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This article proposes a pattern-based prefetching scheme with the support of adaptive cache management,

at the flash translation layer of solid-state drives (SSDs). It works inside of SSDs and has features of OS

dependence and uses transparency. Specifically, it first mines frequent block access patterns that reflect the

correlation among the occurred I/O requests. Then, it compares the requests in the current time window with

the identified patterns to direct prefetching data into the cache of SSDs. More importantly, to maximize the

cache use efficiency, we build a mathematical model to adaptively determine the cache partition on the basis of

I/O workload characteristics, for separately buffering the prefetched data and the written data. Experimental

results show that our proposal can yield improvements on average read latency by 1.8%–36.5% without

noticeably increasing the write latency, in contrast to conventional SSD-inside prefetching schemes.
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1 INTRODUCTION

The NAND flash memory–based solid-state drives (SSDs) are commonly employed in PCs, data

centers, and supercomputers, because of their virtues of small size, high data throughput, random-

access performance, and low energy consumption [1–3]. Apart from a NAND flash array that holds

data, an SSD device generally has a micro-controller and a Random Access Memory (RAM). To

be specific, the micro-controller runs Flash Translation Layer (FTL) to deal with logical-physical

address mapping, garbage collection (GC), and wear-leveling (WL) [4–7]. The RAM memory

is used as the buffer inside of SSD1 to cut down the number of write operations to the flash array,

as well as keeping address mapping data structures [8, 9].

Data prefetching is a commonly used optimization scheme for disk-based file systems, where

fetching data from the disk dominates the overhead of read operations [12]. Specifically, prefetch-

ing works well for target applications having regular access patterns on reads, such as database

servers or some scientific computations [12, 17]. In an SSD setting, prefetching can mask read

latency in flash data blocks, as the needed data were loaded into the RAM memory in advance.

Consequently, it has started to be applied to a variety of SSD-based storage systems [13, 14, 20].

Note that the prefetching methods in the file system may run at the levels of virtual file system

and file system, but the prefetching schemes inside of SSDs run at the level of SSD devices in the

I/O stack.

Considering the memory size and processing power were limited in early SSDs, the main con-

cerns of existing prefetching schemes were about the low computation cost and the low power

consumption [20]. Then, most of them were involved with the operating system layer or even

both the operating system layer and SSDs [13, 14], which must damage the natures of compatibil-

ity and transparency. Although some inside SSD prefetching schemes have been proposed, their

prediction models were generally confined to the limited computation and memory resources [20].

We say that nowadays SSDs have large computing power in micro-controllers as well as more

memory capacity inside. For example, the Cosmos OpenSSD platform [15], which is publicly re-

leased by the OpenSSD project, is equipped with more than 100 MB SDRAM and an embedded

1 GHz ARM CPU. Then, we argue that designing a (near) universal prefetching scheme inside of

modern SSDs becomes available, and such inside prefetching approaches do have advantages of

OS independence and use transparency. That is to say, such SSDs can be deployed in any context,

as their micro-controllers are in charge of prefetching tasks.

In the case in which the prefetching functionality is enabled, the SSD cache is used to buffer not

only the written data, but also the prefetched data. Conventional prefetching methods adopt a fixed

portion of cache to buffer the prefetched data [13, 14, 20]. However, such fixed cache separation

schemes cannot fit all I/O characteristics in varied applications. For example, the prefetching cache

is not expected when running write-dominant workloads, but the cache for the prefetched data are

supposed to be enlarged while executing read-intensive applications in general. More specifically,

some applications may change their read/write workloads during the lifetime, which indicates

that data prefetching may work in some time windows of lifetime, but fail in other time windows.

Then, in order to boost cache use efficiency, the division of write/prefetch cache2 should depend

on real-time factors in the workloads such as the read/write ratio and the prefetching accuracy.

To address the aforementioned issues, this article proposes an SSD-inside prefetching mecha-

nism with adaptive cache management, to better improve I/O performance of SSDs. In summary,

it makes the following contributions:

1 The terms SSD RAM memory and SSD cache are used interchangeably in this article.
2 The terms write cache and prefetch cache represent the cache space for buffering the written data and the prefetched

data, respectively.
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Fig. 1. The internal architectural overview in SSDs.

(1) We propose a frequent access pattern–based prefetching scheme. It first mines the frequent

access patterns from the history of read requests to stand for the address collections that are

frequently read together. Then, it holds a matrix to maintain the pattern information and to

carry out the pattern matching for directing data prefetching in the current time window.

(2) We construct a mathematical model by considering several comprehensive factors, such as

the read/write ratio and the historical prefetching accuracy, to support adaptive cache man-

agement. Then, it is able to more precisely adjust the partition of the prefetch cache and the

write cache from case to case.

(3) We offer preliminary evaluation on several disk traces of real-world applications. Apart from

illustrating the performance benefits and scalability of our proposal, we specifically measure

its time and space overhead and then assess their performance impacts.

Note that, as an extension of our previous work [35], only the last two contributions are new

in this article. As our measurements indicate, the newly proposed data prefetching mechanism

with adaptive cache management can further reduce the average read latency without noticeably

increasing the write latency.

The rest of the article is organized as follows: the background knowledge and related work are

introduced in Section 2. Section 3 specifically describes the proposed pattern-based prefetching

scheme, and the adaptive cache partition management policy. Section 4 presents the evaluation

methodology and reports the experimental results. Finally, the article is concluded in Section 5.

2 BACKGROUND AND MOTIVATION

2.1 SSD Architecture

Figure 1 shows an internal architectural overview of SSDs, including software and hardware com-

ponents. Obviously, the main software layer of SSD is FTL, which takes charge of address mapping,

garbage collection [9], wear-leveling [11], and buffer management. Specifically, the buffer manage-

ment module running at FTL controls the use of dynamic random access memory (DRAM) of

SSDs. In other words, not only the data structures of the address mapping table are saved in the

buffer, but also the contents of write requests are temporarily cached in there to minimize the

latency of responding write requests [8, 34].

2.2 Related Work

This section will briefly summarize the related work on data prefetching, SSD cache management,

and other SSD-inside I/O optimization strategies.

