
3

Mitigating Negative Impacts of Read Disturb in SSDs

JUN LI, BOWEN HUANG, ZHIBING SHA, ZHIGANG CAI, and JIANWEI LIAO, Southwest

University of China, China

BALAZS GEROFI and YUTAKA ISHIKAWA, RIKEN Center for Computational Science, RIKEN, Japan

Read disturb is a circuit-level noise in solid-state drives (SSDs), which may corrupt existing data in SSD blocks

and then cause high read error rate and longer read latency. The approach of read refresh is commonly used

to avoid read disturb errors by periodically migrating the hot read data to other free blocks, but it places

considerable negative impacts on I/O (Input/Output) responsiveness. This article proposes scheduling ap-

proaches on write data and read refresh operations, to mitigate the negative effects caused by read disturb.

To be specific, we first construct a model to classify SSD blocks into two categories according to the esti-

mated read error rate by referring to the factors of block’s P/E (Program/Erase) cycle and the accumulated

read count to the block. Then, the data being intensively read will be redirected to the block having a small

read error rate, as it is not sensitive to read disturb even though the data will be heavily requested. Moreover,

we take advantage of reinforcement learning to predict the idle interval between two I/O requests for pur-

posely conducting (partial) read refresh operations. As a result, it is able to minimize negative impacts toward

subsequent incoming I/O requests and to ensure I/O responsiveness. Through a series of emulation tests on

several realistic disk traces, we demonstrate that the proposed mechanisms can noticeably yield performance

improvements on the metrics of read error rate and I/O latency.

CCS Concepts: • Computer systems organization → Reliability;

Additional Key Words and Phrases: Solid-state drive (SSD), read disturb, read refresh, scheduling, read errors

ACM Reference format:

Jun Li, Bowen Huang, Zhibing Sha, Zhigang Cai, Jianwei Liao, Balazs Gerofi, and Yutaka Ishikawa. 2020.

Mitigating Negative Impacts of Read Disturb in SSDs. ACM Trans. Des. Autom. Electron. Syst. 26, 1, Article 3

(September 2020), 24 pages.

https://doi.org/10.1145/3410332

1 INTRODUCTION

NAND (Not AND) flash memory-based solid-state drives (SSDs) have a non-volatile nature and

are then widely leveraged in digital devices. To be specific, SSDs are commonly featured with

This work was partially supported by National Natural Science Foundation of China (No. 61872299), Natural Science

Foundation Project of CQ CSTC (No. CSTC2018jcyjAX0552), Hunan Provincial Natural Science Foundation of China

(No. 2018JJ2309), and the Opening Project of State Key Laboratory for and Novel Software Technology (No. KFKT2019B06).

Authors’ addresses: J. Li, B. Huang, Z. Sha, and Z. Cai, Southwest University of China, Chongqing, China, 400715;

emails: lijun19991111@126.com, {minwan530755, shzb171318515}@163.com, czg@swu.edu.cn; J. Liao (corresponding au-

thor), Southwest University of China, Chongqing, China, 400715 and State Key Lab. for Novel Software Technology, Nanjing

University, P.R. China; email: liaojianwei@il.is.s.u-tokyo.ac.jp; B. Gerofi and Y. Ishikawa, RIKEN Center for Computational

Science, RIKEN, Wako, Japan, 351-0198; emails: bgerofi@gmail.com, ishikawa@is.s.u-tokyo.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1084-4309/2020/09-ART3 $15.00

https://doi.org/10.1145/3410332

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

https://doi.org/10.1145/3410332
mailto:permissions@acm.org
https://doi.org/10.1145/3410332

3:2 J. Li et al.

small size, high performance, random-access performance and low energy consumption [1–3].

Due to many design methodologies to optimize the performances of SSDs, they will develop into

the dominant secondary storage in the coming years [4, 5]. In order to better cut down the per-

unit price of SSDs, the feature size of NAND flash memory cells reaches the limit of the 10nm
level. Consequently, flash density increases are then driven by Trinary-level cell (TLC) or even

Quad-level cell (QLC) (3 or 4 bits/cell) combined with vertical stacking of NAND memory planes.

However, the decrease in endurance and the increase in bit error rates accompanying with the

feature size shrinking are now becoming the issues to be reckoned with [6–8]. That is to say, as

NAND flash memory cell capacity increases, it becomes more susceptible to diversified types of

circuit-level noises [6], including program/erase (P/E) cycle noises [10, 11], retention noises [10,

12], cell-to-cell program interference noises [10, 13], and read disturb noises [14, 15]. Thus, dealing

with such noises and then ensuring reliability of flash memory becomes a challenging task.

Specially, read disturb is an unexpected phenomenon in NAND flash memory, where reading

data from a flash page can impact the threshold voltages of other (unread) pages in the same block.

It is predicted to critically impact on the reliability of high-level-cell flash memory [27]. And it has

become a growing source of flash errors, and the situation gets worse in a compact NAND memory

[6, 9]. For example, read disturb errors appear after an average of one million reads onto a single

flash block in SLC NAND memory (1 bits/cell) [15, 16], and the read limit becomes 100K in the

first-generation of MLC NAND memory (2 bits/cell) [16]. But for TLC devices, this read threshold

is greatly decreased to less than 40K [19]. This is because the geometry of a cell shrinks, and the

cross-coupling voltage noise gets more intensive, which may consequently bring about more read

disturb errors.

More importantly, it has been verified that even in the same type of SSD device, the blocks

having varied program/erase (P/E) cycles and read counts may result in different levels of Raw

Bit Error Rate (RBER) [23]. For example, if two TLC SSD blocks have P/E cycles of 1,001 and

6,001, respectively, reading 5,000 times onto both of them will correspondingly cause 0.00121
and 0.00301 of RBER [23].

Conventionally, error correction codes (ECCs) have been used in SSDs to cover the RBER issue

caused by various factors, such as read disturb. For example, low-density parity-check (LDPC)

codes, which is an advanced ECC, has a stronger error correction capability than traditional

ECCs (e.g., BCH (Bose–Chaudhuri–Hocquenghem)) [20, 21]. Specifically, LDPC can cover the er-

ror through read retries at the cost of read latencies, while the RBER is in a correctable capacity of

LDPC. But note that LDPC will exaggerate read disturb as they intend to get correct data through

read retries [24, 25].

The accumulated read operations on SSD blocks may lead to more read disturb errors, which

must affect the reliability of SSDs by suffering from uncorrectable bit errors beyond the capacity

of ECCs. To overcome this problem, the mechanism of read refresh (RR) has been introduced to

mitigate negative effects caused by read disturb [22]. There are two steps in the process of read

refresh: 1© the valid pages of the target block should be migrated to another available block, called

as page moves; 2© the target block is then erased for getting rid of the accumulated read count,

called as erase. In other words, a read refresh operation is expected to be triggered once the read

count of an SSD block reaches a pre-defined threshold. It is true that the read count limits of read

disturb on SSD devices are different while the cell density varies, so that the read refresh threshold

should be correspondingly adjusted. Then, after moving the hot read data to another free block in

a read refresh process, the accumulated read count to the data is reset to 0. That is, the RBER can

always be limited under the maximum ECC strength of LDPC, and the reliability and availability

of SSDs can be guaranteed. Otherwise, if RR is not implemented as a background method, it is

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:3

inevitable to read the data having some uncorrectable bit errors when the RBER is beyond the

error correction capacity of ECCs.

However, carrying out read refresh operations exclusively occupies the SSD resources (e.g.,

channel and chip), which must delay subsequent I/O requests. To reduce the number of RR op-

erations, Liu et al. [29] proposed a novel mechanism by taking advantage of shadow blocks, which

contain a number of invalid data pages or free pages, as both kind of pages are immune to read

disturb. Then, the frequently read data can be moved from one page to another free page within

the shadow blocks to avoid read refresh. Wu et al. [30] proposed an approach of adaptive cell

bit-density with in-place reprogramming. This method reprograms the old Most Significant Bit

(MSB) pages and transforms TLC blocks into MLC ones, as the read limit for triggering read re-

fresh operations on MLC blocks is much greater than the read limit on the original TLC blocks.

