
Hardware Performance Variation:

A Comparative Study Using

Lightweight Kernels

Hannes Weisbach1(B), Balazs Gerofi3, Brian Kocoloski2, Hermann Härtig1,
and Yutaka Ishikawa3

1 Operating Systems Chair, TU Dresden, Dresden, Germany
{weisbach,haertig}@os.inf.tu-dresden.de

2 Washington University in St. Louis, St. Louis, USA
brian.kocoloski@wustl.edu

3 RIKEN Advanced Institute for Computational Science, Kobe, Japan
{bgerofi,yutaka.ishikawa}@riken.jp

Abstract. Imbalance among components of large scale parallel simu-
lations can adversely affect overall application performance. Software
induced imbalance has been extensively studied in the past, however,
there is a growing interest in characterizing and understanding another
source of variability, the one induced by the hardware itself. This is
particularly interesting with the growing diversity of hardware platforms
deployed in high-performance computing (HPC) and the increasing com-
plexity of computer architectures in general. Nevertheless, characterizing
hardware performance variability is challenging as one needs to ensure a
tightly controlled software environment.

In this paper, we propose to use lightweight operating system ker-
nels to provide a high-precision characterization of various aspects of
hardware performance variability. Towards this end, we have developed
an extensible benchmarking framework and characterized multiple com-
pute platforms (e.g., Intel x86, Cavium ARM64, Fujitsu SPARC64, IBM
Power) running on top of lightweight kernel operating systems. Our ini-
tial findings show up to six orders of magnitude difference in relative
variation among CPU cores across different platforms.

Keywords: Performance variation · Performance characterization
Lightweight kernels

1 Introduction

Since the end of Dennard scaling, performance improvement of supercomputing
systems has primarily been driven by increasing parallelism. With no end in
sight to this trend, it is projected that exascale systems will reach multi-hundred
million-way of thread level parallelism [1], which by itself poses a crucial challenge
in efficiently utilizing these platforms. Further complicating things, the majority

c© Springer International Publishing AG, part of Springer Nature 2018
R. Yokota et al. (Eds.): ISC High Performance 2018, LNCS 10876, pp. 246–265, 2018.
https://doi.org/10.1007/978-3-319-92040-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92040-5_13&domain=pdf


Hardware Performance Variation 247

of current large-scale parallel applications follow a lock-step execution model,
where phases of computation and tight synchronization alternate and imbalance
across components can lead to significant performance degradation. Additionally,
unpredictable performance also complicates tuning, as it becomes difficult to tell
apart performance differences induced by platform variability from the result of
the tuning effort.

Although performance variability is a well-studied problem in high-perfor-
mance computing (HPC), for the most part variability has historically been
induced by either operating system or application software. For example, it has
been shown that interference from the system software (a.k.a., OS jitter or OS
noise) can have an adverse impact on performance [2–5]. This has led to sev-
eral efforts in lightweight operating systems [6–8] that reduce OS jitter, as well
as work in parallel runtimes that attempt to balance load dynamically across
processors at runtime [9,10]. However, exascale computing is driving a separate
trend in hardware complexity and diversity that may further complicate the
issue. With the increasing complexity of computer architecture and the grow-
ing diversity of hardware (HW) used in HPC systems, variability caused by the
hardware itself [11] may become as problematic as software induced variability.
Examples of causes for hardware induced variability include differences between
SKUs of the same model due to process variation [12] during manufacturing, the
impact of shared resources in multi/many-core systems such as shared caches
and the on-chip network, or performance variability due to thermal effects [13].

While system software induced variability can be addressed by, for instance,
lightweight operating system kernels [7,14–16], HW variability is a latent
attribute of the system. As of today, there is little understanding of how the
degree of hardware induced variability compares to that induced by software,
and whether or not this difference varies across different architectures. One of
the primary issues with precisely characterizing hardware performance variabil-
ity is that measurements of hardware variability need to be made in such a
fashion that eliminates software induced variability as much as possible, but
making this differentiation is challenging on large scale HPC systems due to the
presence of commodity operating system kernels. For example, a recent study
investigated run-to-run variability on a large scale Intel Xeon Phi based system
[11], but because of the Linux software environment, it is currently difficult to
attribute all of the variability exclusively to the hardware platform.

In this paper, we provide a solution to this problem by designing a perfor-
mance evaluation framework that leverages lightweight operating system kernels
to eliminate software induced variability. With this technique we systematically
characterize hardware performance variability across multiple HPC hardware
architectures. We have developed an extensible benchmarking framework that
stresses different HW components (e.g., integer units, FPUs, caches, etc.) and
measures variability induced by these components. Given that variability is a key
measure of how well an architecture will perform for large scale parallel work-
loads, our work is a key step towards understanding the capabilities of new and
emerging architectures for HPC applications and to help HPC architects and



248 H. Weisbach et al.

programmers to better understand whether or not the magnitude of variability
induced by the hardware is an issue for their intended workloads.

This paper focuses on per-core performance variation with limited memory
usage, i.e., limiting working set sizes so that they fit into first level caches.
The results provided here constitute our first steps towards a more comprehen-
sive characterization of the HW performance variability phenomenon, including
measurements that involve simultaneous usage of multiple cores/SMT threads,
higher level caches, the memory subsystem, as well as comparison across multi-
ple SKUs of particular CPU models. Specifically, this paper makes the following
contributions:

– We propose a benchmarking framework for systematically characterizing
different aspects of hardware performance variability running on top of
lightweight kernel operating systems.

– Using the framework we provide a comprehensive set of measurements on per-
core run-to-run hardware performance variability comparing Intel Xeon, Intel
Xeon Phi, Cavium ThunderX (64 bit ARM), Fujitsu FX100 (SPARC-V9) and
IBM BlueGene/Q (PowerISA) platforms.

