
Intra-page Cache Update in SLC-mode with Partial
Programming in High Density SSDs

Jun Li
Southwest University of China
junli95@email.swu.edu.cn

Minjun Li
Southwest University of China
liminjun@email.swu.edu.cn

Zhigang Cai∗
Southwest University of China

czg@swu.edu.cn

Francois Trahay
Telecom SudParis

francois.trahay@telecom-sudparis.eu

Mohamed Wahib
National Institute of Advanced

Industrial Science and Technology
RIKEN Center for Computational

Science
mohamed.attia@aist.go.jp

Balazs Gerofi
RIKEN Center for Computational

Science
bgerofi@riken.jp

Zhiming Liu
Southwest University of China
zhimingliu88@swu.edu.cn

Min Huang
Southwest University of China

hmin@swu.edu.cn

Jianwei Liao
Southwest University of China

State Key Lab. for Novel Software
Technology, Nanjing University

liaotoad@gmail.com

ABSTRACT
Modern high density SSDs commonly designate a part of their
capacity as a cache using an Single-level Cell (SLC)-mode region.
Partial programming is then adopted for reducing space fragmen-
tation in the SLC-mode pages, but it exacerbates program disturb
including both in-page disturb and neighbouring page disturb. This
paper proposes a partial programming scheme (called intra-page
update) by updating hot, small size data inside a given page to
minimize the negative impact induced by program disturb. More-
over, we introduce a novel data movement principle to separate
hot and cold write data in the SLC-mode cache when updating the
data or carrying out garbage collection. As a result, the hot updated
data can be kept in the SLC-mode cache and the cold data will be
flushed onto the high density SSD region. Simulation tests on sev-
eral realistic disk traces show that our proposal improves bit error
rate by 9.2%, and I/O performance by 9.3% on average, compared
to state-of-the-art methods, without a noticeable decrease in total
endurance.

CCS CONCEPTS
• Computer systems organization→ Embedded software.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472492

KEYWORDS
SSDs, SLC-mode Blocks, Partial Programming, Hot/Cold Data Sep-
aration, I/O Performance, P/E Cycles

ACM Reference Format:
Jun Li, Minjun Li, Zhigang Cai, Francois Trahay, Mohamed Wahib, Balazs
Gerofi, Zhiming Liu, Min Huang, and Jianwei Liao. 2021. Intra-page Cache
Update in SLC-mode with Partial Programming in High Density SSDs.
In 50th International Conference on Parallel Processing (ICPP ’21), August
9–12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3472456.3472492

1 INTRODUCTION
Flash memory-based SSDs have become the dominant storage de-
vices thanks to their nature of small size, energy efficiency, low
latency, and collectively massive parallelism [1]. In order to further
cut down the per-unit price of SSDs, the feature size of NAND
flash memory cells has been pushed to the limit of the nm level [2].
Consequently, flash density increase is now driven by multiple-
level cell (MLC) and triple-level cell (TLC) [3, 4]. However, such
high density flash memory has lower read/write performance and
lower endurance than single-level cell (SLC) flash memory [5, 6].
In order to hide the low performance and extend the lifetime of
high density SSDs, most recent TLC/MLC SSDs adopt a hybrid SSD
architecture, which contains an SLC region in addition to the multi-
level cells [8, 9]. Specifically, the SSD blocks in the SLC region are
programmed in SLC-mode (i.e., they store only one bit per cell), and
thus they can offer lower access latency and better erase endurance
than the high density blocks.

On the other hand, the high density SSDs commonly have a rel-
ative large flash page size, which leads to a mismatch between the
request size and the underlying write unit. This has been reported
as the main cause of page fragmentation (or called as internal frag-
mentation) [12, 16]. For better utilization of the SSD page space, the
technique of partial programming has been introduced that enables

https://doi.org/10.1145/3472456.3472492
https://doi.org/10.1145/3472456.3472492
https://doi.org/10.1145/3472456.3472492

ICPP ’21, August 9–12, 2021, Lemont, IL, USA J. Li, M. Li, Z. Cai, F. Trahay, M. Wahib, B. Gerofi, Z. Liu, M. Huang, and J. Liao et al.

Neighboring
page disturb

Vpass

VPP

WLn	

WL1	

WL0	Vpass

BL0	 BLm	BL1	

Programmed cell Affected in-page cells

VCC VCC VGND

 In-page disturb

Figure 1: Illustration of partial programming-induced dis-
turb.

subpage programming in varied parts of an SLC-mode page [10, 11].
As shown in Figure 1, the data that is smaller than a page (i.e., 16KB
in the paper) can be partially programmed. Specifically, a high par-
tial programming voltage of Vpp is applied to the target word line
ofWL1, while a pass voltage ofVpass is imposed to the other word
lines. Meanwhile the bit lines except for programming cells are
driven to a VCC , for reducing the voltage drop across the tunnel
oxide. Then, different parts of a page can be programmed multi-
ple times, which can consequently alleviate the problem of page
fragmentation [12, 17].

However, partial programming exacerbates program disturb to-
wards not only the data in the neighboring pages, but also the pre-
viously flushed data in the same page [19]. Figure 1 also illustrates
both kinds of disturb caused by a partial programming process, i.e.,
in-page disturb and neighboring page disturb. Consequently,
more Error Correction Code (ECC) time is needed to correct the
disturbed data when reading them. Considering this fact, SSD man-
ufacturers suggest the number of partial programming to the same
SLC page should be limited to 4, because more partial programming
operations will increase the read latency, and even destroy existing
data in the same page and neighboring pages [11, 18].