Data prefetching and prediction models. In order to yield potential performance enhancements

of storage systems, a variety of I/O history analysis-based I/O optimization mechanisms have

been proposed and evaluated [16, 17]. In fact, data prefetching has to predict future possible read
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requests to direct fetching data in advance. That is, the accuracy of request prediction is critical to

the effectiveness and applicability of data prefetching. Then, hidden Markov models, neural net-

works, or other predictive algorithms are used to forecast I/O operations through analyzing I/O

access patterns of the application [13, 18–20].

Prefetching approaches focusing on SSD. Flashy prefetching aims to enhance prefetching effective-

ness for SSDs [13]. Though this method runs at the application level, it still relies on the operating

system (OS) to collect the I/O traces and manage the cached data. Lynx is another prefetcher for

SSDs but running at the OS layer in the Linux kernel [14]. It makes use of Markov chains to forecast

future read requests, to guide reading the relevant data in advance.

Xu et al. [20] argued that OS-dependent prefetching lacks the advantages of use transparency

and compatibility. They have thus proposed an SSD-inside prefetching mechanism at FTL, without

any modifications to OS or applications. It adopts a divide-and-conquer algorithm to purposely

reduce time and space complexity when conducting data prefetching, as they believe some SSDs

may be resource-limited.

Considering modern SSDs are commonly equipped with a powerful compute processing unit

and considerable size of RAM, we have proposed a prefetching approach to more accurately

prefetch the expected data in our previous work [35]. In this method, we take advantage of the

powerful SSD micro-controller to mine the frequent access patterns, which reflect the correlation

among the occurred requests. Then, the process of prefetching data will be only triggered if a

mined pattern is hit in the current time window.

SSD cache management for prefetched data. Cache approaches are mainly designed for RAM em-

bedded in SSD (i.e., buffer cache). They generally intend to achieve cache hit rate improvement for

maximizing the efficiency of cache usage. Considering both written data and prefetched data are

buffered in SSD RAM, existing SSD prefetching schemes generally take advantage of a fixed cache

division policy for buffering two kinds of data. For instance, in the resource-optimized prefetcher,

the size of the prefetch cache is configured as 128 KB in evaluation experiments [20].

But, different applications have varied read/write footprints, so that it does not make sense to

allocate an unchanging part of prefetch cache with respect to all cases. To address this issue, Xu

et al. [35] have presented an empirical formula to divide the SSD cache into prefetch cache and

write cache by separately holding the prefetched data and the written data, by referring to the

read/write ratio in the applications.

SSD-inside optimizations. A considerable number of studies exploit the computational power

of SSD controller by offloading the data-intensive tasks to the embedded cores of SSDs [21–23].

For example, Jun et al. [23] take advantage of in-storage processing capacity to perform big data

analytics, by exemplarily integrating the Morris-Pratt (MP) string search engine in SSD. In addi-

tion, Pei et al. [24] propose Registor, which aims to eliminate I/O bottlenecks in unstructured data

processing that needs regex search. To this end, they have designed a hardware engine for regex

search and deployed it inside of flash SSD, to deal with data on-the-fly during data transmission

from SSD to host.

2.3 Motivations

We have analyzed certain block I/O traces of real-world applications, to disclose their probability

distribution of read frequency on the address space and their number of hot read addresses at

different execution stages.

Figure 2 illustrates the results of probability distribution of three sampled applications in the Mi-

crosoft Research Cambridge block I/O trace collection [31]. They are hm_1 (read intensive), usr_0

(read-write balanced), and src1_2 (write intensive). In the figure, the X -axis scales from 0 to 100%,

which represents the proportion of read addresses ordering by their read counts, and the Y -axis
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Fig. 2. The probability density of read frequency on the address space of some traces in the MSRC block

trace collection [31] (spatial locality of block accesses).

Fig. 3. The frequent read address space (i.e., not less than three) number in the whole application period

(temporal locality of block accesses).

denotes the probability density of the read requests. Obviously, all block I/O traces show the local-

ity of data access. That is to say, only a very small part of data (e.g., the left part of theX -axis in the

figure) is intensively accessed after running the applications. Moreover, in order to characterize

the location and variability of read frequency on block addresses in the traces, we calculate the

measures of skewness and kurtosis [25] for better illustrating the access locality. As seen in the

figure, these numerical values show that the read counts of block addresses are lack of symme-

try and heavy-tailed. Then, we argue that only a small number of addresses have intensive read

workloads.

Observation I. Applications read their data and obey the reference of space locality. Thus, prefetch-

ing the hot read data into the SSD buffer may contribute to better I/O performance caused by read

hits.

Figure 3 shows the number of frequent read addresses in the lifetime of applications. TheX -axis

represents execution stages (each of them is composed of 1,024 requests), and the Y -axis shows

the number of frequent accessed (i.e., not less than three) addresses. The results reveal that the

hot read addresses differ from varieties of applications, and keep changing during different stages

after replaying the selected block I/O traces. More importantly, this figure also reveals that certain

read addresses will be intensively read in a short time period, which verifies the block accesses

have temporal locality.

Observation II. The number of hot read addresses keeps changing at varied running stages

in applications. Thus, dynamically adjusting the size of prefetch cache may boost the cache use

efficiency.
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Fig. 4. High level overview of processing a read request in Cacher-SSD. It has two new features: (i) A software

component of Cacher running at FTL, which is in charge of prefetching read data. (ii) The separate division

of RAM dynamically adjusts to fit varied read/write workloads for holding the prefetched data.

Such observations motivate us to efficiently prefetch data into the SSD buffer by the following:

(1) prefetching the frequently read data may increase prefetching hits and then boost read perfor-

mance; (2) adjusting the size of the prefetch cache in an adaptive manner can contribute to better

SSD buffer utilization.

3 PATTERN-BASED SSD PREFETCHING WITH ADAPTIVE CACHE MANAGEMENT

3.1 System Architecture

Figure 4 shows the high level overview of the proposed SSD-inside prefetching scheme, and we

name such SSD as Cacher-SSD. In the case of a cache hit, the read request can be satisfied with the

prefetched data buffered in SSD RAM. Otherwise, the data stored in the flash data blocks will be

read and then forwarded to the application.