– We use our performance evaluation framework to highlight a number inter-
esting architectural differences. For example, we find that some workloads
generate six orders of magnitude difference between variability on the FX100
and the Xeon Phi platforms. We also demonstrate that the fixed work quan-
tum (FWQ) test [17], often used for OS jitter measurements is not a precise
instrument for characterizing performance variability.

The rest of this paper is organized as follows. We begin with related work
in Sect. 2. We provide background information on lightweight kernels and the
architectures we investigated in Sect. 3. We describe our approach in Sect. 4
and provide measurements and performance analysis in Sect. 5. Finally, Sect. 6
concludes the paper.

2 Related Work

Performance variability is an age-old problem in high-performance computing,
with a plethora of research efforts over the past several decades detailing its
detrimental impacts on tightly coupled BSP applications [18]. There are many
diverse sources of variability, ranging from contention for cluster level resources
such as interconnects [19] and power, to “interference” from operating system
daemons [4,5], or intrinsic application properties that make it challenging to
evenly balance data and workload a priori – for example, when application
workload evolves and changes during runtime.

To mitigate these classes of variability, the HPC community has generally
leveraged two strategies: (1) lightweight operating systems that reduce kernel
interference by eliminating daemons and other unnecessary system services,
and (2) parallel runtimes that provide mechanisms to respond to variability
by, for example, balancing load [9,10,13], or by saving energy by throttling



Hardware Performance Variation 249

power [20,21] on the portions of the system less impacted by the particular
source of variability.

Despite these efforts, there are indications that performance variability is
poised to increase not only as a function of system software and algorithmic
challenges, but also as a function of intrinsic hardware characteristics. With
architectures continuing to trend towards thousand-way parallelism with het-
erogeneous cores and memory technologies, other architectural resources such
as buses, interconnects, and caches are shared among a large set of processors
that may simultaneously compete for them. While it is possible that parallel
runtimes can address the resulting variability to some degree, recent research
results indicate that today’s runtimes are not particularly well suited to this
type of hardware variability [22]. Thus, we believe there is a need for a per-
formance evaluation framework that can precisely quantify the extent to which
intrinsic hardware variability exists in an architecture.

As we mentioned earlier, multiple studies have investigated performance vari-
ation at the level of an entire distributed machine, however, none of them utilized
lightweight kernels to clearly distinguish software and hardware sources [11,18].
It is also worth noting that the hardware community has been aware of some
of these issues, for example, Borkar et al. showed the impact of voltage and
temperature variations on circuit and microarchitecture [23].

3 Background

3.1 Lightweight Kernels

Lightweight kernels (LWKs) [16] tailored for HPC workloads date back to the
early 1990s. These kernels ensure low operating system noise, excellent scalability
and predictable application performance for large scale HPC simulations. Design
principles of LWKs include simple memory management with pre-populated
mappings covering physically contiguous memory, tickless non-preemptive (i.e.,
co-operative) process scheduling, and the elimination of OS daemon processes
that could potentially interfere with applications [15]. One of the first LWKs
that has been successfully deployed on a large scale supercomputer was Cata-
mount [14], developed at Sandia National laboratories. IBM’s BlueGene line of
supercomputers have also been running an HPC-specific LWK called the Com-
pute Node Kernel (CNK) [7]. While Catamount has been developed entirely
from scratch, CNK borrows a significant amount of code from Linux so that
it can better comply with standard Unix features. The most recent of Sandia
National Laboratories’ LWKs is Kitten [8], which distinguishes itself from their
prior LWKs by providing a more complete Linux-compatible environment. There
are also LWKs that start from Linux and modifications are done to meet HPC
requirements. Cray’s Extreme Scale Linux [24,25] and ZeptoOS [26] follow this
path. The usual approach is to eliminate daemon processes, simplify the sched-
uler, and replace the memory management system. Linux’ complex code base,



250 H. Weisbach et al.

however, can be prohibitive to entirely eliminate all undesired effects. In addi-
tion, it is also difficult to maintain Linux modifications with the rapidly evolving
Linux source code.

Recently, with the advent of many-core CPUs, a new multi-kernel based
approach has been proposed [6,27–29]. The basic idea of multi-kernels is to run
Linux and an LWK side-by-side on different cores of the CPU and to provide OS
services in collaboration between the two kernels. This enables the LWK cores
to provide LWK scalability, but also to retain Linux compatibility.

As we will see in Sect. 4, from this study’s perspective the most impor-
tant aspect of multi-kernel systems is the LWK’s jitterless execution environ-
ment, which enables us to perform HW performance variability measurements
with high precision. Note that several of the aforementioned studies considering
lightweight kernels have investigated the jitter induced by the Linux kernel and
thus we intentionally do not include results from Linux measurements in this
work.

3.2 Growing Architectural Diversity in HPC

Over the course of the past two decades, the majority of HPC systems have
deployed clusters of homogeneous architectures based on the Intel/AMD x86
processor family [30], reflecting the overall dominance and ubiquity of x86 for
heavy duty computational processing during this period. Architects and appli-
cations programmers have largely been successful at gleaning maximum perfor-
mance from these processors by extensively tuning and optimizing key mathe-
matical libraries, as well as leveraging low latency, high bandwidth interconnects
to allow workloads to scale well with the number of machines. Based on the large
body of effort in this space, a critical mass developed around the x86 ecosystem,
which fueled further development and productivity for many generations of HPC
systems.