In addition, partial programming requires a second-level map-
ping table to record pairs of a logical address and the corresponding
physical address for the subpages in SLC-mode pages, which results
in higher address translation latency and needs more memory for
holding the mapping table.

To address the issues of eliminating in-page disturb and minimiz-
ing the size of second-level mapping table with respect to partial
programming in modern high density SSDs, this paper proposes an
intra-page cache update scheme to efficiently buffer small hot write
data in SLC-mode pages. In brief, this paper makes the following
contributions:

• We introduce an intra-page update scheme with partial program-
ming in the SLC-mode cache of high density SSDs, where the
basic idea is to program small size updated data inside a given
page. Thus, the in-page disturb induced by partial programming
can be obliterated. In addition, it is not needed to maintain a
second-level mapping table to record the subpage information,

since an SLC-mode page only holds the valid data from a single
request.

• We present a data movement method to separate hot and cold
write data in the SLC-mode cache when updating data or carrying
out garbage collection (GC). It utilizes three levels of blocks to
shift the hot updated data and then migrates cold data to the
low-level blocks till the data is not in the SLC-mode cache.

• We evaluate our proposal on several disk traces of real-world
applications. As measurements indicate, our proposal reduces I/O
response time by 9.3%, and decreases read error rate by 9.2% on
average, compared to state-of-the-art methods.
The remainder of the paper is organized as follows. Section 2

introduces related work on SLC-mode cache in high density SSDs
and the motivations. Section 3 designs the proposed intra-page
update approach and hot/cold data management in the SLC-mode
cache. Section 4 shows the evaluation methodology and reports the
experimental results. Finally, the paper is concluded in Section 5.

2 RELATEDWORK AND MOTIVATION
2.1 Related Work
By rethinking the write/read/erase granularity of NAND flash
memory, the technologies of partial programming [10, 12], par-
tial read [13], partial erase [14, 15] have been proposed to better
serve I/O requests with smaller sizes. Many studies adopt partial
programming to improve SLC-mode page space management. Kim
et al. [10] presented a method to partition a SLC-mode page into
smaller subpages and then support subpage programming. There-
fore, the SSD endurance cycle can be greatly enhanced because
of better space utilization. Similarly, Feng et al. [12] designed a
subpage management method for SLC-mode pages to enhance the
lifetime of the native MLC SSDs, which makes use of a two-level
mapping table to record subpage information in the same pages.
Although these partial programming schemes can greatly alleviate
the fragmentation problem, they need more memory space for the
mapping table and induce in-page disturb, accompanied with more
read errors.

Considering that partial programming inducesmore raw bit error
rate, Kim et al. [17] proposed a subpage-aware retention model to
avoid worsening data retention by exploiting bit error rates induced
by partial programming. Besides, Zhang et al. [19] proposed an in-
place delta compression in a SLC-mode page, which first holds the
original data in the given page and keeps the updated compression
parts and ECC information in the same page by utilizing partial
programming.

However, partial programming does pose the threat on both
in-page error and neighboring page disturb. These errors should
be taken into consideration.

2.2 Motivation
Previous work has reported that partial programming incurs higher
bit error rates than conventional programming [19]. As shown in
Figure 2, for instance, the block having 4000 Program/Erase (P/E)
cycle indicates 0.00028 and 0.00038 bit error rate with conven-
tional programming and partial programming, respectively. That is,
progressive partial programming may bring about negative effects
on bit error rates towards the valid data that have been programmed

Intra-page Cache Update in SLC-mode with Partial Programming ICPP ’21, August 9–12, 2021, Lemont, IL, USA

0

0.4

0.8

1.2

1.6

0 2000 4000 6000 8000

Bi
t E

rro
r R

at
e

(1
0-3

) Conventional Programming
Partial Programming

P/E Cycles

Figure 2: Comparison of the bit error rate of conventional
programming and partial programming [19].

Table 1: Size distribution of updated requests in block I/O
traces

Trace Size∈(0, 4K] Size∈(4K, 8K] Size>8K
ts0 69.8% 17.9% 12.3%

wdev0 73.2% 6.8% 20.1%

lun1 85.2% 7.3% 7.5%

usr0 66.3% 12.1% 21.6%

lun2 92.6% 2.5% 4.9%

ads 74.5% 14.1% 11.4%

within the same page. Intuitively, it adversely effects read latency
due to the longer ECC decoding time on the in-page data affected
by partial programming. Moreover, the bit error rate difference
becomes more pronounced as the P/E cycle is getting large [12, 19].
On the other hand, invalid or free (sub)pages are not affected by
program disturb, as they have been labeled as dirty portions or not
been previously programmed [17].

We have analyzed the distribution of updated request sizes in
several block I/O traces of real-world applications [20–22]. Table 1
presents the statistics. As seen, 4K-size requests account for more
than 66.3% of all requests. This fact verifies that we can better
utilize SSD space by flushing multiple pieces of a small size data
into the same page with partial programming, since applications
have many small size update requests. In addition, we have also
observed that more than a half of requests are identified as cold
that are not updated frequently in the selected traces. Then, it is
necessary to separately manage the data according to their update
frequency, for better efficiently utilizing the SLC-mode cache in
high density SSDs.

Such observations motivate us to keep the small size updated
data in the remaining free space inside of the same page by us-
ing partial programming called Intra-page Update, to eliminate
negative impacts on previously flushed in-page data induced by
partial programming. Furthermore, it is expected to categorize the
data according to their update hotness, and separately save them
in either SLC-mode blocks or other native high density blocks of

1 1’

Work Block Monitor Block Hot Block

2’ 4

3’32

�W1’

2’’
�

W2’
�W2’’

�
W3’

W2’’ invalid valid free subpageW1’ W2’ W3’Incoming req.