Consequently, the total number of read refresh can be greatly cut down. But, these proposals fail

to take the factor of block attributes, such as the P/E cycle, into account, and they will definitely

carry out RR if needed, regardless of the intensity of forthcoming I/O requests.

Besides, different from the process of garbage collection in SSDs, the number of page moves in the

read refresh process is relatively large, which may block forthcoming I/O requests for a longer time

interval, even compared with erase. For meeting the requirement of ensuring I/O responsiveness,

we argue that two steps of read refresh are not necessarily dealt with together, and it can handle a

partial RR operation (i.e., page moves or erase) in a time slot. To put it from another angle, we can

first migrate the hot read data (or some of them) to other free blocks for resetting the accumulated

read count on such data in an idle time interval between two I/O requests. Then, erase can be

fulfilled if there is another idle time slot, or the free space of SSDs is not enough at late stages (i.e.,

garbage collection is triggered).

To further cut down the negative effects of read disturb, this article first discusses the driven

factors of read disturb in SSDs and then builds a mathematical model for objectively assessing

the read error rate caused by read disturb, with respect to a specific SSD block.1 As a result, it

proposes a scheduling approach on write requests to dispatch the future hot read data and the

future cold read data onto SSD blocks having different read error rates. Moreover, we introduce a

reinforcement learning-based read refresh scheduling method to properly dispatch (partial) read

refresh operations in idle time intervals between I/O requests. In summary, it makes the following

three contributions:

(1) We systematically analyze the impact factors of read disturb, including the number of

block P/E cycles and accumulated block reads. Then, we build an empirical model to es-

timate the read error rate of the given block by referring to the aforementioned two SSD

nature factors. After that, we propose a write scheduling approach to map future hot read

data onto the SSD blocks having a small read error rate.

(2) We predict idle time intervals between two I/O requests by taking advantage of reinforce-

ment learning, and then decide how and what partial read refresh operations should be

carried out in the idle time period. Thus, it can minimize the side-effects of read refresh

on the indicator of I/O responsiveness of subsequent I/O requests.

(3) We offer preliminary evaluation on several disk traces of real-world applications. As mea-

surements indicate, our proposal can afford a better performance improvement on the

metrics of average read latency, read error rate, and I/O long-tail latency.

The rest of the article is organized as follows. Section 2 introduces the background knowl-

edge and related work on read disturb. Section 3 describes the comprehensive model for esti-

mating read error rate, as well as the proposed write scheduling approach. The reinforcement

1We take the TLC SSDs as our target devices in building the model for assessing the read error rate of SSD blocks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:4 J. Li et al.

Fig. 1. The internal architectural overview in SSDs.

Fig. 2. (a) Voltage settings during a read operation and read disturb. (b) Reference voltage (Vr i) and read

pass voltage (Vpass) of a TLC cell [19].

learning-based read refresh scheduling scheme is presented in Section 4. Section 5 shows the eval-

uation methodology and reports the experimental results. Finally, the article is concluded in Sec-

tion 6.

2 BACKGROUND AND RELATED WORK

2.1 SSD Architecture and Read Disturb

Figure 1 shows an internal architectural overview of SSDs, including software and hardware com-

ponents. As seen, the main software layer is Flash Translation Layer (FTL), which takes charge of

translating logical address into physical address that flash memory can identify. Furthermore, it

supports garbage collection, wear leveling, and buffer management. Garbage collection is carried

out to reclaim the space occupied by the invalid data (i.e., outdated pages) due to the out-place up-

dates, when the available capacity of SSD may be lower than the threshold. Since each SSD block

affords a limited number of erases, it becomes critical to take advantage of the mechanism of

wear-leveling, for extending the lifespan of flash memory by uniformly distributing erases across

all blocks. The buffer management controls the dynamic random access memory (DRAM), which

stores data structures of the address mapping table.

As discussed, read disturb is a circuit-level noise in NAND-based memory, which is induced by

read operations [12, 19, 30]. Figure 2(a) shows the voltage settings in the case of dealing with a read

operation. As seen, a reference voltage ofVr is applied to the target word line ofWL1; meanwhile

a large read pass voltage of Vpass is imposed to other word lines. Therefore, because of the pass

voltage, a read operation poses an impact to the cells of other word lines in the same block.

Nevertheless, applying a high read pass voltage to victim word lines shifts cell threshold voltages

through electron injection to floating gates of cells [12]. Though a single read operation does not

modify the neighboring cell data immediately, the relevant cell data will be eventually altered when

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:5

the side-effect is accumulated by repetitive read operations [19]. Figure 2(b) illustrates an example

of cell data change resulted by read disturb. In the case, the multiple high read pass voltage results

in the fact that the electrons consistently slowly inject in cells through floating gates; thus, part of

states of ER and P1 overlap. Therefore, the reference voltage ofVr 1 fails to clearly identify the states

of (disturbed) ER and P1, which causes a read error and thus expects re-read tries for abstracting

the correct data.

2.2 Related Work

There are a number of research efforts against read disturb, which can be generally classified

as hardware-based and software-based mechanisms. Cai et al. [17] proposed learning the mini-

mum pass-through voltage for each SSD block to dynamically tune the pass-through voltage on a

per-block basis for minimizing read disturb errors. Zambelli et al. [18] characterized the different

behaviors of TLC NAND Flash under uniform and concentrated read disturb, which can speculate

the implications of the workload usage model on the reliability of enterprise Solid State Drives.

Ha et al. [19] disclosed that read disturb is positively correlated with Vpass and the duration of

imposing Vpass . Then, they proposed to write read-hot data using narrow threshold voltage lev-

els, so that such data can be read by leveraging a low Vpass within a short interval. However, this

approach limits write performance.

ECCs have been adopted by modern SSDs to correct the RBER. The advanced ECC scheme of

LDPC can cover RBER through the LDPC soft decision at the cost of read retries. To improve

the performance of LDPC-enabled SSDs, Li et al. [20] introduced a process variation aware read

performance improvement for LDPC-based SSDs, by relocating the read-hot data to the block with

the high reliability. Based on this work, Li et al. [21] further addressed the conflicts between the

read performance and lifetime improvement, though limiting the amount of high reliable blocks

occupied by read-hot data for balancing block wear evenness and read responsiveness. However,

if the accumulated read count reaches the maximum read limit, errors may accumulate to the level

beyond the capabilities of ECC.

Therefore, some software-based techniques have also been designed to mitigate the negative

effects of read disturb, though preventively relocating the hot read data. In order to ward off cor-

rupting existing data resulted by read disturb, Werner et al. [22] proposed to preventively relocate

the data to other blocks if the original host blocks have reached a read disturb limit. That is to

say, for avoiding data corruption by read disturbs, the process of RR is expected in partially read-

disturbed blocks [19, 26].

Ha et al. [28] introduced a new read disturb-aware FTL, called RedFTL, which manages a por-

tion of blocks as shadow blocks. It exclusively stores a few read-hot pages replica in each shadow

block, for avoiding the hot data access in the same block and reducing the number of read re-

fresh operations. But, this design introduces longer tail I/O latency because of data replication and

synchronization.

Liu et al. [29] further advanced Read Leveling, which takes advantage of shadow blocks for

managing the hot read data. Specifically, besides purposely keeping the hot read data, the shadow

blocks also contain a number of invalid data pages or free pages, as both kinds of pages are immune

to read disturb. As a result, it is able to decrease the frequency of read refresh on these shadow

blocks, though they hold some hot read data. But note that Read Leveling does not perform well

for utilizing the storage space in shadow blocks, which limits the improvements on read latency

and read refresh cycles.