However, the exascale era has brought a new set of problems, stemming from
the end of Dennard scaling and increasing power and energy concerns, which are
driving a shift away from solely commodity x86 servers towards a more diverse
set of chip architectures and processors. On the one hand, to continue to provide
increasing levels of parallelism, chip architectures have turned to heterogeneous
resources. This can be seen with many-core processors, such as Intel Xeon Phi,
now deployed on several large supercomputers [30]. Furthermore, the emergence
of heterogeneous processors has created a need for other types of heterogeneous
resources; for example, high bandwidth memory devices are provided alongside
DDR4 on Intel Xeon Phi chips to provide the requisite bandwidth needed by the
many cores.

At the same time, a renewed focus on power and energy efficiency has caused
the HPC community to consider a wider set of more energy efficient processor
architectures. Due to its widespread use in mobile devices where power efficiency
has long been a key concern, ARM processors are seen as one candidate archi-
tecture, with several research efforts demonstrating energy efficiency benefits for



Hardware Performance Variation 251

Table 1. Summary of architectures.

Platform/Property Intel Ivy
Bridge

Intel KNL Fujitsu
FX100

Cavium
ThunderX

IBM
BG/Q

ISA x86 x86 SPARC ARM PowerISA

Nr. of cores 8 64 + 4 32 + 2 48 16 + 2

Nr. of SMT threads 2 4 N/A N/A 4

Clock frequency 2.6 GHz 1.4 GHz 2.2 GHz 2.0 GHz 1.6 GHz

L1d size 32 kB 32 kB 64 kB 32 kB 16 kB

L1i size 32 kB 32 kB 64 kB 78 kB 16 kB

L2 size 256 kB 1 MB x 34 24 MB 16MB 32 MB

L3 size 20480 kB N/A N/A N/A N/A

On-chip network ? 2D mesh ? ? Cross-bar

Process technology 22 nm 14 nm 20 nm 28 nm 45 nm

HPC workloads [31,32], as well as indications that ARM chips are on a simi-
lar performance trajectory as x86 chips before they started to gain adoption in
HPC systems in the early 2000s [33]. Other processors with RISC-based ISAs,
such as SPARC’s SPARC64 processors used in Fujitsu’s K-computer [34], present
potential energy-efficient options for HPC.

Whether focusing on diversity in ISAs or heterogeneity of resources within
a specific architecture, it is clear that the HPC community is facing a range of
architectural diversity that has largely not existed for the past couple of decades.
In this paper, we carefully examine some of the key architectural differences
across a set of architectures, with a focus on the consistency of their performance
characteristics. While others have performed performance comparisons across
these architectures for HPC [33] and more general purpose workloads [31], we
focus on the extent to which performance variability arises intrinsically from the
architecture.

3.3 Architectures

While our framework is configurable to measure both core-specific as well as core-
external resources, in this paper we present a detailed analysis of key workloads
utilizing only core-local resources. In each of these architectures, this includes
L1/L2 caches, as well as the arithmetic and floating point units of the core. We
study these resources to understand how and if different processor architectures
generate variability in different ways.

Table 1 summarizes the architectures used in our experiments. We went to
great lengths to cover as many different architectures as we could, given the
condition that we needed to deploy a lightweight kernel. We used two Intel
platforms, Intel Xeon E5-2650 v2 (Ivy Bridge) [35] and Intel Xeon Phi Knight’s
Landing [36]. We also used Fujitsu’s SPARC64 XIfx (FX100) [37], which is the
next generation Fujitsu chip after the one deployed in the K Computer. ARM has



252 H. Weisbach et al.

been receiving a great deal of attention for its potential in the supercomputing
space during the past couple of years. We used Cavium’s ThunderX CP [38] in
this paper to characterize a processor implementing the ARM ISA. Finally, we
also used the BlueGene/Q [39] platform from IBM.

Some of these platforms suite multi-kernels by design offering CPU cores
separately for OS and application activities. The KNL is equipped with 4 OS
CPU cores, leaving 64 CPUs to the application, while the FX100 and BG/Q
have 2 OS cores and provide 32 and 16 application cores, respectively. This is
indicated by the plus sign in Table 1. Except FX100 and ThunderX, all platforms
provide symmetric multithreading. The cache architecture also exhibit visible
differences across platforms. For example, the KNL has 1 MB of L2 cache on
each tile (i.e., a pair of CPU cores), which makes the overall L2 size 34 MBs.
Except Intel’s Ivy Bridge, all architectures provide only two levels of caches. We
couldn’t find publicly available information regarding the on-chip network for
all architectures, we left a question mark for those.

4 Our Approach: Lightweight Kernels to Measure HW

Performance Variability

To provide a high precision characterization of hardware performance variability
we need to ensure that we have absolutely full control over the software envi-
ronment in which measurements are performed. We assert that Linux is not an
adequate environment for this purpose. The Linux kernel is designed with general
purpose workloads in mind, where the primary goal is to ensure high utilization
of the hardware by providing fairness among applications with respect to access
to underlying resources.

4.1 Drawbacks of Linux

While Linux based operating systems are ubiquitous on supercomputing plat-
forms today, the Linux kernel is not built for HPC, and many Linux kernel
features have been identified as problematic for HPC workloads, ranging from
variability in large page allocation and memory management [40], to untimely
preemption by kernel threads and daemons [5], and to unexpected delivery of
interrupts from devices [41]. Generally speaking, these issues arise from the Linux
design philosophy, which is to highly optimize the common case code paths with
“best effort” resource management policies that minimize average case perfor-
mance but that sacrifice worst-case performance. This is in contrast to the poli-
cies used in lightweight kernels that attempt to converge the worst and average
case behavior of the kernel so as to eliminate software induced variability.

While the behavior of the Linux kernel can be optimized to some degree for
HPC workloads via administrative tools (e.g., cgroups, hugeTLBfs, IRQ affini-
ties, etc.) and kernel command line options (e.g., the isolcpus and nohz full

arguments), the excessive number of knobs renders this process error prone and
the complexity of the Linux kernel prohibits high-confidence verification even
for a well-tuned environment.