Figure 3: Overview of intra-page update with upgraded data
movement.

SSDs (e.g. TLC or MLC blocks), to boost the use efficiency of the
SLC cache and extend the lifetime of high density SSD blocks.

3 DESIGN AND IMPLEMENTATION
This section describes the design of the proposed intra-page update
scheme and provides details on our implementation.

3.1 Intra-page Update with Partial
Programming

The basic principle of our approach is to utilize partial programming
to fulfill small size of update requests in the same pages that hold
the previous version of data. Then, the program disturb caused by
partial programming can be mitigated, since obsolete data have
been invalidated and they never suffer from program disturb. We
define three levels of SLC-mode blocks, to identify hot write data
and keep them in the cache. Specifically, they areHigh-density Block,
Work Block, Monitor Block, and Hot Block, with the ascending order.
The first one is the native blocks of high density SSDs, and the
remainders are with the SLC-mode.

Figure 3 illustrates a high-level overview of proposed intra-page
update with partial programming. The new data should be flushed
into SSDs, and a Work Block is the target cell. When the updated
request comes, it should be flushed onto the page which has the
previous version of data, such as ❶ W1’. In case that the remainder
free space in the same page cannot accommodate the updated data,
the data will be flushed on to a free page with a higher level label.
For instance, the data of 2’ should be written into a new page
in a Monitor Block (i.e. the upgraded data movement), and it also
indicates this piece of data is frequently updated. Similar to the
case of ❷ W2’, the data of ❹ W3’ also should be flushed into a new
page in a Hot Block.

In brief, we can identify cold/hot update data, by using the intra-
page update scheme with partial programming. Then, we can keep
hot update data in high level SLC-mode blocks for better I/O respon-
siveness on the one side, and maintain the cold data in the Work
Blocks or even move them to High-density Blocks via GC operations
for freeing SLC cache space on the other side.

3.2 GC Policy for SLC-mode Cache
The greedy policy has been commonly used in a conventional
GC process of SSDs. Specifically, it traverses all the blocks in the
target plane, and selects the block that has the largest number of
invalid pages. But, in the context of partial (subpage) programming,
the granularity of invalid page number should be changed into the

ICPP ’21, August 9–12, 2021, Lemont, IL, USA J. Li, M. Li, Z. Cai, F. Trahay, M. Wahib, B. Gerofi, Z. Liu, M. Huang, and J. Liao et al.

GC target blockLow-level block Same-level block

GC candidate B

GC candidate A

(ISR: 6 / 16)

(ISR: (6+0.9) / 16)

(b) Page moves in GC(a) GC candidate selection

After GC
Before GC Cold valid data

(degraded page move)
Hot valid data

(same level page move)

0.9

Figure 4: GC illustration in SLC-mode blocks with degraded data movement.

subpage level. That is, when the GC threshold is reached, we should
select the GC target by referring to the number of invalid subpages.
For this end, we define the metric of invalid subpage ratio (i.e. ISR)
in Equation 1, to represent the capacity of freeing space after a
GC operation on the candidate block. Then, the block having the
largest ISR value will be selected as the GC target.

I SRi =
I Si + I S ′i
TSi

(1)

where ISi and TSi mean the number of invalid subpage and total
subpage of ith block, and IS ′i measures the weight of valid subpage
in ith block.

Note that the cold write data is calculated through IS ′i , as we
consider that it is better to eject such cold valid data from the
SLC-mode cache.

I S ′i =
∑
j∈J

(1 − e
−
ti j
Ti) (2)

where J is the index set of all subpages in the ith block that
have never been updated, ti j means the access interval time of
jth subpage in the ith block, and Ti represents the average access
interval time in all subpages. Assuming that the number of updates
associating with each subpage per unit time follows the Poisson
distribution with the parameter of 1

Ti [23], the access interval time
of each subpage in the block will follow the exponential distribution

with the parameter of 1
Ti . That is to say, 1− e

−
ti j
Ti indicates that the

probability of the access interval time of the un-updated jth subpage
is less than ti j , which can be used to approximately measure the
invalid degree of the subpage.

In breif, while the value of ISi can estimate the number of invalid
subpages (i.e. invalid one as 1), the value of IS ′i indicates the weight
of valid subpages, that ranges from 0 to 1. If ti j is long enough toTi ,
the IS ′i value of subpage may approach to 1. Then, our GC selection
metric is an increasing function of the number of invalid subpage

and the weight value of valid subpage. In other words, The block
having more invalid subpages and cold valid subpages prefer to
be processed for GC, which reaches another purpose of separating
and ejecting cold data during GC process.

As the example shown in Figure 4(a), the value of ISR of GC
candidate A is 6/16 (6 divided by 16 total subpages), and that of
GC candidate B is 6.9/16 (6 of IS and 0.9 of IS ′ divided by 16 total
subpages). Then, GC candidate B will be selected for carrying out a
GC operation, since we can reclaim more available space.

Moreover, we introduce a degraded page movement scheme in
GC for sifting the cold valid data, so that they will be moved onto
a lower level block, and finally ejected from the SLC-mode cache
to a High-density Block. Figure 4(b) illustrates a GC example in our
context. As read, the valid cold subpages have not been updated
in that level of blocks, and they should be migrated into low-level
blocks (e.g. from Monitor Block to Work Block). Otherwise, other
subpages should be moved in the same-level blocks for preserving
their hotness. Note that, if the pages in Work Blocks have not been
updated, they need to be ejected from the SLC-mode cache.