As seen, in addition to address mapping, garbage collection. and wear-leveling, a new software

component of Cacher runs at FTL. Specifically, Cacher deals with mining patterns, representing

patterns, and matching the identified patterns with the current requests, to direct data prefetching.

Moreover, Cacher is in charge of cache space management, for separating the write cache and the

prefetch cache. We do not modify the garbage collection policy and the wear-leveling policy in

this work and assume Cacher-SSD continues to employ the default ones.

Figure 4 also illustrates the process of data prefetching in SSD devices. When a read request

comes from an application, SSD controller receives the request and first searches the relevant data

in the SSD RAM. If it hits in RAM buffer, then the cached data directly responds to the application.

Otherwise, SSD controller tries to read the data from SSD blocks, and replies the data to the ap-

plication. That is, if the prefetched data can be directly sent to the application, the read response

time can be significantly cut down, but we must bear the prefetching overhead if the prefetched

data are never hit.

3.2 Pattern-Based Prefetching

To precisely direct data prefetching, we propose pattern-based prefetching. Specifically, we refer

to the correlation of data addresses as a request pattern, which is a special set of address items

(that may be accessed together in a short period). Then, while some addresses in the pattern have

been requested, the proposed scheme will fetch the data in the remainder addresses into the SSD

cache in advance, as it believes other addresses in the pattern are most likely to be accessed soon.
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Fig. 5. Matching matrix of requests and patterns. Note that we use 1 representing the corresponding logical

sector number is in a specific pattern, and it has been accessed since the last processing round, and utilize 0
standing for other cases.

3.2.1 Identifying and Modeling Frequent Access Patterns. The process of exploring access

patterns can be addressed by the following two steps:

Step 1: The problem of mining the frequent patterns in our scenario can be described as follows:

Let T = {a1,a2, . . . ,an } be a set of logical addresses of n requests in the I/O track. The aim is to

discover a collection of frequent patterns from the input I/O trace of T . A frequent access pattern

can be expressed as Pi = {ak , . . . ,ax }, where all logical addresses of requests, such as ak and ax ,

appear multiple times in T .

We take advantage of a widely used frequent item set mining approach called as the FP-Growth

algorithm [26], to unearth frequent patterns by analyzing the requests in the previous time win-

dow. To be specific, the FP-Growth algorithm takes advantage of a divide-and-conquer strategy to

extract frequent item sets without using candidate generations, so that it is efficient and scalable

for mining both long and short frequent patterns. The core of this approach is the usage of a spe-

cial data structure named frequent-pattern tree (FP-tree), which retains the itemset association

information [26]. Consequently, by utilizing FP-Growth, we can acquire a number of frequent item

sets, such as {Add1,Add2,Add3, 4}. This example pattern has three frequently requested addresses,

and the number of 4 is the minimum support, which implies all three addresses have been accessed

at least four times in all considered requests.

Step 2: After Step 1, it is possible to obtain many independent sets of access patterns. For the

purpose of refining access patterns, we first sort them in descending order, by referring accessed

time of addresses in patterns. Then, we check the access pattern that follows each occurrence of

an identified pattern, and attempt to extend it. If more than half of elements in a specific pattern

are also in another pattern, we carry out a union operation of two patterns, to form a new access

pattern. Note that no extension to the access patterns should be performed if the number of access

events in the extended pattern would exceed the upper limit.

3.2.2 Pattern Matching for Data Prefetching. The effectiveness of prefetching is primarily de-

pendent on the prediction accuracy of future access requests [27]. The basic idea of pattern-based

prefetching is to compare the current read requests with identified frequent patterns. In the case

in which a (major) part of addresses in a specific pattern have been accessed, it forecasts other

remaining addresses in the same pattern are most likely to be requested in the near future. As a

result, the relevant data of remaining addresses are supposed to be read in advance.

Furthermore, the speed of predictions on future requests is also critical to the effectiveness of the

prefetching mechanism. For the purpose of accelerating the matching process, we have introduced

a matrix to reflect the relationship between the logical sector numbers (LSNs) of requests and

the identified patterns. As illustrated in Figure 5, there are m identified patterns, and each row of

patterns shows its member elements (labeled as request LSN s). Note that the set of columns is the
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LSN union of the mined patterns in a given time window. In the case of dealing with a read request,

all elements in the corresponding column will be set as 1, if its logical sector number is a part of

the pattern.

Supposing the prefetching trigger condition is about more than a half of LSN s have been ac-

cessed in the pattern (i.e., the metric of matching hit threshold in Table 1 of Section 4.1), and the

data of remaining addresses are supposed to be fetched in advance. We take a case shown in

Figure 5 as an example. The pattern of P0 has six LSN s of (0, 1, 3, k, k+1, n), in which 0, k, and k+1

were requested. If the coming request targets at address of n, the process of data prefetching on

LSN s of 1 and 3 will be activated, as a (major) part of addresses in this pattern have been accessed.

3.3 Adaptive Cache Management

The basic idea of adaptive cache management is to dynamically adjust the cache use on the basis

of several impact factors. They are the numbers of read and write requests, the size of read and

write space, and the numbers of read and write hits in cache in the previous time window.

First, we determine whether the prefetching functionality should be enabled or not after ana-

lyzing the statistical data of occurred I/O requests, by referring to Equation (1). That is to say, the

prefetching functionality is supposed to be dynamically disabled in specific time windows if τ is

not less than a predefined value; otherwise, it will be supported.

τ =
Wnum

Rnum
× Pre f etchmiss

Pre f etchall
, (1)

where Rnum andWnum are the numbers of total read and write requests in the previous time win-

dow. The parameters of Pre f etchmiss and Pre f etchall indicate the numbers of non-hit prefetches

and the total prefetches. Note that both of Pre f etchmiss and Pre f etchall will be assigned as 1 if

they are less than 1.