Hardware Performance Variation 253

Fig. 1. Overview of the IHK/McKernel architecture.

4.2 IHK/McKernel and CNK

Because of these issues, we instead rely on lightweight operating system kernels
introduced in Sect. 3. Specifically, we used the IHK/McKernel [42], [6] lightweight
multikernel in this study on all architectures except the BlueGene/Q where
we took advantage of IBM’s proprietary lightweight kernel [7]. While not the
primary contribution of the paper, this work involved significant efforts related
to porting IHK/McKernel to multiple platforms, in particular support for the
ARM architecture.

The overall architecture of IHK/McKernel is shown in Fig. 1. What makes
McKernel suitable for this purpose is that we have full control over OS activities
in the LWK. For example, there are no timer interrupts or IRQs from devices,
there is no load balancing across CPUs and anonymous memory is mapped
by large pages. All daemon processes, device driver and Linux kernel thread
activities are restricted to the Linux cores. On the other hand, the multi-kernel
structure of McKernel ensures that we can run standard Linux applications
and it also makes multi-platform support considerably easier as we can rely on
Linux for device drivers. As for BlueGene/Q, CNK provides a similarly controlled
environment, although it is a standalone lightweight kernel that runs only on
IBM’s platform.

5 Performance Analysis

Previous studies on software induced performance variation relied on the FWQ
and FTQ benchmarks to capture the influence of the system software stack
on application codes. We hypothesize that simple benchmarks kernels like
FWQ/FTQ or Selfish are insufficient to capture hardware performance varia-
tion. The full extent of hardware performance variation can only be observed
when the resources which cause these variations are actually used. For basically
empty loops which perform almost no computation this premise is not true. We
propose a diverse set of benchmark kernels which exercise different functional
units and resources as well as their combinations in an effort to reveal sources
of hardware performance variation.



254 H. Weisbach et al.

5.1 Benchmark Suite

Our benchmark suite currently consists of eight benchmark kernels and four sub-
kernels. We selected our kernels from well-known algorithms such as DGEMM
and SHA256, Mini-Apps, and micro benchmarks.

FWQ. To test our hypothesis we have to include FWQ in our benchmark suite
to provide a baseline. The FWQ benchmark loops for a pre-determined amount
of times. The only computation is the comparison and increment of the loop
counter.

DGEMM. Matrix multiplication is a key operation used by many numerical
algorithms. While special algorithms have been devised to compute a matrix
product, we confine ourselves to näıve matrix multiplication to allow compilers
to emit SIMD instructions, if possible. Thus, the DGEMM benchmark kernel is
intended to measure hardware performance variation for double-precision float-
ing point and vector operations.

SHA256. We use the SHA256 algorithm to exert integer execution units to
determine if hardware performance variation measurably impacts integer pro-
cessing.

HACCmk. HACCmk from the CORAL benchmark suite is a compute-intensive
kernel with regular memory accesses. It uses N-body techniques to approximate
forces between neighboring particles. We adjusted the number of iterations for
the inner loop to achieve shorter runtimes. We are not interested in absolute
performance, but rather the difference of performance for repeated invocations.

HPCCG. HPCCG, or High Performance Computing Conjugate Gradients, is a
Mini-App aimed at exhibiting the performance properties of real-world physics
codes working on unstructured grid problems. Our HPCCG code is based on
Mantevo’s HPCCG code. We removed any I/O code, notably printf() statements,
and timing code so that only raw computation is performed by the kernel.

MiniFE. MiniFE like HPPCG is a proxy application for unstructured implicit
finite element codes from Mantevo’s benchmark suite. We also removed or dis-
abled code related to runtime measurement, output, and logfile generation so
our measurement is not disturbed by I/O operations.

STREAM. We include John McCalpin’s STREAM benchmark to assess vari-
ability in the cache and memory subsystems. In addition we also provide the
STREAM-Copy, STREAM-Scale, STREAM-Add, and STREAM-Triad as sub-
kernels.

Capacity. The Capacity benchmark is intended to measure the performance
variation of cache misses themselves. The Capacity benchmarks does so by touch-
ing successive cache lines of a buffer that is twice the size of the cache to under
measurement.

For most of the benchmarks the input parameters adjust the problem size
and thus benchmark runtime. As discussed below, we decouple problem size



Hardware Performance Variation 255

and benchmark runtime so that we can adjust problem size and benchmark
runtime independently. While our benchmarking framework allows to configure
benchmarks for arbitrary problem sizes, in this study we focus on problem sizes
that fit into the L1 caches of our architectures. The idea is to eliminate or at least
minimize the impact of the memory subsystem and shared resources beyond the
L1 cache when we attempt to measure the performance variation of execution
units. We adjust the working set to 90% of the L1 data cache size, except for the
Capacity benchmark, where we set the working set to twice the L1 data cache
size.

We repeat a benchmark multiple times to fill a fixed amount of wallclock
time with computation. A fixed time goal, in contrast to a fixed amount of
work, allows us to dynamically adjust the amount of work to the performance of
each platform and keep the total runtime of the benchmarks manageable. This
is possible, because we are not interested in the absolute performance of each
architecture but rather how performance varies between benchmark runs.

We select a benchmark runtime of 1 s to balance overall runtime and still have
a long enough benchmark runtime to have meaningful results. After selecting the
wallclock time, the benchmark suite performs a preparation run to estimate the
number of times a benchmark has to be repeated to fill the requested amount of
runtime with computation, which we call rounds.