3.3 Implementation
Algorithm 1 shows the implementation details on intra-page update
with partial programming and GC operations in the SLC-mode
cache. As illustrated, Lines 2-13 identify the process of dealing with
write requests. The new data (not the updated data) will be directly
flushed to a new page in aWork Block (Line 5). For the updated data,
the page having their old data is the target of partial programming
if the remainder space in the page is larger than the size of updated
data (see Line 8). Otherwise, a new page in the a higher level block
(see Line 11) will be selected to hold the latest data. Note that, the
block_flag identifies the three-level blocks, and lower level blocks
can be instead selected only if no available block can be found.

In addition, Lines 14-19 present the process of page move in the
GC operation. Specifically, when the page data have been updated,

Intra-page Cache Update in SLC-mode with Partial Programming ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Input: args of req, args of block, available_slc_space;
Output: null;
/*block_flag (0, 1, 2, 3) stand for (High-density, Work,
Monitor, Hot) block respectively*/
Function insert_slc_buffer(req)

if search_map_table(req) == NULL then
/*new data, find a new page inWork Block*/
find_page(1,size);

end
else if size < page_left_space then

/*intra-page update*/
goto Line 12;

end
else

/*find a new page in a higher level block*/
find_page(block_flag+1,size);

end
write_page();
update_map_table();

Function move_page(block_flag)
for valid_page in block do

find_page(block_flag-1+update,size);
/*page was updated ? update == 1 : 0*/
write_page();
update_map_table();

end
/*main function starts*/
insert_slc_buffer(req);
if available_slc_space < gc_threshold then

select_target_block();
move_page(block_flag);
block_flag = −1; //reset block flag
erase_block();

end
Algorithm 1: Intra-page partial programming update

they should bemoved onto a same level SLC-mode block. Otherwise,
we refer these data as the cold data, and migrate them onto a lower
level block till the data is not in the SLC-mode cache (see Line 18).

4 EXPERIMENTAL EVALUATION
4.1 Environment Setup
We have performed trace-driven simulation with SSDsim [24],
which has been modified to support partial programming. Table 2
demonstrates our settings of experiments. In the table, page settings,
latencies of SLC/MLC mode1, and read/write/erase information are
referred to [8, 9, 25], and Bose-Chaudhuri-Hocquenghem (BCH)
ECC settings are referred to [26]. P/E cycle is set as 4000 in default.
For reflecting varieties of SSD use stages, the case study of different
P/E cycles will be discussed in Section 4.5. Beside, the bit error rate
induced by partial programming is referred to [19].

We employed 6 commonly used disk traces. Specifically, ts0,
wdev0 and usr0 are from the block I/O trace collection of Microsoft
Research Cambridge [20], and ads is from Microsoft Production

1 We take the MLC SSDs as the case of high density SSDs in our tests, as we have MLC
hardware statistical data on bit error rates induced by partial programming.

Table 2: Experimental settings of SSDsim

Parameters Values Parameters Values (ms)
Block number 65536 SLC read time 0.025

SLC mode ratio 5% MLC read time 0.05

SLC/MLC Page 64/128 ECC min time 0.0005

Page size 16KB ECC max time 0.0968

GC threshold 5% SLC write time 0.3

Wear-leveling static MLC write time 0.9

FTL scheme Page Erase time 10

Table 3: Specifications on selected traces (ordered by write
ratio)

Trace # of Req. Write R Write SZ Hot write
ts0 1,801,734 82.4% 8.0KB 50.5%

wdev0 1,143,261 79.9% 8.2KB 58.2%

lun1 1,073,405 73.1% 7.6KB 10.0%

usr0 2,237,889 59.6% 10.3KB 36.5%

lun2 1,758,887 19.3% 9.7KB 8.5%

ads 1,532,120 9.5% 7.0KB 18.3%

Server [21]. The reminder two recent block I/O traces are recently
collected from a part of an enterprise virtual desktop infrastructure
(VDI) [22]. Specifically, they are additional-01-2016021615-LUN0
(lun1), additional-03-2016021719-LUN2 (lun2). The detailed spec-
ifications on the traces are reported in Table 3, and the metric of
Hot Write means the ratio of hot access addresses if they have been
requested not less than 4 times.

Besides, we used the following comparison counterparts for
measuring the performance of our proposed mechanism:
• Baseline: which indicates the default dynamic page-level mapping
scheme, and partial programming is not enabled.

• MGA (Mapping Granularity Adaptive Method): which utilizes sub-
page granularity management with partial programming, to boost
space utilization. We argue that it is the most related work to our
proposal.

• IPU (Intra-page Update): which is the proposed method. It sup-
ports intra-page update with partial programming and separates
hot and cold write data in the SLC-mode cache, when updating
data or carrying out GCs.

4.2 Tests and Benefit Illustration
To measure validity of the proposed mechanism that aims to utilize
the SLC mode cache, we use the following two metrics in our tests:
(a) average latency, (b) read error rate.

4.2.1 I/O Performance. Figure 5 presents the results of I/O latency
distribution after replaying the selected traces. Compared with
Baseline, both MGA and IPU can reduce the overall I/O time by
6.4% and 14.9% on average. We consider partial programming in
the SLC-mode can reduce space fragmentation to improve space

ICPP ’21, August 9–12, 2021, Lemont, IL, USA J. Li, M. Li, Z. Cai, F. Trahay, M. Wahib, B. Gerofi, Z. Liu, M. Huang, and J. Liao et al.

0

20

40

60

80

100

120
Ba

se
lin

e
M

GA IP
U

Ba
se

lin
e

M
GA IP

U

Ba
se

lin
e

M
GA IP

U

Ba
se

lin
e

M
GA IP

U

Ba
se

lin
e

M
GA IP

U

Ba
se

lin
e

M
GA IP

U

ts0 wdev0 lun1 usr0 lun2 ads

I/O
 re

sp
on

se
 ti

m
e

(%
) Write time Read time

Block I/O Traces

Figure 5: I/O response time distribution after running the
selected block I/O traces.