For the purpose of improving the efficiency of cache use in SSD, this section presents an adaptive

cache partition policy that dynamically divides the write cache and the prefetch cache at different

time windows of I/O processing. In our previous work [35], we proposed an adaptive cache division

policy by referring to I/O characteristics of workloads, but it does not take the I/O frequency and

address distribution into consideration.

In this section, we further build a mathematical model to estimate the return on cache use intro-

duced by data prefetching, called Pattern+. Equation (2) demonstrates the overall return of prefetch-

ing data, consisting of the saved read response time (i.e., T1) and the prolonged write latency due

to write cache misses (i.e., T2).

T = T1 −T2. (2)

On the one side,T1 is positively correlated with the total number of read requests that are hit in

the cache. Then, it can be illustrated as Equation (3).

T1 = α × γ × h, (3)

where α ,γ , andh denote the saved time caused by a read request being hit in the cache, the number

of occurred read requests, and the proportion of read hits in the cache, respectively.

Specifically, the parameter of h depends on factors of the total size of prefetched data and what

data have been prefetched. Section 2.3 discusses the probability distribution of read frequency on

the address space of applications, which verifies only a small part of data are intensively accessed.

Then, we build the model for adaptively adjusting the size of the prefetch cache, by referring to

the probability distribution of block accesses. As seen in Figure 6(a), the X -axis scales from 0 to

100%, which represents the proportion of read addresses ordering by their read counts, and the
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Fig. 6. The probability density of (a) read address frequency and (b) write address frequency.

Y -axis denotes the probability density of the read requests. That is to say, FR (x ) = ∫ 1
0 fR (x )dx = 1.

Figure 6(b) demonstrates the case of write requests, which is same as the read case.

Assume the θ part of total read pages of data have been prefetched, shown in Figure 6(a), which

are expected to be frequently accessed in the near future. The expression of FR (θ ) = ∫ θ
0 fR (x )dx

represents the ratio of reads on the θ part of read data to the total number of reads. Considering

the θ part of read data are prefetched, the saved read response time (i.e., T1) can be quantified by

Equation (4).

T1 = α × γ × FR (θ ). (4)

On the other hand, the prefetched data must occupy the cache space, which was supposed to be

used for buffering the written data, and is also shown in Figure 6. The initial ratio of the cached

written data to all data is k , and θ of read data are supposed to be prefetched, so that the reduction

of probability of write hit can be expressed:

ΔFW (θ ) = FW (k ) − FW

(
k − θ · R

N

)
=

∫ k

k−θ · R

N

fW (x )dx

= θ · R
N
× f̄W

(
θ · R

N

)

≈ θ · R
N
× fW (k ),

(5)

where FW (k ) means the ratio of the writes on the most frequently accessed k cached pages of

written data to the total number of write operations. R and N represent the read address space and

the total address space, respectively. The parameter of f̄W (θ · R
N

) is the average of write frequency

to the pages within the range of (k −θ · R
N
,k), and fW (k ) is the write frequency to the page having

the minimum access count in the range of (k − θ · R
N
,k).

In fact, fW (k ) indicates the minimum hit ratio of the cached written data; it will decrease when

the hit ratio of cached written data degrades. As a consequence, the negative effect of prefetching

can be defined as Equation (6).

T2 = β × ω × θ · R
N
× f̄W

(
θ · R

N

)
, (6)

where β is the saved time by buffering a page of written data, and ω is the number of occurred

write requests.
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By referring back to Equation (5), the overall benefit of prefetching the most frequently accessed

θ part of read data can be measured by using Equation (7).

Tθ = α × γ × FR (θ ) − β × ω × θ · R
N
× f̄W

(
θ · R

N

)

≈ α × γ × FR (θ ) − β × ω × θ · R
N
× fW (k ).

(7)

According to the first-order condition of dT
dθ
= 0, and f ′(θ ) < 0, it can be concluded thatTθ will

reach the maximum value in the case in which the condition of f (θ ∗) =
β

α
· ω

γ
· R

N
· fW (k ) holds.

In fact, α and β are two constants depending on platform configurations; R, N , γ , and ω are four

statistical values collected from the occurred requests. The value of fW (k ) is the smallest write

count to the buffered written data in the last time window.

The value of f (θ ∗) can be leveraged to split SSD cache for keeping the prefetched data. To this

end, the read pages are sorted in descending order by referring their access counts. Then, the read

data whose read counts are not less than R · f (θ ∗), should be initially loaded into the cache.

Then, we may have varied sizes of cache for buffering the prefetched data at different time

windows. To achieve the goal of adaptive tuning the cache use for separately buffering the written

data and the prefetched data, we evict either the cached written data or the prefetched data to load

the new data, according to the partition ratio of cache use (i.e., θcur ) in the current time window.

Algorithm 1 shows the specifications on the adaptive cache replacement scheme. As read, line

11 identifies which part of cached data should be evicted. Specifically, it compares the current read

pages (i.e., rd_paдes_cur ) to the read pages in the previous time window (i.e., rd_paдes_prev), to

determine which kind of cached data should be replaced by the new data. Lines 13–19 present

the details of dealing with a missed write request. Lines 21–28 show the process of carrying out

pattern-based prefetching.

4 EXPERIMENTS AND EVALUATION

4.1 Experiment Setup

Considering SSD controller has limited computation power and memory capacity, we conducted

tests on a local ARM-based machine that has an ARM Cortex A7 Dual-Core with 800 MHz, 128 MB

of memory, and 32-bit Linux (ver 3.1). We have performed trace-driven simulation with SSDsim

(ver2.1) on the local machine, which has a diverse set of configurations and supports of TLC flash

simulation [33, 35]. We have integrated our proposal with SSDsim, for supporting data prefetching

inside of SSDs. Table 1 presents the default settings of SSDsim in our experiments, which were

decided by either referring to prior studies [33, 34], or carrying out sensitive tests. Specifically,

Cache size is 32 MB by default, which is smaller than 0.1% of a 128 GB SSD device [36]. The relevant

sensitive analysis on scalability with varying size of cache will be described in Section 4.5.2.

