O. For instance, the CCSM4 system is a single executable
implementation, which includes a top-level driver and components integrated
via standard init/run/finalise interfaces by leveraging MCT [12]. From a func-
tionality view point, the MCT tool might be the most similar approach to our
work, but it requires to compile all individual models or applications together
to generate a single executable binary file. The combined binary ensures that
all processes can share the same MPI intra-communicator to communicate with
each other through MPI function calls. However, this prerequisite is not easy to
meet, because it is difficult to combine a large number of separately developed
components due to possible collisions on global variables and function names.

However, since all MPI processes share the same MPI COMM WORLD communi-
cator in MCT, local broadcast operations within a specific (individual) model
becomes visible to all other processes belonging to other components. To over-
come this limitation, P.A. Browne and S. Wilson [19] have proposed a very
similar mechanism for coupling two specified models for the purpose of data
assimilation, through a different use of the Message Passing Interface. In their
solution, although two models are still compiled together to generate a single
MPI job, they split the MPI communicator to enable local MPI communication
within individual components. However, this solution implies that the source
codes of all involved models have to be modified for enabling usage of split MPI
communicators for local communication.

In addition, for supporting flexible communication patterns and better com-
munication efficiency of I/O data transfer, the Adaptable I/O System (ADIOS)
framework [5] has been proposed to support flexible direct data transfer having
different I/O patterns. Similarly to the OASIS coupler, the users have to modify
the models or applications to use ADIOS ’s specific interfaces. C. Zhang et al.
have proposed and implemented a butterfly implementation of data transfer and
then develop an adaptive data transfer library for the coupled systems [13]. F.
Zhang et al. presented a distributed data sharing and task execution framework
to minimize inter-application data exchange [22]. In summary, existing works
fail to provide a general framework to integrate separately developed models or
applications into a coupled system (so that direct parallel data transfer among
all component models could be supported) without modifying the source codes
of individual components. To the contrary, our I/O middleware intends to offer
a universal communication framework to accelerate data transfer among compo-
nents in coupled systems in order to meet strict time constraints. Additionally,
our framework requires only minimal modifications to existing application code.

Simulation 1

Data
Assimilation

Simulation 2

Simulation n
…

Observation
data

write	 read	 write	

Global Parallel File System

Simulation 1

Data
Assimilation

Simulation 2

Simulation n
…

Observation
data

Data for long-term forecast (Optional)

Global Parallel File System

I/O	 	
Arbitrator	
Middleware	

	

Direct
data

transfer

(a) File-based Data Transfer (b) Direct Data Transfer

read	

1

2

3

1

2

3

cycle	 i	 cycle	 i+1	 cycle	 i	 cycle	 i+1	

…	

…	

…	

…	

…	

…	

Fig. 1: The communication pattern of one cycle in the SCALE-LETKF system utilizing
file I/O (a.) or direct data transfer (b.) methods.

3 I/O Arbitrator Middleware

As we mentioned before, our target coupling system of SCALE-LETKF repeats
a two-step cycle of simulation and data assimilation, performed by two sepa-
rately developed models, i.e., SCALE and LETKF. The I/O communication of
one cycle in the current SCALE-LETKF system is depicted in Figure 1 (a). As
seen, the netCDF output data of the Simulation processes are first written to
the global parallel file system, which in turn is read by the Assimilation pro-
cesses. Note that we run multiple SCALE model simulations at the same time
(denoted by Simulation 1 to n in the figure), which are called “ensemble” sim-
ulations and are required for applying the LETKF data assimilation scheme.
Each ensemble member takes slightly different initial condition and outputs dif-
ferent results so the total I/O amount is roughly equal to the I/O amount of one
member multiplied by the number of ensemble members. After computation, the
ensemble model of SCALE generates a large amount of output data, written in
netCDF format, which are all requested by the subsequent assimilation step of
the same cycle. In brief, the output data generated by the simulation process
will be used by the corresponding assimilation process, which indicates that I/O
communication is performed between process pairs.