0

20

40

60

80

100

120

Ba
se

lin
e

M
G

A
IP

U

Ba
se

lin
e

M
G

A
IP

U

Ba
se

lin
e

M
G

A
IP

U

Ba
se

lin
e

M
G

A
IP

U

Ba
se

lin
e

M
G

A
IP

U

Ba
se

lin
e

M
G

A
IP

U

ts0 wdev0 lun1 usr0 lun2 ads

W
rit

e
di

st
rib

ut
io

n
(%

) SLC Write MLC Write

Block I/O Traces

Figure 6: Completed writes distribution in SLC/MLC blocks
after running the selected block I/O traces.

utilization, so that the SLC-mode cache can absorb more requests
for better I/O performance.

More exactly, our proposal of IPU decrease write latency by
23.8% and 17.9%, comparedwith Baseline andMGA. This is because
our proposal can efficiently identify hot update data, and then
absorb them in the SLC-mode cache by updating the data in the
same page. Besides, the proposed data movement policy in GCs can
also contribute to separate hot and cold update data, and move them
to SLC-mode blocks or MLC blocks. In order to clearly illustrate
this fact, we present the distribution of writes in both SLC-mode
and MLC regions with Figure 6. As seen, IPU yield the lowest
count in the MLC region, that indicates the SLC-mode cache can
fulfill a large number of (hot) write requests and lead to better write
performance than Baseline andMGA. Note that this is also the cause
of resulting in more erases in SLC-mode blocks and less erases in
MLC blocks (see Section 4.3).

On the other hand, Figure 7 shows the updated write distribution
occurred in there-level blocks. As seen, write completed in Hot
Block by 32.9% on average. These write data are the most frequently
updated data, and hold in SLC-mode blocks to utilize the I/O benefits.
62.7% of write occurred inWork Block, which infrequently updated

0

20

40

60

80

100

120

ts0 wdev0 lun1 usr0 lun2 ads

W
rit

e
di

str
ib

ut
io

n
(%

)

Work Block Monitor Block Hot Block

Block I/O Traces

Figure 7: Occurred writes distribution in there-level blocks
using the proposed method IPU.

(cold) data should be ejected into High-density Block or hot data
could be flushed into Monitor Block and eventually into Hot Block.

Another interesting clue shown in Figure 5 is that our proposal
of IPU can decrease the read latency by up to 6.3%, compared
with the most related work of MGA. This is because our proposal
can decrease read error rate induced by partial programming, and
then the ECC decoding time can be greatly reduced. The detailed
information on themeasurement of read error rate will be presented
in Section 4.2.2.

4.2.2 Read Error Rate. Figure 8 shows results of read error rate
after replaying selected block I/O traces. Both MGA and IPU en-
large the read error rate by 14.0% and 3.5% on average, compared
with Baseline. As seen, partial programming does increase the bit
error rate due to program disturb. But we can understand that IPU
can mitigate the most of read error rates, in contrast to the related
work of MGA. This is because our intra-page update can eliminate
program disturb on the intra-page data, only slight neighboring
program disturb increasing. Note that the read error rate impacts
read latency, so IPU can achieve an improvement on read respon-
siveness, compared withMGA, which have been reported in Section
4.2.1.

4.3 Space Utilization and Endurance Analysis
Partial programming can reduce page fragmentation and then im-
prove SSD endurance, this section unveils measurements of page
utilization and block erases.

4.3.1 Page Utilization in SLC-mode Cache. We define the metric of
page utilization as the ratio of the number of used subpages to the
total number of subpages in all GC blocks in the SLC-mode cache.
Figure 9 shows the results of page utilization after replaying all
traces, in which a larger ratio means better page utilization.

As illustrated, the page utilization achieved by Baseline is about
52.8% on average, since it does not enable partial programming
and then brings about a serious fragmentation problem. On the
other side, MGA and IPU yield 99.9% and 73.0% page utilization
respectively on average, andwe see the page fragmentation problem
is alleviated.

Intra-page Cache Update in SLC-mode with Partial Programming ICPP ’21, August 9–12, 2021, Lemont, IL, USA

0

1

2

3

4

5

ts0 wdev0 lun1 usr0 lun2 ads

Re
ad

 e
rro

r r
at

e
(1

0-4
)

Baseline MGA IPU

Block I/O Traces

Figure 8: Average read error rate of the selected block I/O
traces.

Block I/O Traces

0

40

80

120

ts0 wdev0 lun1 usr0 lun2 ads avg

Pa
ge

 u
til

iz
at

io
n

ra
tio

 (%
) Baseline MGA IPU

Block I/O Traces

Figure 9: Page utilization ratio ofGCblocks in the SLC-mode
cache.

Another interesting clue shown in the figure is that our proposal
of IPU does worse in the measurement of page utilization than
MGA. This is because MGA tries to aggregate many pieces of small
size data belonging to different write requests into the same page,
and the space utilization is the most important goal of MGA. But
IPU aims to support intra-page update for minimizing program
disturb, as well as separate hot and cold data for better utilization of
SLC-mode cache. We emphasize that the metric of page utilization
reflects the level of page fragmentation in the SLC-mode cache,
but it does not directly indicate I/O performance, which have been
demonstrated in Section 4.2.