Wu et al. [30] proposed an adaptive cell bit-density with in-place reprogramming (IPR) for TLC

devices, called IPR. To be specific, when the read-hot block reaches the read limits of TLC blocks,

it migrates the data in MSB pages of block to other read-hot blocks, and then reprograms the old

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:6 J. Li et al.

Fig. 3. The RBER of P/E cycles and read counts in TLC devices [23]. Note that RC in the legend indicates

the read count.

MSB pages to make the original TLC block becoming an MLC block. As reported, the read limit of

low-density block is thus from 10,000 (i.e., in TLC blocks) into 100,000 (i.e., in MLC blocks) after

reprogramming. That is to say, the number of read refresh can be consequently cut down, for

mitigating negative effects of read disturb. However, IPR wastes one third of space in the low-

density block, and further increases the pressure of garbage collection.

In fact, read disturb does also exist other kinds of storage devices, such as STT-MRAM [31],

challenging the reliability of these devices. To relieve side-effects of read disturb in STT-MRAM,

Na et al. [46] proposed a half-pulse-width read disturbance scheme that is capable of significantly

improving the read disturbance margin without sacrificing the sensing margin, speed, or energy

efficiency by adopting the dual-stage sensing at the cost of additional bit line selection and source

line multiplexers. Cheshmikhani et al. [31] proposed a Read Error Accumulation Preventer cache

to prevent the accumulation of read disturbance in cache blocks, by performing ECC checking for

the requested block and all other blocks within the cache set that have been read in a concurrent

manner.

On the other side, a number of machine learning methods have been introduced to direct SSD

optimization. Wu et al. [36] introduced a reinforcement learning based I/O merging approach for

achieving better I/O performance in SSDs. It can adaptively perform I/O merging according to

the different (learned) I/O patterns. Kang et al. [35] presented a reinforcement learning-assisted

garbage collection (GC) scheme to reduce the negative effects caused by GC operations. Specifi-

cally, it analyzes the history information of I/O requests to define the current state. Besides, it can

obtain a reward according to the I/O response time after a specific GC action to further offer a

feedback for refining the pairs of state-action maintained by the model. According to the (nearly)

fixed state-action pairs, the fit garbage collection action can be performed in the idle time interval

between two I/O requests by referring to the current state.

2.3 Motivations

We have surveyed the factors impacting the read error rate in SSDs resulted by read disturb.

Figure 3 illustrates that the blocks of TLC SSDs having different erase counts suffer from read

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:7

Fig. 4. The long tail latency of running websearch_1 with or without routine read refresh (assuming no

uncorrectable errors).

disturb at varied levels. In addition, the accumulated read count on the block is another thing to

affect the read error rate.

Observation I: Both factors of P/E cycle and read count affect the read error rate caused by read
disturb. Therefore, putting the hot read data onto “strong” blocks, which are insusceptible to read
disturb, may reduce the read data error.

As discussed, routine read refresh operations are expected once the blocks are afforded a con-

siderable number of reads to avoid read disturb errors. In order to disclose their negative influence

on I/O responsiveness, we run the benchmark of websearch_1, which is abstracted from Umass

Trace Repository [42] with or without the routine read refresh operations. Figure 4 shows the rel-

evant results of the long tail latency, and note that we ignore read errors that are brought about

by accumulated read operations in this test.

Clearly, the routine read refresh operations greatly impact the I/O long tail latency of I/O re-

sponse time compared with the case without read refresh. This is because the expected routine

read refresh operations are completed among I/O requests even though they do not have an idle

interval, which must delay responding to forthcoming I/O requests.

Observation II: Routine read refresh operations significantly impact the I/O long tail latency.
Therefore, carrying out such operations in the idle time intervals among I/O requests may minimize
the side-effects on I/O responsiveness.

Such observations motivate us to mitigate negative effects of read disturb by the following:

(1) we dispatch hot read data onto the blocks that are not susceptible to read disturb for reducing

the read error rate. (2) We schedule (partial) read refresh operations in the idle time intervals

between I/O requests for minimizing their side-effects on I/O responsiveness.

3 READ DISTURB-AWARE WRITE SCHEDULING

3.1 Overview

We first identify hot read data in the current time window, and then map their corresponding

write requests (in the next window) to the block that is not susceptible to read disturb. To this end,

we first build a mathematical model to classify the block into two categories, i.e., susceptible and

insusceptible blocks to read disturb. After that, the write data will be mapped to the insusceptible

blocks if they will be frequently read in the near future. Otherwise, the cold read data will be

flushed to the block that is susceptible to read disturb.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:8 J. Li et al.

Table 1. Values of ϕ0 and ϕ1 with Varied P/E Cycles (Unit: 10−3)

<1K <2K <3K <4K <5K <6K <7K <8K

ϕ0 0.557 0.811 1.073 1.193 1.163 1.116 1.328 2.219
ϕ1 0.129 0.175 0.252 0.339 0.415 0.459 0.451 0.370

Note: The input data of our model are reported in Ref. [23]. The largest block P/E cycle in the

available dataset is 7K, our model predicts the values of ϕ0, and ϕ1 in the case of the block P/E

cycle is 8K.

3.2 Modeling Read Error Rate

The block P/E cycle does directly impact the read error rate. On the other side, the factor of block

read count affects the read error rate, but it also depends on the block P/E cycle. In other words,

the read error rate resulted by read operations becomes bigger; in the case of the block P/E cycle,

it is relative large. We thus build an empirical non-linear regression model to profile the impacts

on the rate of read errors regarding a given block.

Pi = ϕ0 (PEi) + ϕ1 (PEi) · Ri + ϵi , (1)

where Pi , PEi , and Ri respectively denote the read error rate, the P/E cycle, and the read count

(unit: k) regarding the ith block.

Moreover, ϕ0 and ϕ1 are two real-valued functions with the argument of PE, for weighting

nonlinear effects of the P/E cycles and block read counts to the read error rate. Then, we use

higher-order polynomials to estimate their values:

ϕ0 (PEi) = a0 + a1 · PEi + a2 · PE2
i + · · · + ap · PEp

i (2)

ϕ1 (PEi) = b0 + b1 · PEi + b2 · PE2
i + · · · + bq · PEq

i (3)

By taking advantage of the experimental data originally presented in Ref. [23], we employ the

Akaike information criterion [32] to determine the orders of ϕ0 and ϕ1, and the outcomes are p = 3

and q = 4. Consequently, we can obtain the functions values of ϕ0 and ϕ1, when the erase number

scales from 1K to 8K, as reported in Table 1. That is to say, we can figure out read error rates of

given blocks, for classifying them into two categories, i.e., susceptible blocks and insusceptible

blocks to read disturb.

Then, we make use of the coefficient of determination (i.e. ,R2) and the Mean Absolute Per-

centage Error (MAPE) to objectively show the accuracy of the modeling on the read error rate. In

fact, R2 is the key output of regression analysis and normally interpreted as the proportion of the

variance in the dependent variable that is predictable from the independent variable, and MAPE

is another measure of prediction accuracy of a forecasting method in statistics [33]. The results

show the coefficient of determination of our model is 0.939. That is, our model reflects that the

factors of P/E cycles and read counts can account for 93.9% varieties of read error rate. Besides,

the value of MAPE of our model is 13.1%, which indicates our predictions deviate from original

data by only 13.1% on average.

3.3 Write Scheduling

Figure 5 illustrates the specifications on the proposed read disturb-aware write scheduling. As

seen, the proposed scheme dispatches the received write requests by referring to the pre-identified

hot dataset. We regard the data that will be requested multiple time (e.g., > 2 in our tests) in the

historical time window as the hot data, and their addresses are collected in the hot dataset.