To reduce the time needed for data transfer, we have been developing a
novel I/O middleware to allow direct parallel data transfer between the two
component models. Figure 1 (b) illustrates the workflow of the system when
the I/O middleware is utilized. As a result, in each cycle, the output data of
simulation processes are directly forwarded to the assimilation processes, as well
as the analyzed results generated by assimilation processes which can be directly
transferred to the simulation processes in the next cycle. Specifically, the I/O
middleware connects the two kinds of processes by using MPI communication
[20], and consequently, it enables direct communication between the simulation
processes and the assimilation processes.

Although only the SCALE-LETKF application is detailed in this paper, it
is worth emphasizing that our proposed I/O middleware is a general solution
for coupled Big Data processing applications. In order to handle a wide range
of possible I/O patterns the middleware is customizable using configurations

files. Different configurations enable deployment for applications with different
properties, such as different number of component models, or different I/O com-
munication patterns.

3.1 High Level Architecture

Figure 2 shows the I/O stack of the I/O arbitrator middleware, which is used
to support direct parallel data transfer between simulation processes (SIM in
the figure) and data assimilation processes (DA in the figure) in our case study.
Except for the application layer itself, the netCDF, POSIX, and MPI layers are
involved in the middleware. Briefly speaking, the mechanism of direct parallel
data transfer is transparent to the applications.

As it is shown in the figure, communication is currently performed by using
MPI, for which the following subsection will discuss the construction of the
communication context between two kinds of processes.

POSIX

Applica,on	

NetCDF	
MPI	 POSIX

Applica,on	

NetCDF	
MPI	

Parallel	 File	 System	

POSIX

Applica,on	

NetCDF	
MPI	 POSIX

Applica,on	

NetCDF	
MPI	

POSIX

Applica,on	

netCDF	
MPI	 POSIX

Applica,on	

netCDF	
MPI	

SIM	 DA	

Direct	 data	 transfer	

Fig. 2: Architectural overview of
the middleware

Simulation Assimilation

Memory
Buffer

Memory
Buffer

Recv.	 Write	 Req.	 Resp.	 Read	 Req.	

netCDF netCDF
MPI_Send	 (Buffer)	
via	 Inter	 COMM	

MPI_Recv	 (ACK)	
via	 Inter	 COMM	

Library
Hook

Library
Hook

Picking-‐up	

①	

Caching	

③	
	

④	
⑤	

⑥	

②	

Intra COMM Intra COMM

①	 Recv.	 Read	 Req.	

Fig. 3: The internals of direct data transfer
among workflow components

3.2 Establishing Communication

Because the simulation and data assimilation models are separately developed
applications, and are executed as separate MPI jobs, they do not share the same
MPI communicator. To overcome this problem, our prototype implementation
currently utilizes the standard MPI intercommunicator family of routines to
establish a communication context between the two types of jobs.

We provide an overview of the current MPI based implementation. At initial-
ization time, the server process, i.e., an Assimilation process opens a port using
MPI Open port(), and then publishes it by calling the MPI Publish name() fea-
ture. Subsequently, the connection thread of each individual Assimilation process
waits in MPI Comm accept(). Client processes, i.e., processes of the Simulation
component, connect to the server processes with MPI Comm connect() once they
successfully obtained the service name by using MPI lookup name(). As a result,
processes of both components can communicate with each other by using stan-
dard MPI functions. Once the data transfer had taken place, the client processes
proactively disconnect and the server processes can unpublish their connection
services with MPI Unpublish name().

3.3 Direct Data Transfer

The parallel data transfer between the simulation processes and the assimilation
processes is carried out when the communication context has been constructed.
Figure 3 depicts the details of the synchronized direct data transfer in the I/O
middleware, where the interaction between two kinds of processes can be de-
scribed as follows:

1. The Simulation process writes the output data to the file system through
calling the write() system call. We assume that the Assimilation process
will eventually read the contents of the same file, but the Assimilation pro-
cess is blocked until the requested data is satisfied in Step 6©.

2. The write() call are intercepted by the middleware, and the write contents
are cached in the designated Memory Buffer instead of flushing them to the
global file system.

