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Abstract—Emerging workloads on supercomputing platforms
are pushing the limits of traditional high-performance computing
software environments. Multi-physics, coupled simulations, big
data processing and machine learning frameworks, and multi-
component workloads pose serious challenges to system and
application developers. At the heart of the problem is the lack of
cross-stack coordination to enable flexible resource management
among multiple runtime components.

In this work, we analyze seven real-world applications that
represent emerging workloads and illustrate the scope and
magnitude of the problem. We then extract several themes from
these applications that highlight next-generation requirements
for node resource managers. Finally, using these requirements,
we propose a general, cross-stack coordination framework and
outline its components and functionality.

Index Terms—Scientific computing, Supercomputers, Proces-
sor scheduling, Cluster computing, High performance computing,
Software performance, Software reusability, System software,
Operating systems, Utility programs, Programming environ-
ments, Runtime, Runtime environment, Software libraries.

I. INTRODUCTION

In recent years workload diversity in HPC environments

has exploded. Big data processing, in-situ analytics, artificial

intelligence and machine learning workloads, as well as multi-

component workflows are becoming common-place on super-

computers. Each of these workloads bring specific runtime

requirements that are pushing the traditional supercomputing

software environments to their limits.

In addition, with the end of Dennard scaling and the

slowing down of Moore’s law, the prevalence of heteroge-

neous, special-purpose compute devices, i.e., accelerator-based

computing, is growing and overall hardware complexity is

increasing. The difficulty to efficiently utilize these platforms

nurtures interest in multi-tenancy and more dynamic, cloud-

like execution environments for HPC centers. These trends

force the combined use of software runtime components inside

compute nodes that were not designed to cooperate with

each other, and often lead to suboptimal performance. The

lack of a coordination framework between different runtime

components that enables dynamic assignment of hardware

resources is at the core of the problem.

To study this problem, we analyze a representative set of

emerging applications that test the limits of node resource

management capabilities of traditional supercomputing envi-

ronments. We focus on flexible resource management among

runtime components within compute nodes, as opposed to re-

source management across compute nodes, which we consider

part of the global resource manager. Our application use cases

highlight the underlying forces shaping the requirements for

next generation systems.

We find that hardware resource subsets, e.g., CPU cores,

need to be clearly categorized, so that runtime components

with different characteristics can be mapped to the appropriate

hardware, thus avoiding competition and interference. For ex-

ample, assigning auxiliary utility threads serving asynchronous

background activities, e.g., MPI progress threads, to exclusive

parts of a many-core chip can yield significant performance

improvements. Current software interfaces make such config-

uration hard to achieve. With the introduction of nonblocking

collective communication in MPI, such functionality could

benefit an increasing number of applications [1].

We also find that static resource affinity policies are no

longer adequate. Static assignment of compute resources in a

domain-decomposed HPC simulation typically works well, but

multi-physics, coupled applications that bring together differ-

ent runtime packages and libraries have changing requirements

as the application executes over time [2]. For example, there

is a need to dynamically reconfigure the resources assigned to

MPI processes and OpenMP threads, but that requires custom

modifications to existing runtime components due to the lack

of appropriate interfaces [3].

Furthermore, emerging machine-learning workloads that use

frameworks such as TensorFlow [4] and LBANN [5], require

multiple software components, each of them launching differ-

ent types and number of workers including CUDA threads,

C++ threads, OpenMP threads, and POSIX threads. While

there is a need to manage thread heterogeneity, concurrency,

and their placement onto the compute resources, current soft-

ware interfaces lack such functionality.

This work makes the following contributions:

• We analyze seven, real-world, scientific applications that

stress the resource management capabilities of current HPC

software environments.

• We identify the latent resource conflict themes in these

applications and organize them into a taxonomy that enables

a better understanding of how they should be addressed.

• We propose a framework for cross-stack coordination
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within compute nodes for the dynamic management of

hardware resources among runtime components.