We use architecture-specific high-resolution tick counters for performance
measurement. For x86 64, we use the Time Stamp Counter with the rdtscp

instruction. On AArch64 we use the mrs instruction to read the Virtual Timer
Count register, CNTVCT EL0, which is accessible from userspace. SPARC64
offers a TICK register, which we read with the rd %%tick-mnemonic. On the
BlueGene/Q we use the GetTimeBase() inline function, which internally reads
the Time Base register of the Power ISA v.2.06.

Timing measurements using architecture-specific high resolution timers
are the lowest-level software-only measurements possible. We have considered
employing performance counter data to narrow down sources of variability, but
ultimately decided against it for the following reasons: (1) equivalent perfor-
mance counters are not available on all architectures, (2) performance counters
also vary between models of a single architecture, and (3) performance counter
are occasionally poorly documented and/or do not work as documented. Nev-
ertheless our framework has performance counter support for selected architec-
tures, which we utilize to verify cache behavior. We plan to extend performance
counter support to all architectures in the future.

Our benchmark suite is designed to run benchmarks on physical or SMT
cores. Cores can be measured either in isolation by measuring core after core or
a group of cores at once. The isolation mode is intended to measure core-local
sources of variation, while the group-mode allows to measure variation caused
by sharing resources between cores. Examples of interesting groups include all
SMT-threads of a physical core, the first SMT-thread of all physical cores, or all
SMT-threads of a processor. We restrict ourselves to measurements of all SMT-
threads in isolation-mode in this first study of hardware performance variation.



256 H. Weisbach et al.

Note that during the measurement of a core in isolation-mode all other cores in
the system are idle.

To obtain a measure of performance variation we repeat a benchmark 13
times and discard the first three iterations as warm-up. We use the remaining
ten measurements of each SMT thread to determine the performance variation.
We use two measures of variation in the study. The first measure normalizes the
variation to the median performance of each core, the second to the minimum
runtime measured for each core. We use the median-based measure when plotting
performance variation for all cores of a machine. Given a vector x, let x̃ be the
median of x. We visualize the variation by plotting the result of

(x − x̃)/x̃ ∗ 100.

Since this measure is based on the median variation might be positive as well as
negative.

To reduce the variation of a single core into a single number, we calculate

maxx/minx ∗ 100 − 100

which yields the highest observed variation as percentage of the minimal observed
runtime. Because the variations we observed between cores exhibited high fluc-
tuation we decided against reducing the result to a single number, for example
calculating a mean or average. Instead, we aim to preserve not only the minimal
and maximal variation observed for each architecture, but also how the mea-
sured variations are distributed. Therefore, we present the measured variations
in the form of a violin plot.

5.2 Results

We begin our evaluation by substantiating our claim that “empty loop bench-
marks” such as FWQ are not suitable to measure hardware performance varia-
tion. In Fig. 2 we plot the measured variation of each SMT core of our 2-socket
x86 64 Intel Ivy Bridge E5-2650 v2 platform with FWQ and HPCCG. We set the
working set size of HPCCG to 70% of the L1 data cache size (32 KiB). We use
the median-based variation, described in the previous paragraph, i.e. for each
core we plot ten dots showing the percentage of variation from the median of
each core.

The plot shows 30 of 32 SMT threads, because the two SMT threads of the
first physical core run Linux, while the rest of the cores execute the benchmark
under the McKernel lightweight kernel.

We turned the TurboBoost feature off, selected the performance governor,
and set the frequency to the nominal frequency of 2.6 GHz. We additionally
sampled the performance counters for L1 data cache and L1 instruction cache
misses and confirmed that both benchmarks experience little to no misses.

Nevertheless all cores show significantly more variation under HPCCG than
under FWQ. The difference cannot be accounted to cache misses, because even
cores that show no data or instruction cache misses exhibit increased variation



Hardware Performance Variation 257

−0.5

0.0

0.5

1.0

0 10 20 30

Core #V
a

ri
a

ti
o

n
 f

ro
m

 M
e

d
ia

n
FWQ

HPCCG

Fig. 2. Performance variation of FWQ and HPPCG on a dual-socket Intel E5-2650 v2.

under HPCCG. In particular cores one to seven and 16 to 29 experience neither
instruction cache nor data cache misses under HPCCG.

After motivating the need for a diverse benchmark suite, we begin our com-
parison of performance variation. Because of the high dynamic range of perfor-
mance variations within some architectures as well as across architectures we
chose to plot the variation on a logarithmic scale. We keep the scale constant for
all following plots to ease comparison between benchmarks. Lower values signify
lower variation. Within a plot all violins are normalized to have the same area.
The width of the violin marks how often different cores exhibited the same or at
least a similar amount of variation. The height of the violins is a measure of how
variation between cores fluctuates; a tall violin indicates that some cores show
little to no variation and other cores exhibit high variation. In contrast a small
or flat violin is the result of cores having similar or even equal variation.

We treat CPUs as black boxes because CPU manufacturers and chip design-
ers are not likely to share their intellectual property (i.e., chip designs and archi-
tectures), which are required to exactly pinpoint the sources of variability. We
have considered using performance counters to narrow down sources of variabil-
ity but dropped the idea due to the problems with performance counters iterated
in the previous subsection.

First we present our results for the FWQ benchmark, plotted in Fig. 3. The
small violins in Fig. 3 already indicate very low variation. A lot of measurements,
particularly for the FX100 and BlueGene/Q systems, show no variation at all,
i.e. we measured the same number of cycles. Because zero values become negative
infinity on a logarithmic scale, we clipped the values at 0.5 × 10−7% to avoid
distortion of the plots caused by non-plottable data.

Nevertheless the plot clearly shows KNL with the highest variation of all
platforms, while BlueGene/Q and FX100 show the lowest variation. To help the
reader to put these variation measurements into perspective we note that the
higher end of the ThunderX violin at 10−6% corresponds to a “variation” of a
single cycle.