3. The buffered data is forwarded from the Simulation node to the destination
node, i.e. the Assimilation process, by calling the MPI Send() routine.

4. The Assimilation process responds an ACK message, when it has received
the data sent by the Simulation process, through calling MPI Recv(). Con-
sequently, the data is cached in the designated memory buffer for satisfying
potential future read requests.

5. According to the parameters of the read() request, which was blocked be-
cause the required data was not yet available, the specified piece of data will
be picked up by Library Hook from Memory Buffer.

6. The Assimilation process resumes its execution after it received the data
from Library Hook.

Both Simulation and Assimilation processes are able to exchange their data
through direct data transfer. Specifically, all write() requests will be fulfilled
when the contents have been buffered in the memory, and all cached data is even-
tually sent to the destination process. On the other side, all read() requests will
be satisfied with the data buffered in the memory, which was initially received
from the source process.

We provide two kinds of direct data transfer schemes, i.e. Synchronous Data
Transfer and Asynchronous Data Transfer. In Synchronous Data Transfer, all
data are transferred when the output data have been completely flushed (i..e
the output netCDF file is closed). On the other hand, the mechanism of Asyn-
chronous Data Transfer employs a Communication Thread to asynchronously
send parts of the flushed data during the computation, which enables overlap-
ping computation and data transfer. Once the output netCDF file is closed, only
dirty data, which have been updated since the previous data transmission, are
transferred.

3.4 Implementation for SCALE-LETKF

To demonstrate the effectiveness of direct parallel data transfer between the
simulation and assimilation processes in SCALE-LETKF, we have developed a

proof-of-concept implementation of the proposed I/O middleware. Besides, since
data is exchanged between each SCALE process and the corresponding LETKF
process in netCDF format, we have made slight modifications to the netCDF
library itself (using ver. 4.2.2.1), so that it complies with the proposed I/O
middleware to enable direct data transfer in an application transparent fashion.

4 Evaluation

This section first describes the experimental setup and experimental methodol-
ogy for evaluating the proposed I/O middleware. It then presents experimental
results and provides the relevant discussion. At last, we summarize the key points
of our direct parallel data transfer approach.

4.1 Experimental Setup

Evaluation experiments to assess the advantages of the SCALE-LETKF sys-
tem equipped with our current prototype middleware were conducted on the
K computer [2]. The K computer is Japan’s flagship supercomputer sporting
88,128 compute nodes (8 CPU cores each), with peak performance more than
10 petaFLOPS. The K computer took the first place of TOP 500 in 2011, and
as of June 2015, it is ranked as the fourth fastest machine of the world [3].

As for the input data used in our experiments, we employ real world obser-
vations to test the efficiency of SCALE-LETKF when equipped with the pro-
posed I/O middleware. In all experiments each MPI process was allocated to one
compute node, and we logged the results related to I/O operations during the
execution. Three real world test cases for regional weather analysis were used. In
each measurement, SCALE is composed of up to 100 ensemble instances. Test
Case 1 and Test Case 2 have 4 processes in each ensemble instance, but there
are 48 processes in each ensemble instance of Test Case 3. LETKF consists of
only one instance, but it contains the same number of processes as all SCALE
instances in total. Note that every MPI process is allocated onto one computing
node, and openMP is used to explicitly direct multi-threaded parallelism.

Table 1: Total Amount of Transferred Data in the Case Study.

Ensemble Size Test Case 1 Test Case 2 Test Case 3

10 3, 468 MB 6, 720 MB 53, 328 MB

20 6, 936 MB 13, 440 MB 101, 808 MB

40 13, 872 MB 26, 880 MB 198, 768 MB

60 20, 808 MB 40, 320 MB 295, 728 MB

80 27, 744 MB 53, 760 MB 392, 688 MB

100 34, 680 MB 67, 200 MB 489, 648 MB

Table 1 summarizes the size of transferred data for the cases having different
number of ensemble instances. Note that in our current execution model, each
application instance corresponds to a separate MPI job.