Lastly, we include an Artifact Description Appendix de-

scribing the hardware and software environments used for the

experiments presented in this paper as well as the configura-

tions of the scientific applications.

II. CHALLENGES OF REAL-WORLD APPLICATIONS

In this section we describe seven applications that exemplify

the problem we are trying to solve. These emerging applica-

tions make use of multiple programming abstractions, compute

engines, and new software environments that did not evolve

on supercomputers. Combined with traditional environments

such as MPI and OpenMP, the resulting amalgam is bound

to generate resource usage conflicts and sub-optimal perfor-

mance.

We chose the applications in this section because each

demonstrates a particular use case and the unique circum-

stances that are problematic in current supercomputing en-

vironments. After describing each application we call out

the particular challenges we identified and summarize the

main issue for each use-case. In Section III we discuss these

issues in more detail and derive next-generation resource

management requirements.

A. Physics and Chemistry Science

GeoFEM [1] and NWChem [6] are applications that have

the potential to overlap communication and computation. Ge-

oFEM is a parallel simulation code based on the finite-volume

method developed at the University of Tokyo. It simulates

ground-water flow problems through saturated heterogeneous

porous media and uses a conjugate gradient solver with multi-

grid preconditioner for solving Poisson’s equations. NWChem

is an ab initio computational chemistry software package

developed and maintained by the Environmental Molecular

Sciences Laboratory at the Pacific Northwest National Lab-

oratory. NWChem includes the coupled cluster theory (CC)

for accurate quantum-mechanical description of ground and

excited states of chemical systems.

Both of these applications have been modified to utilize

nonblocking MPI collective operations for overlapping com-

putation and communication. However, the placement of asyn-

chronous communication progress threads of the MPI library

plays a critical role in attaining performance.

NWChem running on 32 dual-socket Intel Xeon E5-2680v2

compute nodes, each with 10 cores per socket (hyper-threading

turned off), demonstrates the impact of careful thread place-

ment. The application uses 16 cores across 16 MPI processes,

spawning one MPI utility thread per process for asynchronous

communication progress, i.e., 16 utility threads per node. The

four spare cores, which can be used for system services, are

used when utility threads are explicitly pinned. Figure 1 shows

the execution time of three configurations with respect to the

placement of MPI progress threads.

Usage of MPI progress threads for nonblocking collectives

does not automatically result in performance improvement and

Fig. 1. The impact of utility-thread placement on NWChem.

can decrease performance (blue vs. orange bars). On the other

hand, as shown by the grey bar, proper placement of progress

threads reduces execution time by 26%. For the sake of brevity

we omit detailed results for GeoFEM, but note that we observe

similar behavior. Specifying the affinity of these threads is not

trivial, because there is no standard interface to control MPI

progress thread placement.

Challenges: These application use cases demonstrate the need

for a standard API that enables fine-grained control over

placement of asynchronous communication progress threads.

The challenge is to clearly distinguish progress threads from

compute threads and precisely control their placement.

Issue: Dynamic work performed by auxiliary libraries.

B. Climate Modeling

The field of climate science includes the Ocean Physics,

Atmospheric Physics, and Marine Biogeochemistry domains.

Some domains share similar models but, in most cases,

domain-specific tools have been developed. The various mod-

els interact by exchanging data with one another. For example,

an atmospheric boundary layer modifies surface temperature

from the ocean and vice-versa. Each model is integrated into a

coupled application through a model-specific kernel. Designed

independently, these kernels can be sequential or parallel, use

only MPI, Threads, or MPI+Threads, as shown in Figure 2.

Fig. 2. Kernels or phases of a coupled simulation.

An example of a multi-kernel simulation using the OA-

SIS code coupling software [7] is comprised of two parts:

the SCRIP weight interpolation [2], which uses shared-

memory parallelism, and the NEMO-BENCH oceanic circu-
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lation computation [8], which uses distributed-memory paral-

lelism. These parts can be mapped to Phase II and Phase I

(next iteration) of Figure 2, respectively. During the SCRIP

phase, the MPI lead process spawns a predefined number of

OpenMP threads, while the other MPI processes are quiescent.