Then, the write requests whose logic sector numbers are in the hot read set will be mapped to an

active block having a small read error rate. The purpose is trying to offset the side-effects of read

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:9

Fig. 5. High-level overview of read disturb-aware write scheduling.W and R denote write and read requests

separately, and their logical sector numbers are represented as A, B..., and E.

disturb on the target block, though such data will be frequently read. Otherwise, the write data

will be flushed to a block having a relatively large read error rate. Note that the historical frequent

addresses are analyzed as the hot read address set for directing the write requests scheduling,

which are considered to be frequently read in the future access.

To be specific, in the case from Figure 5, there are some requests in the I/O queue, labeled as W
(Write) or R (Read), and their subscripts are the logical sector numbers of the requests. By referring

to the hot dataset, the requests hit in the set should be flushed to an active block having a small

read error rate. Assuming that we have mined the hot read set from the historical requests, and it

has members of A and B, the requests WA and WB should be flushed to the insusceptible blocks,

which have relatively small read error rate. On the other hand, since requestsWC ,WD , andWE are

not hit in the hot dataset, they should be flushed to the susceptible blocks, which have a relatively

large read error rate.

4 REINFORCEMENT LEARNING-BASED READ REFRESH SCHEDULING

After flushing the data to the SSD blocks, read refresh operations are expected once the read count

of the blocks reaches a threshold. This section discusses the details about read refresh scheduling

by using reinforcement learning to make the best use of idle time intervals between I/O requests.

4.1 Analysis on Idle Time Intervals

In general, the operations of garbage collection or read refresh will be triggered once the SSD de-

vice reaches corresponding thresholds, to reclaim the capacity or eliminate negative effects of read

disturb, even though the incoming I/O requests are very intensive. Similar to garbage collection,

the read refresh operation needs to move valid pages onto other free SSD blocks, and then erase

the candidate block for recycling the space.

Moreover, a read refresh operation commonly includes more page moves in contrast to a garbage

collection process. Consequently, the average response time will increase and the long tail latency

will be significantly worse, as previously illustrated in Figure 4. As mentioned in Observation II,
the side-effects are expected to be reduced, if we can carry out such operations in the idle time

slots between I/O requests. Then, we have further analyzed the inter-request interval distribution

of selected traces of websearch_1, hm_1, usr_0, and ts_0 from the UMass Trace Repository [42]

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:10 J. Li et al.

Fig. 6. The distribution of inter-request intervals.

and Microsoft Research Cambridge [45]. In the Figure 6, the X-axis represents the length of idle

time intervals, and the Y-axis shows the number of requests.

We can summarize from the figure, a variety of applications do have some relative long idle time

slots, although a major part of interval time may have a small value. Thus, we can dispatch some

read refresh operations in some large idle periods to ward off carrying them out in the periods

having intensive I/O requests. More importantly, a full read refresh operation consisting of many

page moves and an erase may take time to complete, which is larger than the most of idle time

intervals of applications. Then, in order to make the utmost use of idle time intervals between

I/O requests, certain partial tasks of read refresh, i.e., one or more page moves and/or erase, are

supposed to be performed in such time intervals.

4.2 Reinforcement Learning-Based Read Refresh Scheduling

Different from most machine learning and deep learning approaches, reinforcement learning is a

lightweight method and has low space and computation overhead. As a result, it has been applied

in the resource-limited SSDs to guide garbage collection scheduling [35] and I/O merging optimiza-

tion [36]. In other words, the online training feature of reinforcement learning makes it possible

to approximate optimal policies with not much overhead. It puts more effort into learning to make

good decisions for frequently encountered states, at the expense of less effort for infrequently

encountered states [37]. Then, we introduce reinforcement learning in our application context,

to identify the best fit (partial) RR operations in the idle time intervals between forthcoming I/O

requests.

Figure 7 shows the basic reinforcement model about the interaction between Agent (the RR

scheduler in our context) and Environment (the storage system in our context). Agent maintains

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:11

Fig. 7. The basic reinforcement Learning model. Note that St−1, St , St+1 are the states of Environment at

different time points.

a data structure (e.g., a table) to record the values of corresponding pairs of state and action, for

directing the best fit action according to the future state. When Environment becomes idle, Agent
repeatedly works with the following steps for directing (partial) read refresh operations:

(1) Agent monitors Environment to obtain its state of St and the reward of Rt . In general, Rt

is related to the I/O response time of the previous I/O request, after completing the last

action of At−1.

(2) Agent updates the value in the data structure related to the pair of state and action (i.e.,

the pair of St−1 andAt−1), as Rt is the outcome of influence to the previous request caused

by At−1 in the case of St−1. The rule of updating the value of the pair of state and action

will be specifically described in Equation (4).

(3) Agent can provide a fit action ofAt+1 by searching the maximum value from the table data

structure regarding the given state of St+1 in the future.

Note that the reward from the current state acts on Agent, for the purpose of giving a feedback

associating with the last action. After that, the next state St+1 and the reward Rt+1 can be observed

by Agent for carrying out continuous iterations and updating the rewards. Thus, it is possible to

obtain certain fit pairs of state and action in a specific situation after aggressive exploring. Because

of the limited quantities of states and actions in our context, we employ the basic Q-learning

scheme, which holds a data structure of q-table and their values are referred as q-values, to fulfill

reinforcement learning [34].

In fact, dispatching read refresh operations is to make a decision about doing an action of certain

partial read refresh operations (i.e., one or more page moves and/or one erase), by making use of

reinforcement learning. We define many states in the storage system by considering factors of

the current request interval, the history request intervals, the previous actions, and the average

interval. The reward reflects whether the last action is beneficial to I/O response time or not. If the

action has an advantageous effect, the reward is a positive number and to be a feedback to q-table
for strengthening the selection of action when the same state appears at the next time. Otherwise,

the reward is a negative number feedback, which will weaken the selection of action.

To better carry out scheduling on read refresh, we implement the soft threshold to pre-generate

read refresh tasks and organize them in a waiting queue. Therefore, the (partial) read refresh op-

erations can be fulfilled in idle time intervals between I/O requests to ward off conducting them in

busy time. That is, when the accumulated read count of a specific block is higher than soft thresh-

oldTS , we put the read refresh task on the target block into the waiting queue. Note that when the

accumulate read count of a block reaches the hard RR threshold ofTH , it must conduct the normal

read refresh operations immediately.

In our reinforcement learning model for guiding read refresh scheduling in SSDs, we have the

following definitions:

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:12 J. Li et al.

States: which are comprised of the information on the current inter-request interval, the previous

inter-request interval, the previous action, and the erase state. To be specific, the current inter-

request interval reflects the intensity of I/O requests from the host system, intuitively directing

how much partial RR tasks should be carried out. The previous inter-request interval unveils the

most recent history about I/O requests intensity. The previous action represents the decision under

the previous situation, and the erase state implies that there is an erasable block or not. The erasable

block does not hold any valid pages, whose valid pages have been migrated by the previous partial

RR operations.

In our design, we divide 10 groups of current intervals as the main sub-states, 2 types of previous

intervals, 2 categories of previous action, and 2 kinds of erase state as other sub-states (that is, we

have 10 × 2 × 2 × 2 = 80 states in total). Specifically, the first sub-state of the current interval is set

as < 0.2ms , and the step is 0.2ms . Therefore, the final sub-state of the current interval is ≥ 1.8ms .
The previous action is divided as < 1

2 maximum page moves and ≥ 1
2 maximum page moves, and

the maximum page move is set to eight since a major part of idle time intervals is not enough to

complete eight page moves. If a partial read refresh action contains an erase operation, the previous

action will be identified as ≥ 1
2 maximum page move, though the number of page moves in the

previous action is < 1
2 maximum page move. Then, the previous interval time is divided as < 0.2ms

and ≥ 0.2ms . Finally, the erase state is divided as 1 and 0, respectively, representing whether there

has been an erasable block or not.