The metric of Matching hit threshold in the table implies the condition of triggering a prefetching

operation after pattern matching, and the default value of matching hit threshold is configured as

50%, and the related sensitive analysis will be found in Section 4.5.1. The number of I/O requests in

each time window is setting to 1,024, and the first 256 requests in the window are used to disclose

frequent patterns to guide data prefetching. In addition, to reflect the impact of garbage collections,

before running traces, the simulated SSD is aged to that with 70% of its capacity being used [33, 34].

We employed nine commonly used disk traces [28, 29]. Specifically, websearch_1 and web-

search_2 (label as web1 and web2) are collected from UMass Trace Repository [30], and the next

five traces are from the block I/O trace collection of Microsoft Research Cambridge [31]. The

remaining two recent block I/O traces are recently collected from a part of an enterprise virtual
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Table 1. Experimental Settings of SSDsim (TLC Cell)

Parameters Values Parameters Values

Capacity 128 GB Read time 0.075 ms
Page per block 64 Write time 2 ms
Page size 8K Cache read/write 0.001 ms
Cache size 32 MB Elements in pattern [2, 10]
Fixed prefetch cache 8% Matching hit threshold 50%

Note: α and β in Equation (7) are then 0.074 ms and 1.999 ms.

ALGORITHM 1: Adaptive cache replacement policy

Input: args of read_addr_space , θ_cur , θ_prev ;

Output: completion of I/O processing in a time window;

1 /* quantifying the number of pages for prefetched data */

2 rd_paдes_cur = read_addr_space × θ_cur ;

3 rd_paдes_prev = read_addr_space × θ_prev ;

4 /*0: replacing read pages, 1: replacing write pages*/

5 rep_f laд = 0;

6 /* processing requests in the current time window */

7 for req in I/O Queue do

8 if req → addr hit in Cache then

9 continue;

10 end

11 rep_f laд = rd_paдes_cur ≥ rd_paдes_prev ? 1:0;

12 /*evicting cached data and buffering new written data*/

13 if req is aWrite then

14 lru_replace(req → size , rep_f laд)

15 if !rep_f laд then

16 rd_paдes_cur -= req → size;

17 end

18 load_in_cache(req → data);

19 end

20 /*carrying out pattern-based data prefetching */

21 else if req → addr hit in read_pattern then

22 pattern_prefetch(&bu f , read_pattern);

23 lru_replace(bu f → size , rep_f laд);

24 if rep_f laд then

25 rd_paдes_cur += bu f → size;

26 end

27 load_in_cache(bu f → data);

28 end

29 end

30 /* preparing the ratio parameter for next round. */

31 θ_prev = θ_cur ;

desktop infrastructure (VDI) [32]. Specifically, they are additional-05-1908-LUN1 (lun1) and

additional-05-1815-LUN1 (lun2). Among the selected block I/O traces, the evaluated workloads
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Table 2. Specifications on Selected Disk Traces (in Reverse Order By Read Ratio)

Trace # of Req. Read ratio Avg. read size Hot read Read/total footprint

web1 1,055,448 99.9% 15.1 KB 94.2% 0.02/0.02 GB
web2 4,579,809 99.9% 15.0 KB 98.4% 0.02/0.02 GB
hm1 609,311 95.3% 14.9 KB 42.0% 0.15/0.20 GB
lun1 1,249,625 66.8% 22.2 KB 1.1% 13.15/15.21 GB
lun2 1,370,658 59.8% 22.6 KB 2.4% 12.74/16.97 GB
usr0 2,237,889 40.5% 40.9 KB 49.4% 2.09/2.44 GB
hm0 3,993,316 35.5% 7.4 KB 32.7% 1.85/2.31 GB
src1_2 1,907,773 25.4% 19.1 KB 56.0% 1.56/1.97 GB
wdev0 1,143,261 20.1% 12.6 KB 69.3% 0.20/0.52 GB

are composed of three read-dominated traces, three read-write-balanced ones, and three write-

intensive ones. The detailed specifications on the traces are reported in Table 2. The metric of hot

read in the table represents the ratio of hot access addresses if they have been requested not less

than three times.

The following schemes are used in evaluation tests, including the baseline without prefetching

and other prefetching approaches.

— Baseline: which indicates the mechanism of data prefetching is not supported. That is to say,

the SSD cache is only used for buffering written data.

— Baseline-RB: which utilizes the SSD DRAM for caching both write and read data, while the

SSD DRAM of Baseline is only used for write data.

— C-Miner : which is a prefetching method by exploiting mining block correlations in storage

systems [27]. To fairly compare with other methods, this approach is implemented inside of

SSDs (not at the file system level), and adopts a fixed size of prefetch cache.

— Resource-Optimized Prefetching (ROP): which makes use of a Markov chains-based learn-

ing algorithm to predict batches of future reads, for eventually directing data prefetching

[20]. We argue that ROP is one of the works most related to ours, as it is implemented inside

of SSDs and has the features of OS dependence [20].

— Pattern: which is our previous work on SSD-inside prefetching [35]. It does support pattern-

based prefetching and makes use of an empirical rule to divide the SSD cache, for separately

buffering the written data and the prefetched data.

— Pattern+: which is the newly proposed prefetching scheme in the article. It is able to more

precisely support adaptive cache partition, by using the proposed comprehensive model.

4.2 Tests and Benefit Illustration

To measure the validity of the proposed prefetching mechanism that aims to enhance the prefetch-

ing accuracy and the cache use efficiency, we leverage the following three metrics in our tests: (a)

I/O response time, (b) prefetching hit per prefetch, and (c) cache use efficiency.

4.2.1 Read Response Time. Figure 7 shows the average read latency after replaying the selected

block traces by using varied prefetching schemes and two Baseline methods. As seen, four prefetch-

ing schemes can achieve an improvement on the read response time, compared with Baseline that

does not support prefetching. Intuitively, data prefetching can yield attractive performance im-

provements in the traces that have a high read ratio of requests (e.g., web1, web2, hm1) and a

relative large value of hot read (e.g., usr0, src1_2, wdev0). The noticeable clue shown in the figure is

that Baseline-RB achieves the best read performance when replaying the traces of web1 and web2,
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Fig. 7. Read latency of running selected block traces. Note that the absolute values using Baseline are shown

below the trace names.

but the worst read performance when replaying other selected traces. On the one hand, both web

traces have few write requests (there is even no GC operations after running both of them; see

Section 4.3.1), so that almost all the SSD cache can be devoted for buffering hot read data that

contribute to better read performance. On the other hand, Baseline-RB works very poorly when

running other traces having more write requests. This is because buffering the read data decreases

the cache space for the write data and then triggers more GC operations, which will delay the

routine processing on read/write requests.