The number of threads that the SCRIP library launches as

well as the number of active MPI processes do not match

the specific MPI+OpenMP decomposition later phases need—

NEMO-BENCH uses MPI-only parallelism.

Figure 3 shows the simulation’s execution time on 2 com-

pute nodes with 40 SMT-2 cores. It includes three config-

urations varying the number of MPI processes for NEMO-

BENCH (NEMO workers) and the number of OpenMP threads

for SCRIP (SCRIP workers). This figure shows that the best

process-thread heterogeneous configuration is kernel specific:

40 MPI processes per node for NEMO-BENCH and a single

process per node with 80 OpenMP threads for SCRIP. This

configuration is up to 23% better than the other configurations.

40 NEMO workers
40 SCRIP workers

80 NEMO workers
80 SCRIP workers
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Fig. 3. Cumulative time of a multi-model simulation with dynamic hybrid
parallelism. NEMO-BENCH uses MPI-only parallelism, while SCRIP uses a
single process per node with multiple OpenMP threads.

Unfortunately, there is no standard interface or program-

ming support to dynamically reconfigure different phases and

their hardware mappings, which signifies this process must be

performed repeatedly for each multi-kernel simulation.

Challenges: Thread heterogeneity stemming from different

models in one application is difficult to program. Because

the optimal process/thread configuration is different in each

specific model, a single, static configuration can lead to

significant overall performance loss.

Issue: Rebalancing and remapping of MPI processes and

threads in different application phases.

C. Hydrodynamics

The French Alternative Energies and Atomic Energy Com-

mission employs Arbitrary Lagrangian-Eulerian Hydrodynam-

ics simulations. These multi-phase codes include multiple

objects and multiple materials, where each object in the

simulation has its own mesh.

The Hydrodynamics simulations expose a similar behavior

as SCRIP in terms of resource rebalancing. The global sim-

ulation is divided into multiple recurring phases. Each phase,

performed in two steps, deals with the contact between the

different materials. The first step computes the contact forces

between the materials and uses domain decomposition with

one MPI process per core. Depending on the materials, some

friction displacement needs to be computed in a second step.

This step performs best when assigning all the cells to one

MPI process and using OpenMP threads. This is due to the

dependencies between the cells required for this calculation.

However, there is no standard way to switch between these

two configurations.

To overcome this limitation, the applications were changed

as follows. For each friction phase (Phase II in Figure 2), a

lead MPI process is selected. It gathers information from all

the cells involved in this calculation, and steals other MPI

compute resources which are put to sleep. The lead MPI pro-

cess launches as many OpenMP threads as hardware threads

available. Once the friction phase completes, the mapping of

MPI processes on compute resources is restored to one MPI

process per core (Phase I in Figure 2).

We ran the application using only MPI throughout the

application and compared it with the hand-tuned version that

uses only OpenMP on the friction phases. The former ran in

60,771 secs while the latter ran in 32,112 secs. The dynamic

reconfiguration of phases provides a 1.89X speedup.

Challenges: This use case describes different computation

schemes that can appear within one multi-phase application.

Like with SCRIP, the optimal process/thread configuration is

different in each specific step, and a single, static configuration

can lead to significant overall performance loss.

Issue: Rebalancing and remapping of MPI processes and

threads in different application phases.

D. Machine Learning in Inertial Confinement Fusion

The National Ignition Facility at Lawrence Livermore Na-

tional Laboratory is using deep neural networks to steer

simulations in Inertial Confinement Fusion (ICF). Novel tour-

nament methods are used to train a single model on vast

quantities of data generated by ICF simulations. Components

of this model drive speculative sampling to carefully choose

which simulations to execute.

These ICF simulations use the Livermore Big Artificial

Neural Network (LBANN) toolkit [5]. LBANN accelerates

the training of massive neural networks on HPC systems.