Actions: which mean the varied numbers of page moves and/or one erase. After an action is de-

cided by selecting the maximum value with the given state by referring to q-table, a corresponding

action can be triggered. In other words, the instances of actions consist of different scales of page
moves (1, 2, 4, and 8 page copies in our experiment), one erase, and one erase with one or more page
moves. As a result, there are totally nine actions in our model. Note that each action is regarded as

a partial RR operation in this article. In addition, the actions in q-table having the erase operation

should not be taken into consideration if there is no erasable block induced by previous partial RR

operations.

Especially, we argue that the data (pages) having a large number of read counts are most likely

to be accessed again in the near future. Therefore, the basic principle of selecting the data pages to

be moved in the target block is to preferentially migrate the most frequent read page, as resetting

read counts on them can best mitigate the side-effects of read disturb.

Rewards: they provide feedback to refine the critical data structure in our model, i.e., q-table after

a specific action. If the response time of the previous completed I/O request is relatively small, the

reward value is set as a large positive number. Otherwise, the reward value will be assigned as a

negative number, in order to penalize the corresponding action. Therefore, we update q-table by

following Equation (4).

Q (St−1,At−1) = (1 − α)Q (St−1,At−1) + α[r + γQ (St ,At)], (4)

where Q (St−1,At−1) and Q (St ,At) are the maximum q-value with the previous and the current

pairs of state and action in q-table. The parameter of r means a short-term reward, which is related

to the response time of the previous completed request. Q (St ,At) indicates a long-term reward,

which is the further decision, compared with the previous decision. In other words, the reward of

Rt depends on the short-term reward r and the long-term reward Q (St ,At), so that it is employed

for refining q-table. The parameters of α and γ are the step size and the discount factor, which

are set as typical values, i.e., 0.3 and 0.8 [35, 37]. In our tests, while the response time of the

completed I/O request is lower than the 70th, 90th, and 99th percentiles of I/O response time, the

reward of r will be respectively set as 1, 0.5, and 0, to express varied levels of positive feedback.

Otherwise, the reward of r will be assigned as -1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:13

Table 2. Q-Table Definition Comparison with Existing Reinforcement Learning-Based Methods in SSDs

State (quantity) Action (quantity) Reward

1© Current interval (17) 1© Page move (2) 1© Response time

RL-gc [35] 2© Previous interval (2) 2© Erase (1)

3© Previous action (2)

1© Request type (2) 1© I/O merge (128) 1© Response time

RL-merge [36] 2© Request size (6) 2© I/O sort (2) 2© IOPS

3© Request number (5,103)

1© Current interval (10) 1© Page move (4) 1© Response time

RL-rr (our work) 2© Previous interval (2) 2© Erase (1)

3© Previous action (2) 3© Page move+Erase (4)

4© Erase state (2)

Fig. 8. An illustration of an updating of q-table (left: before updating, right: after updating).

Table 2 compares the definitions of state, action, and reward in our proposal with those in exist-

ing reinforcement learning-based methods, including garbage collection scheduling [35] and I/O

merging [36]. Obviously, because of applying reinforcement learning in varied background tasks

in SSDs, these methods present a distinctive q-table definition. Besides, Figure 8 illustrates an ex-

ample about determining which action is expected with the given state, as well as updating q-table
by referring to the reward value. In the figure, each row of q-table represents a state that is de-

pendent on the selected four determinable factors. As discussed, our model supports 80 states in

total, though only 2 states are shown in Figure 8. Each column indicates an action, i.e., nine kinds

of partial RR operations. Note that the value of −∞ in q-table denotes the corresponding action is

never selected for the given state.

Assuming the current reward r is 0.5, the current state is State 1©, and the action is Action No. 1,

i.e., 1 page move. Considering the previous state was State 2© and the chosen action was Action
No. 2, then we can obtain the new q-value for the pair of State 2© and the action of Action No. 2 by

following: Q (St−1,At−1) = (1 − 0.3) ∗ 2 + 0.3 ∗ (0.5 + 0.8 ∗ 2) = 2.03.

In order to form a fit q-table that becomes stable, we randomly select the actions by utilizing

ε-greedy initialization in the initial period. That is, the first 1,000 actions are randomly selected

in our experiments when running the benchmarks [37]. More exactly, we perform a large ε (80%)

in the initial period and a small ε (1%) during the rest of the period.

5 EXPERIMENTS AND EVALUATION

5.1 Experiment Setup

The experimental platform was constructed by utilizing a widely used SSD simulator of SSDsim
(ver 2.1) to conduct trace-driven tests [38, 39]. Note that SSDsim can only model the performance

of SSDs; it cannot store and restore real data for each request. Table 3 presents our TLC settings of

SSDsim in experiments. In the table, the latencies of write and erase are referred to [40]. Since the

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:14 J. Li et al.

Table 3. Experimental Settings of SSDsim (TLC Cell)

Parameters Values Parameters Values (ms)

Page size 8KB Read time 0.085
Page per block 384 Extra read-retry time 0.024
RR threshold 25K Maximum LDPC level 7
Soft RR threshold 24.5K LSB write time 0.5
GC threshold 0.3 CSB write time 2
Overprovide 0.25 MSB write time 5.5
FTL scheme Page level mapping Erase time 15

Table 4. Specifications on Selected Disk Traces

Trace Req. # Read R Read SZ Hot R Concn R Avg./Max. INVL

websearch_1 1,055,448 99.9% 15.1 KB 90.8% 100.0% 0.03/1 ms
hm_1 609,311 95.3% 14.9 KB 37.9% 54.7% 1.9/1,440 ms
usr_0 2,237,889 40.4% 40.9 KB 46.2% 56.3% 2.7/268 ms
ads 1,532,120 90.5% 31.5 KB 13.7% 0.0% 5.7/224 ms

lun1-1 1,764,623 76.0% 28.9 KB 0.02% 0.0% 0.13/3,770 ms
lun1-2 1,570,278 82.4% 17.5 KB 0.03% 3.0% 0.16/7,022 ms

Note: Hot R indicates the ratio of the frequently requested addresses (i.e., the accessed time is not less than 4) to all read

address space. Concn R represents the percentage of the RR target blocks having concentrated read accesses, in which a

major part of read accesses (i.e., 66.7%) target at a small part of pages in the block (i.e., less than 20%).

read latencies depend on the level of LDPC soft decision, we set the basic read time as 0.085 ms,

and increase the read time by 0.024 ms per read retry after increasing an LDPC level [24, 41]. That

is to say, the read time varies from 0.085 ms to 1.099 ms, according to the LDPC soft decision

levels.

To avoid occurrences of uncorrectable read errors, we expect triggering read refresh operations

before the block read count reaches the maximum threshold. In our tests, this maximum read limit

is 26.3K, which is the outcome of our model by analyzing the collected data. Then, we set the read

count threshold of read refresh as 25K, which is slightly less than the (computed) hard threshold.

That is to say, when the accumulated read count to a block reaches 25K, a process of read refresh

must be activated to reset the read count of the block data.

Because read disturb rarely happens in write-intensive workloads, we employed six commonly

used disk traces, including five read-intensive workloads and one read-write balanced workloads.

Among these workloads, websearch_1 is collected from UMass Trace Repository [42], ads from

Microsoft Production Server [43], lun1-1 and lun1-2 are collected from a part of an enterprise

Virtual Desktop Infrastructure (VDI) [44], and the other two traces are from Microsoft Research

Cambridge [45]. Specifically, lun1-1 and lun1-2 are short for additional-03-2016021719-LUN3 and

additional-03-2016021720-LUN4. In order to trigger more read refresh operations in the small-scale

block traces, we amplify the read requests of two LUN traces by 15 times, and hm_1 and usr_0 by

3 times, by referring to Ref. [19]. The detailed specifications on the traces are shown in Table 4.

Besides, we used the following comparison counterparts for measuring the performance of our

proposed mechanism:

—Baseline: which indicates the default dynamic mapping scheme adopted by SSDsim, and the

functionality of routine read refresh is supported to fight against read disturb.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:15

Fig. 9. Average read latency of selected block traces.