Among all prefetching schemes, the proposed Pattern+ scheme can reduce the read latency by

33.8%, 8.8%, and 13.5% on average, in contrast to Baseline, C-Miner, and ROP. This is because

Pattern+ can more accurately prefetch data, which are most possibly accessed by the following read

requests by referring to the mined frequent access patterns. More importantly, Pattern+ can further

cut down the read response time by 4.3% on average, compared with Pattern. This is because

Pattern employs a simple empirical rule to determine the cache partition, but Pattern+ does have

a theoretical model for accurately guiding cache partition while running the benchmarks. Then,

Pattern+ is able to better make use of the cache and has a shorter read response time.

It is worthy to mention that our proposed method of Pattern+ has a slight improvement on read

latency compared with Baseline in dealing with the trace of hm0, though prefetching in Pattern+

only works in the first three time windows. We think this is because the fast processing on I/O

requests in the first few time windows will reduce the number of I/O requests in the waiting queue

in the following windows, and the prefetched data are gradually ejected from the prefetch cache

that also benefit read requests if their expected data are still in the prefetch cache.

4.2.2 Write and Overall I/O Time. Buffering the prefetched data in SSD cache must place neg-

ative effects to the performance of writing data, since a part of SSD cache is separated for the

prefetched data. The result of write response time is shown in Figure 8. Clearly, all prefetching

approaches slightly increase the write response time in the write-intensive workloads compared

with Baseline. The proposed Pattern+ scheme works the best among prefetching approaches and

it only increases the write response time by 0.22% on average. In the worst case of running the

trace of hm1 by comparing with Baseline, the prefetching schemes of C-Miner, ROP, Pattern, and

Pattern+ result in more write latency by 6.3%, 6.5%, 7.6%, and 4.4%, respectively.

We then record the overall I/O time to show the effectiveness of data prefetching after replaying

the selected traces, and Figure 9 presents the results. As seen, the proposed method of Pattern+

performs the best, and can cut down the total I/O latency by 18.5%, 5.1%, 9.0%, and 3.3% on

average, in contrast to Baseline, C-Miner, ROP, and Pattern. On the other hand, we can understand

ACM Transactions on Storage, Vol. 18, No. 1, Article 7. Publication date: January 2022.



7:14 J. Li et al.

Fig. 8. Write latency of running selected block traces.

Fig. 9. The total processing time of running selected block traces.

that data prefetching does not make sense on the reduction in overall I/O time while processing

hm0, src1_2, and wdev0. This is because these block I/O traces have a relative high ratio of write

requests, aggressively prefetching fails to offset the overhead of moving certain written data out

of the cache.

More importantly, Pattern+ can dynamically minimize or even remove the prefetch cache, when

running the write-intensive workloads or prefetching does not enhance I/O performance. Then,

Pattern+ outperforms other prefetching schemes (i.e., ROP and Pattern), and yields a similar overall

I/O time to Baseline while replaying the write-intensive I/O traces. In brief, Pattern+ can achieve

the best overall I/O time if data prefetching works well for the applications, but it does not bring

about many negative impacts on total I/O time in case data prefetching does not work.

4.2.3 Prefetching Hit Per Prefetch. To measure the effectiveness of different prefetching

schemes, we record the results of prefetching hits per prefetch, which is the division of the total

prefetching hits by the prefetch count. The total prefetching hit indicates the number of reads on

the prefetched data in the unit of page, and the prefetch count means the number of prefetched

pages. In the case of the same size of the prefetch cache, the larger prefetching hits per prefetch

indicates better prefetching effectiveness.

Figure 10 shows the results of prefetching hits per prefetch by using three prefetching approaches.

Since Baseline does not conduct data prefetching, it is not included in the figure. As seen, Pattern+

can noticeably enhance the metric of prefetching hits per prefetch by 1.44x and 3.67x on average

compared with C-Miner and ROP. Another interesting clue shown in the figure is that Pattern+

shows lower prefetching hit per prefetchs than Pattern. This is because Pattern+ commonly mini-
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Fig. 10. The results of prefetching hits per prefetch.

Fig. 11. Cache use efficiency: the total saved time induced by cache hits.

mizes and even removes the prefetch cache to 0 in some periods of (write-intensive) workloads.

Consequently, it may bring about less prefetching operations in such contexts and then has a lower

prefetching hits per prefetch in contrast to Pattern. But, Pattern+ is able to make more cache space

for the written data and to ensure a better overall I/O response time, as discussed in Section 4.2.2.

4.2.4 Cache Use Efficiency. We define the indicator of cache use efficiency as the saved time

induced by cache hits. It is the sum of the total read cache hits multiplied by α and the total write

cache hits multiplied by β , by referring back to Equation (7).

As seen in Figure 11, Baseline results in the lowest values of the saved time by cache hits when

replaying read-intensive traces. This is because prefetching does work well for such applications,

but Baseline does not support it. Baseline-RB shows the highest value of cache use efficiency in the

most cases, but it poses threats to write cache, and thus induces more write data to be ejected from

the write cache. In addition, we see the proposed Pattern+ method can also improve the metric

of cache use efficiency by 1.29x and 1.04x, compared with the related work of ROP and Pattern.

Pattern+ adaptively splits the cache into the prefetch cache and the write cache, and then achieves

the best cache use efficiency.
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Fig. 12. Ratio of prefetch cache to all cache.

4.2.5 Analysis on Adaptive Cache Partition. The related approaches of ROP and C-Miner employ

a fixed 8% cache for buffering the prefetched data [20]. On the other hand, adaptive cache partition

aims to allot an appropriate part of cache as the prefetch cache by referring the characteristics of

I/O workloads and the historical prefetching productivity. In our design, it turns off the prefetching

functionality if prefetching may not bring about positive effects; that means the portion of prefetch

cache becomes 0, and all cache spaces are devoted for written data.