Next we analyze the results of the STREAM benchmark in Fig. 4. STREAM
contains memory accesses as well as few arithmetic operations in its instruc-
tion mix. Although the working set is small enough to fit in the L1-cache we
still see cache misses on architectures where we have support for performance



258 H. Weisbach et al.

Fig. 3. Hardware performance variation under the FWQ benchmark.

Fig. 4. Hardware performance variation under the STREAM benchmark.

counters. The observed variation increases for all architectures dramatically. The
STREAM benchmark seems to have the least impact on variation on the Thun-
derX platform, where the variation only increases by one order of magnitude.

The Capacity benchmark is similar to the STREAM benchmarks, but here
the memory subsystem has to deal only with a single data stream (Fig. 5). No
computation is performed on the data, but the working set size is twice the size of
the L1 data cache to intentionally and deterministically cause L1 cache misses.
While the FX100 experiences little variation, the variation on the ThunderX
platform increases substantially. The KNL platform shows very similar results
for both the STREAM and Capacity benchmarks (Figs. 4 and 5).

We found that the different architectures exhibited diverse behaviour for
the SHA256 benchmark. Despite the same L1 cache size and associativity, we
observed no L1 data misses on the ThunderX platform but approximately 150k
misses on the Intel Ivy Bridge platform. We decided to include the results as-
is because we consider cache implementation details also micro-architecture-
specific. Another reason is that the number of L1 misses on Ivy Bridge show



Hardware Performance Variation 259

Fig. 5. Hardware performance variation under the Capacity benchmark.

little variation themselves. The wide base of the violins on FX100 and ThunderX
already indicate that a lot of cores experience no variation at all, while Ivy
Bridge performs significantly worse and KNL shows an order of magnitude more
variation still.

We expected the BlueGene/Q to be among the lowest variation platforms
but our measurements do not reflect that. At this point we can only speculate
that the 16 KiB L1 data cache and the only 4-way set associativity of the L1
instruction cache have influence on the performance variation. We reduced the
cache fill level to 80% so that auxiliary data such as stack variables have the
same cache space in 32 KiB and 16 KiB caches, but we could not measure lower
cache miss number of lower performance variation (Fig. 6).

Fig. 6. Hardware performance variation under the SHA256 benchmark.

DGEMM is the first benchmark using floating point operations. This bench-
mark confirms the low variation of the FX100 and ThunderX platforms and the
rather high variation of the Ivy Bridge, KNL and BlueGene/Q platforms. We



260 H. Weisbach et al.

saw high numbers of cache misses on the Ivy Bridge platforms and therefore
reduced the cache pressure to 70% fill level. We saw stable or even zero cache
miss numbers for all cores of the Ivy Bridge platform, but variation did not
improve (Fig. 7).

Fig. 7. Hardware performance variation under the DGEMM benchmark.

HACCmk has a call to the math library function pow, while Ivy Bridge
and KNL instruction sets have pow vector instructions, we are not aware of such
vector instruction on the FX100 and ThunderX platforms. FX100 and ThunderX
show two orders of magnitude higher variation; 10−4% corresponds to 100 cycles
on the ThunderX platform. KNL and Ivy Bridge are more deterministic in the
variation the exhibit, which results in “flatter” violins (Fig. 8).

Fig. 8. Hardware performance variation under the HACCmk benchmark.

HPCCG is the only benchmark where the BlueGene/Q shows a variation
close to our expectations (Fig. 9). We also highlight that while the variation on



Hardware Performance Variation 261

the FX100 and ThunderX platforms show a reduction in their variation com-
pared to DGEMM, Ivy Bridge and KNL show increased variation for this bench-
mark. We confirmed on both the Ivy Bridge and ThunderX platforms that no
L1 data cache misses occur (Figs. 7 and 9).

Fig. 9. Hardware performance variation under the HPCCG benchmark.

Fig. 10. Hardware performance variation under the MiniFE benchmark.

The MiniFE benchmark solves the same algorithmic problem as HPCCG. We
expected similar results to HPCCG but our expectation was not confirmed by our
measurements. The FX100 and ThunderX platforms show increased variation
compared to HPCCG, while the Ivy Bridge and KNL platforms exhibit slightly
lower variation (Figs. 9 and 10).

6 Conclusion and Future Work

With the increasing complexity of computer architecture and the growing diver-
sity of hardware used in HPC systems, variability caused by the hardware has



262 H. Weisbach et al.

been receiving a great deal of attention. In this paper, we have taken the first
steps towards a high-precision, cross-platform characterization of hardware per-
formance variability. To this end, we have developed an extensible benchmark-
ing framework and characterized multiple compute platforms (e.g., Intel x86,
Cavium ARM64, Fujitsu SPARC64, IBM Power). In order to provide a tightly
controlled software environment we have proposed to utilize lightweight kernel
operating systems for our measurements. To the best of our knowledge, this is
the first study that clearly distinguishes performance variation of the hardware
from its software induced counterparts. Our initial findings focusing on CPU
core local resources show up to six orders of magnitude difference in relative
variation among CPUs across different platforms.

In the future, we will continue extending our study focusing on higher levels
of caches, the on-chip network, the memory subsystem, etc., with the goal of
providing a complete characterization of the entire hardware platform.

Acknowledgments. Part of this work has been funded by MEXT’s program for the
Development and Improvement of Next Generation Ultra High-Speed Computer Sys-
tem, under its Subsidies for Operating the Specific Advanced Large Research Facilities.
The research and work presented in this paper has also been supported in part by the
German priority program 1648 “Software for Exascale Computing” via the research
project FFMK [43]. We acknowledge Kamil Iskra and William Scullin from Argone
National Laboratories for their help with the BG/Q experiments. We would also like
to thank our shepherd Saday Sadayappan for the useful feedbacks.