4.2 Experimental Results

The main limitation of our current proof-of-concept I/O middleware is that we
can run only one cycle of the SCALE-LETKF system. In other words, each
SCALE process generates output data after simulation, which will be read by
the corresponding LETKF process as input for assimilation.

Communication Time for Transferring Data. While running the se-
lected three test cases, we first measured the communication time for transfer-
ring data between SCALE and LETKF after the computation of SCALE, as the
function of increasing the number of ensemble instances from 10 to 100. Figure
4 shows the time required for transferring the data from SCALE to LETKF by
using two direct data transfer schemes. The horizontal axis represents the num-
ber of ensemble instances and the vertical axis shows the time required for data
transmission. As the experimental results imply, the communication time for
transferring data between the two components remains essentially unchanged,
even with the growing number of involved processes, which is due to the pair-wise
communication pattern of the SCALE-LETKF system.

Another interesting observation is that the Asynchronous Transfer scheme
requires less than one−third time for transferring the data after the computation
of data simulation, compared with Synchronous Data Transfer. In other words,
the LETKF processes can start the computation of data assimilation quite ear-
lier, when we employ the Asynchronous Transfer scheme. This is because the
dirty data occupy a small proportion of all output data.

(a) Test Case 1 (b) Test Case 2 (c) Test Case 3

0

50

100

150

200

250

300

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
im

e
re

q
u

ir
ed

 f
o

r
T

ra
n

sf
er

ri
n

g
 D

at
a

(m
s)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer

0

50

100

150

200

250

300

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
im

e
re

q
u

ir
ed

 f
o

r
T

ra
n

sf
er

ri
n

g
 D

at
a

(m
s)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer

0

50

100

150

200

250

300

10(480) 20(960) 40(1920) 60(2880) 80(3840) 100(4800)

T
im

e
re

q
u

ir
ed

 f
o

r
T

ra
n

sf
er

ri
n

g
 D

at
a

(m
s)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer

Fig. 4: Communication time needed for transferring data from SCALE to LETKF
(both of them are supported by the proposed middleware).

I/O Acceleration. For comparison, we recorded the time required for I/O
operations between the SCALE and LETKF processes by using both actual file
I/O operations and the mechanism of direct data transfer. Figures 5(a), (b) and
(c) indicate the time required for carrying out I/O operations between the two
types of processes utilizing file I/O and the proposed mechanism, respectively.
Note that the I/O time shown by the proposed mechanisms includes the time
needed for memory operations, and the time required for transferring the data
from SCALE to LETKF.

As the Figure depicts, the proposed mechanism can substantially reduce
the time needed for I/O operations between SCALE and LETKF processes
compared to the file I/O-based data transfer. For example, when the size of
ensemble instances is 100 using the test case Test Case 3, the mechanism of

(a) Test Case 1 (b) Test Case 2 (c) Test Case 3

0

2

4

6

8

10

12

14

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
o

ta
l

I/
O

 T
im

e
(s

ec
o

n
d

)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer
File-based Transfer

0

2

4

6

8

10

12

14

16

18

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
o

ta
l

I/
O

 T
im

e
(s

ec
o

n
d

)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer
File-based Transfer

0

10

20

30

40

50

10(480) 20(960) 40(1920) 60(2880) 80(3840) 100(4800)

T
o

ta
l

I/
O

 T
im

e
(s

ec
o

n
d

)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer
File-based Transfer

Fig. 5: I/O time contrasting file I/O and direct data transfer.

direct data transfer can yield over 30× speedup on I/O operations, which in
turn implies that more time can be devoted to perform simulation and data
assimilation, and that the total execution time can be consequently decreased.
Furthermore, the file-based data transfer may require significantly increased I/O
time due to contention on the parallel file system. The case of Test Case 2
required 34.1% more time for conducting file I/O operations, compared with the
case of Test Case 1, because the size of transmission data needed by the former
case is two times of the size of transmission data of the latter one. In contrast,
direct data transfer does not increase the transfer time significantly even for
double size data.