Considering applications may have varied read/write states in the different stages, we then set

an upper limit (double of the default 8% in comparison counterparts) to avoid extreme cases. To be

specific, we think a large upper limit may worsen write performance in some cases. For instance,

the application has intensive write workloads in the forthcoming time window but had intensive

reads and prefetching that worked very well in the previous time window. Figure 12 presents the

statistics on the ratio of prefetch cache to all cache. As shown, it adopts different ratios for different

traces, and even varied ratios in different time windows for the same trace.

Because the traces of web1, web2, and hm1 are read-heavy, the proposed scheme of adaptive

cache management reaches the upper limit of 16% in the most stages of workloads. Specifically,

we see prefetching is disabled in most time windows in the case of hm0, as prefetching will pose

negative impacts on write performance. Regarding other block traces, Pattern+ adopts the varied

size of prefetch cache in different time windows, for adaptively making use of whole SSD cache to

keep the prefetched data and the written data. In brief, adaptive cache management can contribute

to read performance improvements and more efficient cache use management, whenever running

the workloads with varied characteristics.
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Fig. 13. Erase statistics caused by garbage collection.

4.3 Overhead Analysis

This section presents the overhead caused by our proposed mechanism. It first analyzes the garbage

collection erases caused by write amplification. Then, it analyzes the time consumption caused by

pattern mining and pattern matching. After that, the space overhead resulted by holding frequent

access patterns and the matching matrix will be reported.

4.3.1 Erase Overhead. Figure 13 indicates the erase number comparison after running all work-

loads. The results are normalized to those of Baseline, and the absolute erase numbers using Base-

line are shown below the trace names. Two read-intensive workloads (i.e., web1 and web2) do not

have any GC operations since the available space after running them is not less than the pre-

defined GC threshold; meanwhile, the other workloads have different rates of normal GC erases.

As seen, Baseline-RB shows more erase numbers more by 119%, in contrast to baseline. This is be-

cause Baseline-RB buffers both read and write data in the SSD DRAM, and then a large number of

write data are ejected onto SSD chips, which must lead to more garbage collections. In fact, this is

the reason why Baseline-RB achieves the best I/O response time in the read-dominant traces, but

the worst I/O response time in other selected traces having GC operations.

On the other hand, we can understand that all prefetching methods result in more erase opera-

tions, since separating a part of SSD DRAM for holding the prefetched data must eject more write

data onto SSD chips (i.e., write amplification). More exactly, ROP, C-Miner, Pattern, and Pattern+

result in more erase operations by 0.99%, 1.00%, 0.92%, and 0.83% on average, compared with

Baseline.

4.3.2 Time Overhead. The comparison counterparts of Baseline and ROP do not carry out min-

ing frequent patterns and matching relevant current requests with mined patterns, so that they do

not bring about any mining and matching overhead. But, our pattern-based prefetching scheme

does result in certain mining and matching overhead. In general, the mining and matching over-

head is related to the number of total requests and the number of frequently read addresses in the

trace. Figure 14 shows the time required by mining hot read pattern and matching the current re-

quests with the mined patterns, when using Pattern and Pattern+. In the figure, the bars represent

the time overhead, and the dots indicate the ratio of such overhead to total I/O processing time.

As seen, the mining and mapping overhead is less than 4.46 seconds for all traces and less than

1.39% of the total I/O processing time, which is acceptable. In the traces except for read-intensive

ones (i.e., except for web1, web2), it only takes less than 0.068% of the total I/O processing time.

Note that the results of read/overall I/O time reported in Sections 4.2.1 and 4.2.2 have considered

the impact of time overhead toward I/O response time.
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Fig. 14. Frequent pattern mining and matching overhead in Pattern and Pattern+.

Table 3. The Mined Pattern Statistics on Selected Traces

Trace Avg. pattern size Trace Avg. pattern size

web1 5.6 usr0 6.5
web2 5.5 hm0 5.4
hm1 4.9 src1_2 6.3
lun1 3.0 wdev0 6.5
lun2 7.3

4.3.3 Space Overhead. The space overhead is mainly caused by holding mined patterns and

the match matrix, and Table 3 shows the statisitical data on mined frequent access patterns in the

selected traces. For example, each pattern consists of 6.5 logical sector addresses on average after

running usr0.

Our proposal does require extra memory space for holding the information to direct pattern-

based prefetching, but it can improve the prefetching efficiency and thus reduce I/O latency. In

fact, the matching matrix is updated in units of time windows and each time window has 1,024
requests by default. We observe that only a very small part of windows have more than 32 mined

patterns and 128 logical addresses in all mined patterns, which is 2.5% and 3.7% on average after

running all selected traces. Therefore, we construct and maintain the matching matrix having 128
columns and 32 rows in our tests, for not wasting memory space to hold the matching matrix. In

the worst case, it holds a matching matrix to maintain the pattern information and to carry out the

pattern matching, which only consumes 5.625 KB (=32 (rows)*128 (columns)*1bit (recording 0
or 1) +32 (rows)*4B (recording an address number) +128 (columns)*10 (maximum pattern element)

*4B) taking a negligible amount of memory space in SSDs. Specifically, 1bit means each record

content (i.e., 0 or 1) in the matching matrix, and 4B represents space overheads for holding each

entry information of both row and column.

4.4 Case Study on Hybrid Workloads

Write amplification aggravates garbage collection operations and then affects I/O performance. In

order to verify the effectiveness of our proposal for running complicated and long-time workloads,

this section conducts a case study to run large hybrid workloads. We compose seven hybrid work-

loads by combining the selected traces previously reported in Table 2, and the detailed combination
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Table 4. Specifications on hybrid traces

Trace Components Read/total volume Read/total footprint

whole 9 selected traces 181.42/284.08 GB 26.95/34.03 GB
read3 3 read-domained traces 89.33/89.88 GB 0.17/0.21 GB
balance3 3 balanced traces 70.56/100.90 GB 25.09/31.54 GB
write3 3 write-intensive traces 21.53/93.31 GB 2.39/3.57 GB
hybrid1 read3 + balance3 159.89/190.78 GB 25.19/31.67 GB
hybrid2 read3 + write3 110.86/183.18 GB 2.46/3.63 GB
hybrid3 balance3 + write3 92.10/194.20 GB 26.91/33.99 GB

specifications are presented in Table 4. Figure 15 shows the results of critical performance metrics

(i.e., I/O response time and erase numbers), after running the hybrid block I/O traces.