—Read leveling: which is a software-based mechanism to weaken the side-effects of read dis-

turb [29]. It has been employed as another counterpart in our experiments and labeled as RL.

We argue that RL is one of the most related work to ours. Similarly, it works at Flash Trans-

lation Layer of SSDs to distribute hot read data, and makes use of read refresh to relieve the

negative effects of read disturb. Specially, RL classifies the blocks into three categories, in-

cluding the normal blocks, the monitor blocks, and the shadow blocks. The latter two kinds

of blocks respectively occupy 10% and 15% of total blocks by referring to Ref. [30].

— In-place reprogramming: which is also a software-based mechanism for mitigating the neg-

ative effects of read disturb [30]. Thus, we take advantage of it as another comparison coun-

terpart, and label it as IPR in the article. Similar to RL, it manages the blocks as three groups,

including the normal blocks, monitor blocks, and the hot-read blocks. In the tests, the latter

two groups, respectively, take 10% and 15% of total blocks.

—Write Scheduling and Read Refresh Scheduling: which is the newly proposed scheduling

schemes on write requests and read refresh operations, labeled as WS+RS. It supports both

write scheduling and reinforcement learning-based RR scheduling, for further minimizing the

negative effects of read disturb. When using WS+RS, we set a soft read refresh threshold as

24.5K, for triggering read refresh in idle time intervals in advance.

Furthermore, in order to disclose how write scheduling and read refresh scheduling con-

tribute to the performance gain, respectively; we additionally configured our scheme about

write scheduling as one counterpart and labeled it as WS.

In addition, the maximum number of I/O requests processed in each time window is configured

as 8,192 in the evaluation. The logical sector numbers of historical requests in the last time win-

dow are leveraged for mining the hot read set. Then, the hot read set is used in direct mapping the

write requests in the next time window.

5.2 Tests and Benefit Illustration

To measure validity of the proposed mechanism that aims to mitigate the negative effects resulted

by read disturb in SSDs, we use the following four metrics in our tests: (a) average latency, (b) read
error rate, (c) long tail latency, and (d) read latency distribution.

5.2.1 Average Latency. Read disturb may partially corrupt data in SSD blocks, which will in-

crease the time required for correctly reading data from such blocks. Because the average read

latency and I/O latency greatly vary from case to case, we count the normalized read latency and

I/O latency of all selected traces, and Figure 9 presents the results.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:16 J. Li et al.

As seen in the figure, the proposed approach of WS+RS outperforms four other comparison

counterparts on the measurements of read response time and total I/O response time in all cases.

Regarding the related work of RL and IPR, we see that IPR does outperform RL in half of the

selected traces, i.e., websearch_1, hm_1, and usr_1, which have a high ratio of hot read. In addition,

the proposed write scheduling approach, i.e., WS generally performs well in all the traces, but does

not outperform IPR while processing the benchmarks of websearch_1 and hm_1. This is because

these two workloads are read-intensive and have a large value of Hot R; IPR focuses on the read-

dominant applications and has attractive performance improvements on them.

More interestingly, WS+RS does perform the best, and it respectively cuts down the read re-

sponse time and the I/O response time by 21.1% and 15.5% on average, compared with the state-

of-the-art related work. Even compared with WS, WS+RS decreases the read response time and

the I/O response time by 16.4% and 11.0% on average. This fact verifies the proposed schedul-

ing scheme on read refresh operations can contribute to the reduction of I/O latency to a great

extent.

It is worth mentioning the cases of running the traces of ads, which has a small ratio of Hot R.

For example, the ratio of Hot R of ads is only 13.7%, though it is a read-intensive workload. That

is to say, a major part of data pages of such traces are requested less than four times, so that the

related work of RL and IPR could not yield attractive performance improvements. On the other

hand, WS+RS tries to dispatch the read refresh tasks in the idle time intervals during processing

I/O requests, which can minimize the delay on I/O requests. For instance, it can reduce the read

response time by up to 11.0% in contrast to others when running the benchmark of ads.
Regarding the traces of lun1-1 and lun1-2, we amplify the read requests to trigger more read

refresh processes. Although these original two traces have small Hot R, they have the uniform

frequent read access after read requests amplification [19]. We can see our proposed WS and WS+RS
can yield an attractive improvement from Figure 9, compared with the other methods.

Another general indication revealed in Figure 9(a) is that WS+RS can cut down more average

read latency when running the traces that have a large portion of concentrated read accesses (e.g.,

websearch_1 and hm_1). This is because WS+RS preferably moves the hot read pages to other blocks

in a partial RR operation, which can effectively relieve side-effects of read disturb and then boost

I/O responsiveness.

In brief, we argue that WS+RS can effectively mitigate negative impacts of read disturb and then

boost I/O responsiveness. This is because it maps hot read to the blocks that are insusceptible

to read disturb and dispatches (partial) read refresh tasks in the idle time intervals between I/O

requests.

5.2.2 Read Error Rate. Raw bit error rate (RBER) is a measure of the number of bit errors that

occur in a given number of bit transmissions before Error Correction Code corrects the error. We

specifically record the bit error rate on read operations (which is defined as read error rate in this

article), when processing the read requests of the selected traces. Figure 10 shows the results of

read error rate after running the selected benchmarks.

Obviously, the proposed WS scheme can greatly decrease the read error rate by up to 15.8%,

compared with Baseline. Besides, it is able to achieve reduction on read errors by 13.2% on average,

compared with the related work of RL and IPR. This is because the frequently requested data are

kept by insusceptible blocks, which can confine read errors caused by intensive read operations

on the blocks. In brief, the results verify the proposed scheme of scheduling on write requests can

effectively reduce the read error rate.

Another interesting clue shown in the figure is that WS+RS achieves almost the same read error

rate as WS. This is due to read refresh scheduling only working on when to carry out partial RR

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:17

Fig. 10. Read error rate of selected block traces.

operations and what partial operations are expected; it cannot benefit to the reduction of read

error rate.

5.2.3 Long Tail Latency. As discussed in our motivations, read refresh operations will postpone

some I/O requests and then increase the I/O latency. Figure 11 shows the comparison of long-tail

latency (in Cumulative Distribution Function) for read requests. The lines of Baseline are almost

the lowest ones since it does not adopt any optimization strategies to decrease the long tail latency.

Our proposed WS+RS approach exhibits better long-tail latency than that using other selected

schemes. As seen, WS+RS significantly reduces the long-tail latency by 17.1% and 19.9% at the

99.99th percentile, compared with RL and IPR. Another noticeable clue is that WS+RS decreases

the long-tail latency by 20.1% at the 99.99th percentile, compared with WS. This fact proves that

scheduling on read refresh in idle time slots can efficiently minimize the negative effects caused

by performing RR tasks.

5.2.4 Read Latency Distribution. In addition to the metric of the long-tail latency, the latency

distribution could show more information on I/O latency. Figure 12 shows the distribution of the

read latency after running all benchmarks. On the one side, we can unveil that the most requests

can be responded with the latency of 50 ms in the case of WS+RS. On the other side, WS+RS brings

about the least number of requests that are responded with more than 350 ms. Then, we can

conclude that the proposed scheme of WS+RS can remarkably reduce the read latency for a major

part of I/O requests.

5.3 State and Action Illustration in Reinforcement Learning

We have introduced the Q-learning method, which is a basic reinforcement learning mechanism,

to assist read refresh scheduling in SSDs. Figure 13 demonstrates some information on the states

and actions after running the benchmarks. The left-column figures present the average reward

in each episode (i.e., 1,000 RL steps), as a metric to reflect the convergence situation. The middle

column figures unveil the occurred actions in 40 randomly selected partial RR operations closing

to the end of traces. The right-column figures disclose the most frequently appeared two states in

the selected 40 partial RR operations, as well as their corresponding actions.

Let us take websearch_0 as an example; Figure 13(a)–(c) shows the relevant results. As shown

in Figure 13(a), the average reward in each episode has similar value, except for the first episode

(i.e., the initial period). We think RL is a relative convergence after the initial period when running

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:18 J. Li et al.