4.3.2 Erase Number. We record erase numbers in both SLC-mode
and MLC blocks to reflect SSD endurance after running the bench-
marks, and Figure 10 shows the results. Figure 10(a) reports the
numbers in the SLC-mode cache, and it shows that Baseline per-
forms the worst, because it does not support partial programming.
More importantly, we see our proposal of IPU results in more SLC
erases compared with the related work ofMGA, this is becauseMGA
can yield better page utilization, and endure less write requests in
the SLC-mode cache.

Figure 10(b) presents the erase statistical data in MLC blocks, and
the most important information is that IPU yields the least number

0

200

400

600

ts0 wdev0 lun1 usr0 lun2 ads avg
Er

as
e

nu
m

be
r

Baseline
MGA
IPU

0

10

20

30

ts0 wdev0 lun1 usr0 lun2 ads avg

Er
as

e
nu

m
be

r (
U

ni
t:

K
) Baseline

MGA
IPU

(a) SLC Erase

(b) MLC Erase

Block I/O Traces

Block I/O Traces

Figure 10: Erase number occurred in SLC and MLC blocks.

of erases in MLC blocks. This is because IPU aims to hold the hot
update in the SLC-mode cache, for minimizing write operations
on high density blocks (e.g. MLC in our tests). Our motivation of
this design is because high density SSD blocks can endure a small
number of erase operations, but SLC-mode blocks can bear a large
number of erases. More exactly, the endurance ratio between SLC
andMLC is 10:1 [8], and this ratio comes to 100:1 or 1000:1when
the high density cell is TLC or Quad-Level Cell (QLC) [9]. In brief,
our proposal can bring about better overall lifetime of high density
SSDs.

4.4 Overhead Analysis
This section first analyzes memory overhead caused by mapping
table and labeling block levels in the SLC-mode cache. Then, the
computation overhead of GC policy is presented.

4.4.1 Memory Overhead. Partial programming demands additional
memory space to hold the mapping table in a subpage granularity,
and Figure 11 presents the comparison of normalized mapping table
size. As seen, MGA expects the largest memory overhead that is
23.7% more than that of Baseline. This is because MGA needs a
two-level mapping table to record the subpage information, but
Baseline employs page-level mapping scheme. On the other side,
our proposal of IPU requires more memory space by 0.84% on
average, in contrast to Baseline. IPU leverages the same page to
hold the different versions of same piece of data, so that it only
records which part of subpage (i.e. offset in the page) corresponds
to the latest version of data in the second level mapping.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA J. Li, M. Li, Z. Cai, F. Trahay, M. Wahib, B. Gerofi, Z. Liu, M. Huang, and J. Liao et al.

0

20

40

60

80

100

120

140

ts0 wdev0 lun1 usr0 lun2 ads avg

M
ap

pi
ng

 ta
bl

e
siz

e
(%

)

Baseline MGA IPU

Block I/O Traces

Figure 11: Normalized mapping table size after using se-
lected comparison methods.

Block I/O Traces0

1

2

3

ts0 wdev0 lun1 usr0 lun2 ads

Co
m

pu
ta

tio
n

ov
er

he
ad

 (m
s) Baseline MGA IPU

Block I/O Traces

Figure 12: Computation overhead in GC processing after us-
ing selected comparison methods.

Besides, labeling three-level blocks in the SLC-mode cache con-
sumes memory space. It requires 820B (=2bit*5% (SLC-mode ra-
tio)*65536 (block number)) in our context, taking a negligible
amount of memory space in SSDs. To record the IS ′ values in
our GC selection policy, it takes 819.2KB (=4B*5%*65536*64 (SLC
page number)), which results in an acceptable amount of memory
space in SSDs.

4.4.2 Computational Overhead. The new GC policy results in com-
putation overhead of traversing all the blocks in the target plane,
whose computation overhead is similar to the greedy policy that em-
ploys in Baseline. Figure 12 shows the computation overhead when
using GC policies of Baseline and IPU. The GC policy of IPU only
expends more time by 1.2%, in contrast to the GC policy of Baseline.
That is, our GC policy needs less than 2.48ms for searching the
target GC blocks, which is acceptable.

4.5 Performance Case Study of P/E Cycles
This section analyzes the comparison of I/O latency and bit read
error rate under four varied P/E Cycles. Figure 13 and 14 show
the relevant results. As seen, both I/O latency and read error rate
have the similar incremental tendency. This is because the SSD
devices having the large number of P/E cycles have worse ability
to fight against the bit error rate, and thus induce high I/O latency

0.0

0.1

0.2

0.3

0.4

1K 2K 4K 6K

I/O
 la

te
nc

y
(m

s)

0.0

0.3

0.6

0.9

1.2

1K 2K 4K 6K

I/O
 la

te
nc

y
(m

s)

0.0

1.0

2.0

3.0

4.0

5.0

1K 2K 4K 6K

I/O
 la

te
nc

y
(m

s)

0.0

0.3

0.6

0.9

1.2

1K 2K 4K 6K

I/O
 la

te
nc

y
(m

s)

0.0

0.5

1.0

1.5

2.0

1K 2K 4K 6K

I/O
 la

te
nc

y
(m

s)

0.0

0.5

1.0

1.5

2.0

1K 2K 4K 6K

I/O
 la

te
nc

y
(m

s)

Baseline
MGA
IPU

(b) trace: wdev0(a) trace: ts0

(c) trace: lun1 (d) trace: usr0

(e) trace: lun2 (e) trace: ads

P/E Cycle P/E Cycle

P/E Cycle P/E Cycle

P/E Cycle P/E Cycle

Figure 13: Analysis on I/O latency under varied P/E cycles
after running the selected block I/O traces.

that needs more ECC decoding time. Nevertheless, our proposed
method IPU unveils similar improvement on I/O latency and read
error rate, compared with the related work MGA. This fact verifies
the fine scalability of our proposal on varieties of SSD use stages.