References

1. Markidis, S., et al.: The EPiGRAM project: preparing parallel programming mod-
els for exascale. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Perfor-
mance 2016. LNCS, vol. 9945, pp. 56–68. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46079-6 5

2. Beckman, P., Iskra, K., Yoshii, K., Coghlan, S.: The influence of operating sys-
tems on the performance of collective operations at extreme scale. In: 2006 IEEE
International Conference on Cluster Computing, pp. 1–12, September 2006

3. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC 2008, pp. 19:1–19:12. IEEE Press,
Piscataway (2008)

4. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of sys-
tem noise on large-scale applications by simulation. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society, Washington,
DC (2010)

5. Petrini, F., Kerbyson, D., Pakin, S.: The case of the missing supercomputer per-
formance: achieving optimal performance on the 8,192 processors of ASCI Q. In:
Proceedings of the 15th Annual IEEE/ACM International Conference for High
Performance Computing, Networking, Storage and Anaylsis, SC 2003 (2003)

https://doi.org/10.1007/978-3-319-46079-6_5
https://doi.org/10.1007/978-3-319-46079-6_5


Hardware Performance Variation 263

6. Gerofi, B., Takagi, M., Hori, A., Nakamura, G., Shirasawa, T., Ishikawa, Y.:
On the scalability, performance isolation and device driver transparency of the
IHK/McKernel hybrid lightweight kernel. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 1041–1050, May 2016

7. Giampapa, M., Gooding, T., Inglett, T., Wisniewski, R.W.: Experiences with a
lightweight supercomputer kernel: lessons learned from Blue Gene’s CNK. In: Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. SC (2010)

8. Pedretti, K.T., Levenhagen, M., Ferreira, K., Brightwell, R., Kelly, S., Bridges, P.,
Hudson, T.: LDRD final report: a lightweight operating system for multi-core capa-
bility class supercomputers. Technical report SAND2010-6232, Sandia National
Laboratories, September 2010

9. Kale, L., Zheng, G.: Charm++ and AMPI: adaptive runtime strategies via migrat-
able objects. In: Advanced Computational Infrastructures for Parallel and Dis-
tributed Applications. Wiley (2009)

10. Kaiser, H., Brodowicz, M., Sterling, T.: ParalleX: an advanced parallel execution
model for scaling-impaired applications. In: Proceedings of the International Con-
ference on Parallel Processing Workshops, ICPPW 2009 (2009)

11. Chunduri, S., Harms, K., Parker, S., Morozov, V., Oshin, S., Cherukuri, N.,
Kumaran, K.: Run-to-run variability on Xeon Phi based Cray XC systems. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2017, pp. 52:1–52:13. ACM, New York (2017)

12. Dighe, S., Vangal, S., Aseron, P., Kumar, S., Jacob, T., Bowman, K., Howard, J.,
Tschanz, J., Erraguntla, V., Borkar, N., De, V., Borkar, S.: Within-die variation-
aware dynamic-voltage-frequency-scaling with optimal core allocation and thread
hopping for the 80-core TeraFLOPS processor. IEEE J. Solid-State Circuits 46(1),
184–193 (2011)

13. Acun, B., Miller, P., Kale, L.V.: Variation among processors under Turbo Boost
in HPC systems. In: Proceedings of the 2016 International Conference on Super-
computing, ICS 2016, pp. 6:1–6:12. ACM, New York (2016)

14. Kelly, S.M., Brightwell, R.: Software architecture of the light weight kernel, Cata-
mount. In: Cray User Group, pp. 16–19 (2005)

15. Riesen, R., Brightwell, R., Bridges, P.G., Hudson, T., Maccabe, A.B., Widener,
P.M., Ferreira, K.: Designing and implementing lightweight kernels for capability
computing. Concurr. Comput. Pract. Exp. 21(6), 793–817 (2009)

16. Riesen, R., Maccabe, A.B., Gerofi, B., Lombard, D.N., Lange, J.J., Pedretti, K.,
Ferreira, K., Lang, M., Keppel, P., Wisniewski, R.W., Brightwell, R., Inglett, T.,
Park, Y., Ishikawa, Y.: What is a lightweight kernel? In: Proceedings of the 5th
International Workshop on Runtime and Operating Systems for Supercomputers.
ROSS. ACM, New York (2015)

17. Fixed Time Quantum and Fixed Work Quantum Tests. https://asc.llnl.gov/
sequoia/benchmarks. Accessed Dec 2017

18. Kramer, W.T.C., Ryan, C.: Performance variability of highly parallel architectures.
In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra,
J.J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2659, pp. 560–569. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44863-2 55

19. Bhatele, A., Mohror, K., Langer, S., Isaacs, K.: There goes the neighborhood:
performance degradation due to nearby jobs. In: Proceedings of the 25th Annual
IEEE/ACM International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2013 (2013)

https://asc.llnl.gov/sequoia/benchmarks
https://asc.llnl.gov/sequoia/benchmarks
https://doi.org/10.1007/3-540-44863-2_55


264 H. Weisbach et al.

20. Rountree, B., Lowenthal, D., de Supinski, B., Schulz, M., Freeh, V., Bletsch, T.:
Adagio: making DVS practical for complex HPC applications. In: Proceedings of
the 23rd ACM International Conference on Supercomputing, ICS 2009 (2009)

21. Venkatesh, A., Vishnu, A., Hamidouche, K., Tallent, N., Panda, D., Kerbyson,
D., Hoisie, A.: A case for application-oblivious energy-efficient MPI runtime. In:
Proceedings of the 27th Annual IEEE/ACM International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2015 (2015)