As seen in Figure 15(a), Pattern+ yields the least read latency, which further proves the effective-

ness of the proposed prefetching approach with adaptive cache adjustment. On the other hand, all

prefetching schemes result in a slight drop in write performance, as demonstrated in Figure 15(b).

Specifically, Pattern+ leads to more write time by merely 0.51% on average, compared with Base-

line. This is due to the fact that separating a part of SSD DRAM as a prefetch cache will cause

write amplification, as discussed in Section 4.2.2. When it comes to the overall I/O performance

shown in Figure 15(c), Pattern+ decreases the overall I/O performance by 8.71%, 3.24%, 5.09%,
and 1.46%, compared with Baseline, C-Miner, ROP, and Pattern.

With respect to the impacts of write amplification when running large workloads, we count

the number of erase operations induced by garbage collections, and Figure 15(d) presents the re-

sults. As shown, the proposed method of Pattern+ only causes more garbage collections by less

than 1.23%, compared with Baseline. Then, we conclude that our proposal can also work well for

long-time workloads, and does not trigger too much garbage collection operations to impact the

performance of the I/O operations.

4.5 Sensitivity and Scalability

4.5.1 Sensitivity Analysis. Because the elements of frequent access patterns rarely appears more

than 10, we set the pattern elements between 2 and 10. This section presents the sensitive study

on the pattern matching hit threshold. Because the minimum pattern element is 2, the sensitive

study matching hit threshold starts from 50%. Figure 16 shows the results of prefetching hits per

prefetch (i.e., the prediction accuracy) and the normalized I/O response time by employing varied

thresholds in pattern matching. As seen in Figure 16(a), the measure of prefetching hits per prefetch

slightly improves when the matching hit threshold is becoming larger. But note that a higher value

of matching hit threshold indicates less prefetching operations even though they have similar ten-

dency on prefetching hits per prefetch. Let us take wdev0 as an example; we count the prefetching

operations under the threshold of 90% are 4,272 times less than that under 50%. As a result, the

improvements on read latency caused by prefetching become different, which have been illus-

trated in Figure 16(b). In brief, by considering both measurements of prefetching accuracy and I/O

performance, we select 50% as the default one in our tests.

In order to determine the size of time window in our evaluation, we set different values of 256,

512, 1,024, and 2,048 to carry out sensitive analysis. Figure 17 shows the results of the prefetch-

ing hits per prefetch (i.e., the prediction accuracy) and normalized I/O response time by adopting

different time window sizes. As seen in Figure 17(a), 1,024 and 2,048 of time window size yield

good prediction accuracy in selected block I/O traces. This is because more history information can

result in a higher prediction accuracy. Moreover, we see that 1,024 of time window size unveils
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Fig. 15. I/O performance and erase on hybrid workloads.
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Fig. 16. Sensitive analysis on pattern matching hit ratio.

the best I/O performance in the most traces, as demonstrated in Figure 17(b). Then, by considering

both the prefetching accuracy and the I/O response time, we set 1,024 as the default time window

size in our tests.

4.5.2 Scalability Analysis. This section reports the scalability of Pattern+ on varied sizes of SSD

cache, and Figure 18 discloses the detailed results about different cache sizes from 4M to 64M. Our

proposed schemes of Pattern and Pattern+ achieve a noticeable improvement on I/O response time

compared with Baseline and ROP. This fact further verifies that our proposal can yield a good

scalability.

Specifically, in the cases of running web1 and web2, Baseline does not conduct any prefetching

scheme, so it cannot achieve I/O improvement in these two read-intensive traces, even though

the cache size does increase. In addition, when the cache size increases, all schemes do not yield

obvious improvements on I/O response time while replaying the traces of lun1 and lun2. This is

because these two traces have few hot access addresses (i.e., the number of cache hits is confined),

and then a large cache size cannot notably benefit I/O performance improvements.

4.6 Summary

With respect to comparing pattern-based prefetching and Markov chains-based prefetching, we

emphasize the following two key observations. First, the proposed pattern-based prefetching

scheme can cause a higher degree of accuracy in forecasting a batch of future read requests,
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Fig. 17. Sensitive analysis on time window size.

by avoiding unnecessary prefetching operations. Second, the proposed scheme of adaptive cache

management, which is based on the theoretical model, can dynamically divide the SSD cache into

the prefetch cache and the write cache, to further boost the efficiency of cache use. In brief, we

conclude that the proposed prefetching scheme is able to significantly enhance the effectiveness

of data prefetching and yield a better I/O performance improvement.

5 CONCLUSIONS

This article has proposed, implemented, and evaluated an OS-independent data prefetching mech-

anism for SSDs. It first mines frequent read patterns from the history of read accesses. After that, a

matrix data structure is introduced to match the in-queue read requests and the mined patterns, for

guiding data prefetching. More importantly, in order to maximize the use efficiency of SSD cache,

we have built a mathematical model for supporting adaptive cache management. It dynamically

separates SSD cache into the write cache and prefetch cache, for respectively buffering the written

data and prefetched data, on the basis of the I/O characteristic of workload and the prefetching

efficiency. In brief, our proposed prefetching scheme can better take advantage of SSD cache and

thus improve the I/O performance.

Through a series of emulation experiments based on several realistic disk traces, we show that

the proposed pattern-based prefetching scheme can reduce I/O response time by up to 36.5% on

average. In addition, the experimental results illustrate the adaptive cache partition policy has the

nature of flexibility, and can noticeably enhance the cache use efficiency by up to 2.2x, in contrast

to other comparison counterparts.
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Fig. 18. Scalability analysis on cache sizes.
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