4.6 Summary
With respect to comparing the existing partial programmingmethod,
we emphasize the following two key observations. First, the pro-
posed intra-page update with partial programming can minimize
incremental bit errors induced by program disturb, which can con-
tribute to less read latencies as the ECC correction time is reduced.
Second, the proposed data movement policies in both SLC-mode
cache management and GC processing can efficiently separate hot
and cold update data, which can contribute to less write latencies as
the hot update data are preferably buffered in the SLC-mode cache.

5 CONCLUSION
We have proposed and evaluated an intra-page update scheme with
partial programming for the SLC-mode cache in high density SSDs
that mitigates the negative impact caused by progressive partial
programming. To this end, it flushes the updated data into free
parts of the page that holds old version of data, and then utilizes

Intra-page Cache Update in SLC-mode with Partial Programming ICPP ’21, August 9–12, 2021, Lemont, IL, USA

0.0

3.0

6.0

9.0

1K 2K 4K 6K

R
ea

d
er

ro
r r

at
e

(1
0-4

)

0.0

3.0

6.0

9.0

1K 2K 4K 6K

R
ea

d
er

ro
r r

at
e

(1
0-4

)

0.0

3.0

6.0

9.0

1K 2K 4K 6K

R
ea

d
er

ro
r r

at
e

(1
0-4

)

0.0

3.0

6.0

9.0

1K 2K 4K 6K

R
ea

d
er

ro
r r

at
e

(1
0-4

)

0.0

3.0

6.0

9.0

1K 2K 4K 6K
R

ea
d

er
ro

r r
at

e
(1

0-4
)

(b) trace: wdev0(a) trace: ts0

(c) trace: lun1 (d) trace: usr0

(e) trace: lun2 (e) trace: ads

P/E Cycle P/E Cycle

P/E Cycle P/E Cycle

P/E Cycle P/E Cycle

0.0

3.0

6.0

9.0

1K 2K 4K 6K

R
ea

d
er

ro
r r

at
e

(1
0-4

)

Baseline
MGA
IPU

Figure 14: Analysis on bit error rate under varied P/E cycles
after running the selected block I/O traces.

three levels of blocks to shift the hot update data. Furthermore, it
adopts a new GC policy, which selects the block having largest
invalid subpage number, and migrates cold data to the low-level
blocks till the data is not in the SLC-mode cache. Experimental
results show that our proposal decreases I/O latency by between
2.4% and 14.9%, and decreases read error rate by 9.2% on average,
in contrast with state-of-the-art approaches. In this work, in order
to eliminate the in-page disturb induced by partial programming,
only the updated data utilizes the partial programming in the same
page, leading to page utilization reduction. In the future, we will
study improving the page utilization without a noticeable error
increase, by adaptively combining infrequent data and saving them
in the same page.

ACKNOWLEDGMENTS
This work was partially supported by “National Natural Science
Foundation of China (No. 61872299, No. 62032019)", “Chongqing
Talent (Youth, No. CQYC202005094)”, "the Opening Project of
State Key Laboratory for and Novel Software Technology (No.
KFKT2021B06)", and “National Key Technologies R&D Program
of China (No. 2018AAA0102102)”.

REFERENCES
[1] Bryan S. Kim, Jongmoo Choi and Sang Lyul Min. Design tradeoffs for SSD

reliability. In USENIX Conference on File and Storage Technologies (FAST), 2019:
281–294.

[2] Lorenzo Zuolo, Cristian Zambelli, Rino Micheloni, and Piero Olivo.
Solid-State Drives: Memory Driven Design Methodologies for Optimal
Performance. In Proceeding of the IEEE, 2017: 105(9): 1589-1608. DOI:
https://doi.org/10.1109/JPROC.2017.2733621

[3] Seiichi Aritome. NAND flash memory technologies. John Wiley & Sons, 2015.
[4] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. Improving

3D NAND flash memory lifetime by tolerating early retention loss and process
variation. In Proceedings of the ACM on Measurement and Analysis of Computing
Systems (POMACS), 2018: 37:1-37:48. DOI: https://doi.org/10.1145/3224432

[5] Rino Micheloni. Solid-State Drive (SSD): a nonvolatile stor-
age system. Proceedings of the IEEE, 2017, 105(4): 583-588. DOI:
https://doi.org/10.1109/JPROC.2017.2678018

[6] Sangjin Yoo and Dongkun Shin. Reinforcement Learning-Based SLC Cache Tech-
nique for Enhancing SSD Write Performance. In USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage), 2020.

[7] Mengying Zhao, Lei Jiang, Youtao Zhang, and Chun Jason Xue. SLC-enabledWear
Leveling for MLC PCM Considering Process Variation. In Annual Design Automa-
tion Conference (DAC), 2014: 1-6. DOI: https://doi.org/10.1145/2593069.2593217

[8] Duo Liu, Lei Yao, Linbo Long, Zili Shao, and Yong Guan. A workload-aware flash
translation layer enhancing performance and lifespan of TLC/SLC dual-mode
flash memory in embedded systems. Microprocessors and Microsystems, 2017, 52:
343-354. DOI: https://doi.org/10.1016/j.micpro.2016.12.009

[9] Ahmed Izzat Alsalibi, Sparsh Mittal, Mohammed Azmi Al-Betar, and Putra Bin
Sumari. A survey of techniques for architecting SLC/MLC/TLC hybrid Flash
memory–based SSDs. Concurrency and Computation: Practice and Experience.
2018, 30(13): e4420. DOI: https://doi.org/10.1002/cpe.4420

[10] Jung-Hoon Kim, Sang-Hoon Kim, and Jin-Soo Kim. Subpage programming for
extending the lifetime of NAND flash memory. In Design, Automation and Test in
Europe (DATE), 2015: 555-560.