Data Throughput. After verifying the proposed mechanism can indeed re-
duce the time needed for exchanging the data between SCALE and LETKF
in our test cases, this section aims to measure the I/O data throughput while
executing various test cases. Figures 6(a), (b) and (c) show the results about
I/O data throughput reported by performing the tests with varying ensemble
sizes, respectively. As seen, the proposed scheme of direct data transfer outper-
forms the scheme of file I/O-based data transfer, and it achieves from 758.3%
to 2933.3% data rate improvements for the selected test cases. Particularly, im-
provements are getting remarkable while the ensemble size is getting larger that
indicates more data are required to be processed.

(a) Test Case 1 (b) Test Case 2 (c) Test Case 3

0

5000

10000

15000

20000

25000

30000

35000

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

I/
O

 D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer
File-based Transfer

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

I/
O

 D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer
File-based Transfer

0

50000

100000

150000

200000

250000

300000

10(480) 20(960) 40(1920) 60(2880) 80(3840) 100(4800)

I/
O

 D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Ensemble Cases (Number of Computing Nodes)

Asynchronous Data Transfer
Synchronous Data Transfer
File-based Transfer

8967.9 MB/s

Fig. 6: I/O data throughput utilizing file I/O and direct data transfer.

Another noticeable issue, implied by the figures, is the fact that the larger the
amount of data is to be exchanged, the higher the benefits become by utilizing
the direct data transfer method. In addition, compared with the scheme of Syn-
chronous Data Transfer, the Asynchronous Data Transfer scheme can achieve
more attractive performance improvements.

4.3 Summary

With respect to comparing direct data transfer and file I/O based data transfer,
we emphasize the following two key observations. First, with increasing number
of processes, direct data transfer yields better relative performance. Second,
the more time reduction and higher data throughput can be achieved with the
growing size of the involved data. In brief, we conclude that the proposed file
I/O middleware is able to significantly reduce the time required by exchanging
data between the component models in the SCALE-LETKF workflow system.

Furthermore, the implemented I/O middleware offers a general framework
for inter-component data exchange in workflow systems, where individually de-
veloped applications are coupled together. By accelerating the execution of such
systems, we believe our newly proposed middleware, facilitated with the direct
data transfer functionality, is particularly important for systems with rigorous
time constraints.

5 Concluding Remarks

This paper has proposed a general I/O middleware for Big Data processing,
coupled workflows that are comprised of multiple individually developed com-
ponents. Our framework enables direct parallel data transfer among component
models in order to reduce data exchange time, which we applied to the SCALE-
LETKF data assimilation based weather forecasting system.

Experimental results on the K computer using up to 4800 nodes have shown
that the proposed mechanism can significantly reduce the time spent on I/O
operations among SCALE and LETKF. Furthermore, we have demonstrated
that the benefit of larger data throughput increases with the growing amount of
data that is required to be processed.

The current implementation of the middleware relies on the MPI library for
data transmission, but our long term vision is to implement data transfer on top
of a Low Level Communication library (LLC), which will enable us to establish
connections among arbitrary MPI jobs. LLC is part of the development plan of
the post K supercomputer, the next generation flagship supercomputer in Japan.

References

1. Network Common Data Form (netCDF). www.unidata.ucar.edu/netcdf/ (2013).
2. RIKEN AICS: K computer, http://www.aics.riken.jp/en/k-computer/ (2011).
3. TOP500 Supercomputer Sites. http://www.top500.org/ (2015).
4. D. Reed, and J. Dongarra. Exascale Computing and Big Data. Communications

of the ACM, Vol.58:56–68, June 2015.
5. N. Podhorszki, S. Klasky, and Q. Liu et al. Plasma Fusion Code Coupling Using

Scalable I/O Services and Scientific Workflows. Proceedings of the 4th Workshop
on Workflows in Support of Large-Scale Science WORKS ’2009, Nov 2009.

6. B. Hunt, E. Kostelich, and I. Szunyogh. Efficient data assimilation for spatiotem-
poral chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phe-
nomena, Vol.230(1): 112–126, 2007.