22. Ganguly, D., Lange, J.: The effect of asymmetric performance on asynchronous task
based runtimes. In: Proceedings of the 7th International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS 2017 (2017)

23. Borkar, S., Karnik, T., Narendra, S., Tschanz, J., Keshavarzi, A., De, V.: Parameter
variations and impact on circuits and microarchitecture. In: Proceedings of the 40th
Annual Design Automation Conference, DAC 2003, pp. 338–342. ACM, New York
(2003)

24. Oral, S., Wang, F., Dillow, D.A., Miller, R., Shipman, G.M., Maxwell, D., Henseler,
D., Becklehimer, J., Larkin, J.: Reducing application runtime variability on Jaguar
XT5. In: Proceedings of CUG 2010 (2010)

25. Pritchard, H., Roweth, D., Henseler, D., Cassella, P.: Leveraging the Cray Linux
Environment core specialization feature to realize MPI asynchronous progress on
Cray XE systems. In: Proceedings of Cray User Group. CUG (2012)

26. Yoshii, K., Iskra, K., Naik, H., Beckmanm, P., Broekema, P.C.: Characterizing
the performance of big memory on Blue Gene Linux. In: Proceedings of the 2009
International Conference on Parallel Processing Workshops. ICPPW, pp. 65–72.
IEEE Computer Society (2009)

27. Wisniewski, R.W., Inglett, T., Keppel, P., Murty, R., Riesen, R.: mOS: an architec-
ture for extreme-scale operating systems. In: Proceedings of the 4th International
Workshop on Runtime and Operating Systems for Supercomputers. ROSS. ACM,
New York (2014)

28. Ouyang, J., Kocoloski, B., Lange, J.R., Pedretti, K.: Achieving performance isola-
tion with lightweight co-kernels. In: Proceedings of the 24th International Sympo-
sium on High-Performance Parallel and Distributed Computing, HPDC 2015, pp.
149–160. ACM, New York (2015)

29. Lackorzynski, A., Weinhold, C., Härtig, H.: Decoupled: low-effort noise-free exe-
cution on commodity systems. In: Proceedings of the 6th International Workshop
on Runtime and Operating Systems for Supercomputers, ROSS 2016, pp. 2:1–2:8.
ACM, New York (2016)

30. Top500 supercomputer sites. https://www.top500.org/
31. Jarus, M., Varrette, S., Oleksiak, A., Bouvry, P.: Performance evaluation and

energy efficiency of high-density HPC platforms based on Intel, AMD and ARM
processors. In: Pierson, J.-M., Da Costa, G., Dittmann, L. (eds.) EE-LSDS 2013.
LNCS, vol. 8046, pp. 182–200. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40517-4 16

32. Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo:
making the case for an ARM-based HPC system. Future Gener. Comput. Syst.
36(Supplement C), 322–334 (2014)

33. Rajovic, N., Carpenter, P., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.: Super-
computing with commodity CPUs: are mobile SoCs ready for HPC? In: Proceed-
ings of the 2013 ACM/IEEE Conference on Supercomputing. SC (2013)

34. Miyazaki, H., Kusano, Y., Shinjou, N., Shoji, F., Yokokawa, M., Watanabe, T.:
Overview of the K computer system. Scitech 48(3), 255–265 (2012)

https://www.top500.org/
https://doi.org/10.1007/978-3-642-40517-4_16
https://doi.org/10.1007/978-3-642-40517-4_16


Hardware Performance Variation 265

35. Intel: Intel Xeon Processor E5–1600/E5-2600/E5-4600 v2 Product Fami-
lies (2014). https://www.intel.com/content/www/us/en/processors/xeon/xeon-
e5-1600-2600-vol-2-datasheet.html

36. Sodani, A.: Knights landing (KNL): 2nd generation Intel Xeon Phi processor. In:
2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–24, August 2015

37. Yoshida, T., Hondou, M., Tabata, T., Kan, R., Kiyota, N., Kojima, H., Hosoe, K.,
Okano, H.: Sparc64 XIfx: Fujitsu’s next-generation processor for high-performance
computing. IEEE Micro 35(2), 6–14 (2015)

38. Cavium: ThunderX CP Family of Workload Optimized Compute Processors (2014)
39. IBM: Design of the IBM Blue Gene/Q Compute chip. IBM J. Res. Dev. 57(1/2),

1:1–1:13 (2013)
40. Kocoloski, B., Lange, J.: HPMMAP: lighweight memory management for com-

modity operating systems. In: Proceedings of 28th IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2014 (2014)

41. Widener, P., Levy, S., Ferreira, K., Hoefler, T.: On noise and the performance
benefit of nonblocking collectives. Int. J. High Perform. Comput. Appl. 30(1),
121–133 (2016)

42. Shimosawa, T., Gerofi, B., Takagi, M., Nakamura, G., Shirasawa, T., Saeki, Y.,
Shimizu, M., Hori, A., Ishikawa, Y.: Interface for heterogeneous kernels: a frame-
work to enable hybrid OS designs targeting high performance computing on many-
core architectures. In: 21th International Conference on High Performance Com-
puting. HiPC, December 2014

43. FFMK Website. https://ffmk.tudos.org

https://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-2-datasheet.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-2-datasheet.html
https://ffmk.tudos.org

	Hardware Performance Variation: A Comparative Study Using Lightweight Kernels
	1 Introduction
	2 Related Work
	3 Background
	3.1 Lightweight Kernels
	3.2 Growing Architectural Diversity in HPC
	3.3 Architectures

	4 Our Approach: Lightweight Kernels to Measure HW Performance Variability
	4.1 Drawbacks of Linux
	4.2 IHK/McKernel and CNK

	5 Performance Analysis
	5.1 Benchmark Suite
	5.2 Results

	6 Conclusion and Future Work
	References