Fig. 11. Comparison of read long-tail latency.

the traces of websearch_0. As seen in Figure 13(b), there are 22 times of Action No. 1 (1 page move),

4 times of Action No. 2 (2 page moves), 2 times of Action No. 5 (1 erase), and the others are Action
No. 4 (8 page moves). Figure 13(c) indicates the action distribution of State ©60 and State ©70 . As seen,

State ©70 occurs 8 times, whose corresponding decision is stably Action No. 4. This means,Action
No. 4 prefers to be conducted, in the case of State ©70 at this stage when running websearch_0.

Similarly, a major part of right figures disclose identical decisions of action, which implies q-table
becomes stable. An irregular fluctuation happens in Figure 13(l), since there has a small ε (1%) to

randomly select the action during the rest of the period. But, the decision of state©20 is consistently

preferred to Action No. 1, except for that random selection.

With respect to the convergence of reinforcement learning, we can understand that our method

yields an attractive convergence tendency in the case of replaying most traces. But, it is noticeable

to mention that the average rewards in Figure 13(m) and (p) that are related to lun1-1 and lun1-2
reveal obvious fluctuations. This is because different episodes of these two traces have distinct

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:19

Fig. 12. The distribution of read latency of selected traces.

features of time intervals between I/O requests including the maximum interval and the average

interval, which greatly affect I/O responsiveness and the convergence of the algorithm. To be

specific, as seen in Figure 13(m), the average intervals in Episodes 2 and 6 are 1.16 ms and

1.37 ms; both of them are smaller than the average interval of 1.66 ms in all episodes. On the

contrary, the peak points of Episodes 3 and 7 have the average intervals of 1.84 ms and 2.0 ms.

Similarly, Figure 13(p) shows lun1-2 has the same characteristic to lun1-1. As seen, Episodes 2, 4,
and 8 respectively have the average time interval of 0.99 ms, 0.60 ms, and 1.04 ms; all of them

are lower than the average interval of 1.40 ms in all episodes.

5.4 Overhead Analysis

This section reports the overhead caused by our proposed mechanism. It first analyzes the erases

caused by read refresh and normal garbage collection. After that, the overhead of mining hot read

set and mapping write requests to different blocks will be presented.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:20 J. Li et al.

Fig. 13. State and action illustration.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:21

Fig. 14. Breakdown of erase counts contributed by garbage collection and read refresh.

Fig. 15. Time overhead: (a) Hot read set mining in WS and WS+RS. (b) Reinforcement learning in WS+RS.

5.4.1 Erase Overhead. Figure 14 shows the breakdown of the erase counts induced by normal

garbage collection and read refresh after running all workloads. The results are normalized to

those of Baseline. The five read-dominant workloads do not have normal GC erases because the

available space after running them is not less than the pre-defined GC threshold. But, the other

three workloads have different rates of normal GC erases.

As illustrated in Figure 14, WS+RS has the least RR erases among all comparison counterparts,

even though it has a few larger numbers of normal GC erases in the trace of usr_0. This implies

that a part of RR blocks will not be erased until the normal GC operations are triggered, in case

that available space is not enough.

5.4.2 Mining and Mapping Overhead. The comparison counterparts of Baseline, RL, and IPR do

not carry out mining hot read dataset and mapping relevant write data to specific blocks, so that

they do not bring about any mining and mapping overhead. But our proposal results in the mining

and mapping overhead. In general, the mining and mapping overhead is related to the number of

total requests and the number of frequently read addresses in the trace.

Figure 15(a) shows the time required by mining hot read set and mapping write requests when

using WS and WS+RS. As shown in the Figure 15(a), the mining and mapping overhead is less than

2.01 seconds for all traces, which is acceptable.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

3:22 J. Li et al.

Fig. 16. I/O latency and the breakdown of erase counts with deliberately triggered garbage collection.

5.4.3 Computation Overhead of Reinforcement Learning. The reinforcement learning method is

a lightweight model, which has low space and time overheads. In our case, it holds a q-table to

direct read refresh scheduling, which only consumes 2.81KB (= 80 (states)*9 (actions)*4B) taking a

negligible amount of memory space in SSDs. Besides, matching the state and the action, as well as

updating the relevant values in the q-table according to the rewards in system running, will result

in certain computation overhead. According to our measurements, it only takes between 12.3
and 31.5 milliseconds computation time after replaying the selected block I/O traces, as shown in

Figure 15(b). Then, we argue that the time overhead caused by the proposed reinforcement learning

method is acceptable, even though our tests are conducted on a resource-limited platform that has

an ARM Cortex A7 Dual-Core CPU with 800MHz and 128MB of memory.

5.5 GC Impacts on the Effectiveness of RL-Based RR

In Sections 5.2 to 5.4, most of selected block I/O traces do not have erase operations induced by

normal garbage collection because most of them are read-intensive. Considering garbage collection

is time-consuming, and it competes with read refresh, this section intends to disclose whether

garbage collection affects the effectiveness of our proposal or not in contrast to other existing

methods.

In order to deliberately trigger garbage collection when replaying the selected read-intensive

traces, the simulated SSD is aged to 70% of its capacity.2 Figure 16(a) and (b) illustrates the results of

I/O latency and Erase breakdown. Compared with the results of having no deliberately triggered

garbage collection, which are shown in Figures 9 and 14, we see the proposed RR scheduling

approach does have a very similar improvement tendency in the metrics of I/O latency and Erase

if certain GC operations are carried out. In brief, we can conclude that garbage collection does not

noticeably place negative impacts on the effectiveness of our proposed scheme.

5.6 Summary

With respect to comparing existing schemes and the newly proposed mechanism, we emphasize

the following two key observations. First, the read disturb level-based data mapping scheme can

confine negative impact of the read bit error rate. Second, the read refresh scheduling scheme can

dispatch partial RR operations in the idle time intervals between two I/O requests to cut down

the long tail latency caused by read refresh operations. In brief, we conclude that the proposed

scheduling mechanisms are able to significantly reduce the negative effects introduced by read

disturb in SSDs.

2Running usr_0 is an exception because more than a half of erase operations are induced by its original garbage collection

operations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

Mitigating Negative Impacts of Read Disturb in SSDs 3:23

6 CONCLUSIONS

We have proposed and evaluated the newly proposed schemes of write scheduling and read refresh

scheduling in SSDs by considering the factor of read disturb. To this end, we have built a mathe-

matical model for assessing the read disturb level of block. Then, the frequently read data can be

flushed to the blocks that are insusceptible to read disturb, since such blocks are not sensitive to

heavy read operations on them.

Furthermore, we have proposed a method of read refresh scheduling by using reinforcement

learning to minimize the average read latency. In other words, our proposal intends to take ad-

vantage of idle time intervals between I/O requests for carrying out the best fit (partial) read re-

fresh operations. Consequently, the side-effects of routine read refresh operations can be greatly

confined.

The evaluation tests show the newly proposed scheme outperforms other comparison coun-

terparts regarding the measurements of read error rate, I/O response time, long tail latency, and

erase distribution. In conclusion, our proposed approaches of write scheduling and read refresh

scheduling can effectively mitigate the negative impacts of read disturb in modern SSDs.

ACKNOWLEDGMENTS

The authors would like to thank Weihua Liu at Huazhong University of Science and Technology

(liuweihua@hust.edu.cn) for his statistical data on the RBER of P/E cycles and read counts in TLC

devices.

REFERENCES

[1] C. Matsui, C. Sun, and K. Takeuchi. 2017. Design of hybrid SSDs with storage class memory and NAND flash memory.

In IEEE, 2017.

[2] R. Chen, C. Zhang, Y. Wang, et al. 2019. DCR: Deterministic crash recovery for NAND flash storage systems. In IEEE

TCAD, 2019.