7. S. Nishizawa, H. Yashiro, and H. Tomita et al. Influence of grid aspect ratio on plan-
etary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev.,
Vol. 8(10):3393–3419, 2015.

8. S. Valcke, V. Balaji, and G. Riley et al. Coupling Technologies for Earth System
Modelling. Geosci. Model Dev., Vol. 5: 1589-1596, 2012.

9. F. Chen, J. Dudhia. Coupling an advanced land surface-hydrology model with
the Penn State-NCAR MM5 modeling system. Part I: Model implementation and
sensitivity. Mon. Weather Rev., Vol.129(4):569–585, 2001.

10. Z. Janjic, and T. Black. An ESMF unified model for a broad range of spatial and
temporal scales. Geophys. Res. Abstr., Vol. 9. No. 05025, 2007.

11. L. Liu, G. Yang, and B. Wang et al. C-Coupler1: A Chinese community coupler for
Earth system modelling. Geosci. Model Dev. Discuss., Vol. 7(3): 3889–3936, 2014.

12. A. Craig, M. Vertenstein, and R. Jacob. A New Flexible Coupler for Earth System
Modeling developed for CCSM4 and CESM1, Int. J. High Perform. C, Vol.26(1):31-
42, 2012.

13. C. Zhang, L. Liu, G. Yang et al. Improving data transfer for model coupling.
Geosci. Model Dev. Discuss., Vol. 8, pp. 8981–9020. 2015.

14. Masaru Kunii. Mesoscale Data Assimilation for a Local Severe Rainfall Event with
the NHMLETKF System. Weather Forecasting, Vol. 29, pp. 1093–1105, 2014.

15. Jay Larson, Robert Jacob, and Everest Ong. T he Model Coupling Toolkit: A New
Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models. Int. J. High
Perform. C, Vol.19(3):277-292, 2005.

16. A. Craig, R. Jacob, B. Kauffman, and Y. He et al. CPL6: The New Extensible,
High Performance Parallel Coupler for The Community Climate System Model.
Int. J. High Perform. C, Vol. 19(3):309-327, 2005.

17. C. W. Armstrong, R. W. Ford, and G. D. Riley. Coupling integrated Earth Sys-
tem Model components with BFG2. Concurr. Comp-Pract. E., Vol. 21(6):767–791,
2009.

18. S. Valcke, R. Budich, and M. Carter et al. The PRISM software framework and
the OASIS coupler. In proceedings of the 18 Annual BMRC Modelling Workshop,
Nov. 28 - Dec. 1, 2006, Melbourne, Australia.

19. P.A. Browne, S. Wilson. A simple method for integrating a complex model into an
ensemble data assimilation system using MPI. Environ. Modell. Softw., Vol.68:122–
128, 2015.

20. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 2.2, September 2009.

21. G. Watson, W. Frings, and C. Knobloch, et al. Scalable control and monitoring
of supercomputer applications using an integrated tool framework. In Proceedings
ICPPW ’2011, pp. 457-466, 2011.

22. F. Zhang, C. Docan, M. Parashar et al. Enabling in-situ execution of coupled sci-
entific workflow on multi-core platform. In Proceedings of IEEE 26th International
Parallel & Distributed Processing Symposium (IPDPS ’2012), pp. 1352-1363, 2012.

23. S. Valcke, A. Craig, R. Dunlap, and G. Riley. Sharing experiences and outlook
on Coupling Technologies for Earth System Models. Bull. Amer. Meteor. Soc.,
DOI:10.1175/BAMS-D-15-00239.1, 2015.

24. M. Dorier, M. Dreher, and T. Peterka et al. Lessons Learned from Building In
Situ Coupling Frameworks. In Proceedings of the First Workshop on In Situ In-
frastructures for Enabling Extreme-Scale Analysis and Visualization. ACM, pp.
19-24, 2015.

25. T. Miyoshi, K. Kondo, and K. Terasaki. Big Ensemble Data Assimilation in Nu-
merical Weather Prediction. IEEE Computer, Vol. 48(11):15–21, 2015.