[11] Micron 4Gb, 8Gb, and 16Gb x8 NAND Flash Memory Features, 2006.
https://datasheetspdf.com/pdf/697309/Micron/MT29F8G08BAA/1.

[12] Yazhi Feng, Dan Feng, Chenye Yu, Wei Tong, and Jingning Liu. Mapping granular-
ity adaptive ftl based on flash page re-programming. In Design, Automation and
Test in Europe (DATE), 2017. DOI: https://doi.org/10.23919/DATE.2017.7927019

[13] Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, Mahmut T. Kandemir, and
Chita R. Das. SOML Read: Rethinking the Read Operation Granularity of
3D NAND SSDs. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2019: 955-969. DOI:
https://doi.org/10.1145/3297858.3304035

[14] Tseng-Yi Chen, Yuan-Hao Chang, Chien-Chung Ho, and Shuo-Han Chen: En-
abling sub-blocks erase management to boost the performance of 3D NAND
flash memory. In ACM/EDAC/IEEE Design Automation Conference (DAC), 2016:
92:1-92:6. DOI: https://doi.org/10.1145/2897937.2898018

[15] Chun-Yi Liu, Jagadish Kotra, Myoungsoo Jung, and Mahmut T. Kandemir. PEN:
Design and Evaluation of Partial-Erase for 3D NAND-Based High Density SSDs.
In USENIX Conference on File and Storage Technologies (FAST), 2018: 67-82

[16] Sheng Qiu and A. L. Narasimha Reddy. A hybrid file system for improving
random write in nand-flash SSD. In IEEE Symposium on Mass Storage Systems
and Technologies (MSST), 2013. DOI: https://doi.org/10.1109/MSST.2013.6558434

[17] Myungsuk Kim, Jaehoon Lee, Sungjin Lee, Jisung Park, and Jihong Kim. Im-
proving performance and lifetime of large-page NAND storages using erase-free
subpage programming. In ACM/EDAC/IEEE Design Automation Conference (DAC),
2017: 1-6. DOI: https://doi.org/10.1145/3061639.3062264

[18] Samsung K9F2G08U0C, 2010. https://datasheetspdf.com/datasheet/K9F
2G08U0C.html.

[19] Xuebin Zhang and Jiangpeng Li and Hao Wang and Kai Zhao and Tong Zhang.
Reducing solid-state storage device write stress through opportunistic in-place
delta compression. In USENIX Conference on File and Storage Technologies (FAST),
2016: 111-124.

[20] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-
loading: Practical power management for enterprise storage. ACM Transactions
on Storage, 2008, 4(3): 1-23. DOI: https://doi.org/10.1145/1416944.1416949

[21] Microsoft Production Server Traces. Retrieved from
http://iotta.snia.org/traces/158.

[22] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo, Naoto Fuku-
moto, and Mariko Sugawara. Understanding storage traffic characteristics on en-
terprise virtual desktop infrastructure. In ACM International Systems and Storage
Conference (SYSTOR), 2017: 1-11. DOI: https://doi.org/10.1145/3078468.3078479

[23] Zujie Ren, Biao Xu,Weisong Shi, Yongjian Ren, Feng Cao, Jiangbin Lin, and Zheng
Ye. iGen: A Realistic Request Generator for Cloud File Systems Benchmarking. In
IEEE International Conference on Cloud Computing (CLOUD), 2016: 343-350. DOI:
https://10.1109/CLOUD.2016.0053

ICPP ’21, August 9–12, 2021, Lemont, IL, USA J. Li, M. Li, Z. Cai, F. Trahay, M. Wahib, B. Gerofi, Z. Liu, M. Huang, and J. Liao et al.

[24] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, Chao Ren. Exploring and
exploiting the multilevel parallelism inside SSDs for improved performance
and endurance. IEEE Transactions on Computers, 2013, 62(6): 1141-1155. DOI:
https://doi.org/10.1109/TC.2012.60

[25] Congming Gao, Min Ye, Qiao Li, Chun Jason Xue, Youtao Zhang, Liang Shi, and
Jun Yang. Constructing large, durable and fast ssd system via reprogramming 3D
TLC flash memory. In Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2019: 493-505. DOI: https://doi.org/10.1145/3352460.3358323

[26] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino, L. Crippa, E. Di
Martino, L. D’Onofrio, A. Gambardella, E. Grillea, G. Guerra, D. Kim, C. Missiroli,
I. Motta, A. Prisco, G. Ragone, M. Romano, M. Sangalli, P. Sauro, M. Scotti, and S.
Won. A 4Gb 2b/cell NAND flash memory with embedded 5b BCH ECC for 36MB/s
system read throughput. In IEEE International Solid State Circuits Conference
(ISSCC), 2006: 497-506. DOI: https://doi.org/10.1109/ISSCC.2006.1696082

	Abstract
	1 Introduction
	2 Related Work and Motivation
	2.1 Related Work
	2.2 Motivation

	3 Design and Implementation
	3.1 Intra-page Update with Partial Programming
	3.2 GC Policy for SLC-mode Cache
	3.3 Implementation

	4 Experimental Evaluation
	4.1 Environment Setup
	4.2 Tests and Benefit Illustration
	4.3 Space Utilization and Endurance Analysis
	4.4 Overhead Analysis
	4.5 Performance Case Study of P/E Cycles
	4.6 Summary

	5 Conclusion
	Acknowledgments
	References