[3] R. Micheloni. 2017. Solid-state drive (SSD): A nonvolatile storage system. In IEEE, 2017.

[4] M. Bjorling, J. Gonzalez, and P. Bonnet. 2017. LightNVM: The Linux open-channel SSD subsystem. In FAST, 2017.

[5] L. Zuolo, C. Zambelli, R. Micheloni, et al. 2017. Solid-state drives: Memory driven design methodologies for optimal

performance. In IEEE, 2017.

[6] Y. Cai, Y. Luo, S. Ghose, et al. 2018. Read disturb errors in MLC NAND flash memory. arXiv preprint arXiv:1805.03283,

2018.

[7] X. Shi, F. Wu, S. Wang S, et al. 2018. Program error rate-based wear leveling for NAND flash memory. In DATE, 2018.

[8] W. Lee, M. Kang, S. Hong, et al. 2019. Interpage-based endurance-enhancing lower state encoding for MLC and TLC

flash memory storages. In IEEE TVLSI, 2019.

[9] I. Narayanan, D. Wang, M. Jeon, et al. 2016. SSD failures in datacenters: What? When? And why? In SYSTOR, 2016.

[10] Y. Cai, E. Haratsch, O. Mutlu, et al. 2012. Error patterns in MLC NAND flash memory: Measurement, characterization,

and analysis. In DATE, 2012.

[11] Y. Cai, E. Haratsch, O. Mutlu, et al. 2013. Threshold voltage distribution in NAND flash memory: Characterization,

analysis, and modeling. In DATE, 2013.

[12] Y. Cai, Y. Luo, E. Haratsch, et al. 2015. Data retention in MLC NAND flash memory: Characterization, optimization,

and recovery. In HPCA, 2015.

[13] Y. Cai, O. Mutlu, E. Haratsch, et al. 2013. Program interference in MLC NAND flash memory: Characterization, mod-

eling, and mitigation. In ICCD, 2013.

[14] N. Mielke, T. Marquart, N. Wu, et al. 2013. Bit error rate in NAND flash memories. In IRPS, 2013.

[15] L. Grupp, A. Caulfield, J. Coburn, et al. 2009. Characterizing flash memory: Anomalies, observations, and applications.

In MICRO, 2009.

[16] C. Manning. 2012. Yaffs NAND flash failure mitigation. Retrieved from https://yaffs.net/sites/default/files/downloads/

YaffsNandFailure Mitigation.pdf.

[17] Y. Cai, Y. Luo, S. Ghose, et al. 2015. Read disturb errors in MLC NAND flash memory: Characterization, mitigation,

and recovery. In DSN, 2015.

[18] C. Zambelli, P. Olivo, L. Crippa, et al. 2017. Uniform and concentrated read disturb effects in mid-1X TLC NAND flash

memories for enterprise solid state drives. In IRPS, 2017.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

https://yaffs.net/sites/default/files/downloads/YaffsNandFailure ignorespaces Mitigation.pdf
https://yaffs.net/sites/default/files/downloads/YaffsNandFailure ignorespaces Mitigation.pdf

3:24 J. Li et al.

[19] K. Ha, J. Jeong and J. Kim. 2016. An integrated approach for managing read disturbs in high-density NAND flash

memory. In IEEE TCAD, 2016.

[20] Q. Li, L. Shi, Y. Di, et al. 2017. Exploiting process variation for read performance improvement on LDPC based flash

memory storage systems. In ICCD, 2017.

[21] Q. Li, L. Shi, Y. Di, et al. 2020. Process variation aware read performance improvement for LDPC-based NAND flash

memory. In IEEE Trans. Reliability, 2020.

[22] J. Werner, E. Cohen, and T. Canepa. 2014. Read disturb handling for non-volatile solid state media. U.S. Patent Appli-

cation 13/729,966, 2014.

[23] W. Liu, F. Wu, M. Zhang, et al. 2019. Characterizing the reliability and threshold voltage shifting of 3D charge trap

NAND flash. In DATE, 2019.

[24] K. Zhao, W. Zhao, H. Sun, et al. 2013. LDPC-in-SSD: Making advanced error correction codes work effectively in solid

state drives. In FAST, 2013.

[25] B. Kim, J. Choi, and S. Min. 2019. Design tradeoffs for SSD reliability. In FAST, 2019.

[26] Y. Seo, J. Yun, W. Lee, and D. Jung. 2013. Memory controller, method of operating the same and memory system

including the same, U.S. Patent 14/081 371, 2013.

[27] L. Grupp, J. Davis, and S. Swanson. 2012. The bleak future of NAND flash memory. In FAST, 2012.

[28] K. Ha, J. Jeong, and J. Kim. 2013. A read-disturb management technique for high-density NAND flash memory. In

APSys, 2013.

[29] C. Liu, Y. Chang, and Y. Chang. 2015. Read leveling for flash storage systems. In SYSTOR, 2015.

[30] T. Wu, Y. Ma, and L. Chang. 2018. Flash read disturb management using adaptive cell bit-density with in-place repro-

gramming. In DATE, 2018.

[31] E. Cheshmikhani, H. Farbeh, and H. Asadi. 2019. Enhancing reliability of STT-MRAM caches by eliminating read

disturbance accumulation. In DATE, 2019.

[32] Y. Sakamoto, M. Ishiguro, and G. Kitagawa. 1986. Akaike Information Criterion Statistics. Dordrecht, The Netherlands:

D. Reidel, 81.

[33] R. Johnson and D. Wichern. 2014. Applied Multivariate Statistical Analysis. 6th ed., Pearson Press.

[34] C. Watkins and P. Dayan. 1992. Q-learning. Machine Learning (1992).

[35] W. Kang, D. Shin, and S. Yoo. 2017. Reinforcement learning-assisted garbage collection to mitigate long-tail latency

in SSD. In ACM TECS, 2017.

[36] C. Wu, C. Ji, Q. Li, et al. 2020. Maximizing I/O throughput and minimizing performance variation via reinforcement

learning based I/O merging for SSDs. In IEEE Trans. Computers, 2020.

[37] R. Sutton and A. Barto. 1998. Introduction to Reinforcement Learning (1st ed.). MIT Press.

[38] J. Li, X. Xu, X. Peng, et al. 2019. Pattern-based write scheduling and read balance-oriented wear-leveling for solid

state drivers. In MSST, 2019.

[39] C. Gao, L. Shi, Y. Di, et al. 2018. Exploiting chip idleness for minimizing garbage collection-induced chip access conflict

on SSDs. In ACM TODAES, 2018.

[40] W. Zhang, Q. Cao, H. Jiang, et al. 2018. PA-SSD: A page-type aware TLC SSD for improved write/read performance

and storage efficiency. In ICS, 2018.

[41] Y. Du, Y. Zhou, M. Zhang, et al. 2019. Adapting layer RBERs variations of 3D flash memories via multi-granularity

progressive LDPC reading. In DAC, 2019.

[42] Search Engine I/O. Retrieved from http://traces.cs.umass.edu/index.php/Storage/Storage.

[43] Microsoft Production Server Traces. Retrieved from http://iotta.snia.org/traces/158.

[44] C. Lee, T. Kumano, T. Matsuki, et al. 2017. Understanding storage traffic characteristics on enterprise virtual desktop

infrastructure. In SYSTOR, 2017.

[45] D. Narayanan, A. Donnelly, and A. Rowstron. 2008. Write off-loading: Practical power management for enterprise

storage. In ACM TOS, 2008.

[46] T. Na, J. Kim, S. Kang, et al. 2016. Read disturbance reduction technique for offset-canceling dual-stage sensing circuits

in deep submicrometer STT-RAM. In IEEE Trans. on Circuits and Systems, 2016.

Received January 2020; revised July 2020; accepted July 2020

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 3. Pub. date: September 2020.

http://traces.cs.umass.edu/index.php/Storage/Storage
http://iotta.snia.org/traces/158