The toolkit is designed as an MPI+Threads framework. On

heterogeneous CPU+GPU architectures, one MPI task per

GPU is used. A number of C++ threads on the CPU are used

for processing the input and transformation layers; convolu-

tion, ReLU, and batch normalization are performed on the

GPUs; and the soft max and metric layers are performed with

OpenMP threads on the CPU. For communication, LBANN

employs the Aluminum library [9] to handle latency-sensitive

operations and the NVIDIA NCCL library for bandwidth-

sensitive operations.

Figure 4 shows the processes and the various software

threads that are launched to perform the compute, I/O, and

communication tasks on a compute node with two sockets and

four GPUs. There are MPI processes (P0-P3), GPU kernels

(K0-K3) and four types of threads: I/O threads (IO) imple-

mented as C++ threads, compute threads (Comp) implemented
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as OpenMP threads, Aluminum threads (Al) implemented as

POSIX threads, and NCCL threads implemented as POSIX

threads. Coordinating affinity and binding of all of these

threads and processes to minimize interference and improve

locality is a significant challenge. Today, this process is done

manually and prone to inefficiencies.

Fig. 4. LBANN on a dual-socket, multi-GPU architecture.

Challenges: LBANN requires multiple components, each

with different types and number of workers, including CUDA

kernels, C++ threads, OpenMP threads, and POSIX threads.

Challenges include managing thread heterogeneity, concur-

rency, and efficient placement onto the compute resources.

Issue: Multiple, uncoordinated types of threads.

E. Real-time Weather Forecasting

RIKEN developed a high-resolution, real-time weather fore-

casting system, called SCALE-LETKF [10], to predict severe,

short rainstorms in Japan (Figure 5).

Ensemble 1

Ensemble 2

Ensemble N

…

SCALE LETKF

Data 
Assimilation

history

analysis

init

Next cycle

Observation 
data 30-minute 

weather 
prediction

Fig. 5. SCALE-LETKF weather forecasting workflow.

Similar to other operational weather forecasting workflows,

SCALE-LETKF consists of two components developed sep-

arately; a numerical weather prediction (NWP) model and

a data assimilation system. The NWP model is the Scal-

able Computing for Advanced Library and Environment-LES

(SCALE-LES), which simulates the time evolution of the

weather-related atmosphere and land/sea surfaces based on

physical equations. On the other hand, the data assimilation

method uses the Local Ensemble Transform Kalman Filter

(LETKF), which assimilates observation data taken from the

real world into the simulated state to produce a better initial

condition for the model. Figure 5 shows that the two com-

ponents run in a cyclic fashion, exchanging data between the

simulation and data assimilation phases in each cycle.

Additionally, observation data are streamed directly into

RIKEN’s supercomputing facility when executing the work-

flow in real-time. Although executed sequentially, there is

potential for overlap between simulation and data assimilation,

since the data assimilation processes perform a number of

data transformation steps before proceeding to their main

computation.

There are multiple ways how SCALE-LETKF can be de-

ployed with respect to the placement of MPI processes on

compute nodes. Due to the limitations imposed by the K Com-

puter’s job management system, the most common scenario

has been to spawn SCALE and LETKF MPI jobs subsequently

via separate mpirun invocations. Since SCALE and LETKF

processes do not overlap in time, they currently communicate

through the parallel file system. Another deployment scenario

is to spawn SCALE and LETKF MPI jobs to separate sets

of compute nodes and enable direct communication over the

interconnect fabric [11]. In this configuration, MPI processes

spawn multiple execution cycles of the workflow.

Challenges: Ideally, the SCALE and LETKF processes

should be located on the same compute nodes to minimize

inter-job communication costs. The main challenge is that

this would require the batch job system and the runtime

to provide mechanisms that enable flexible resource sharing

between the two components. Specifically, the runtime system

should provide standard methods for synchronization and node

resource re-partitioning so that components could reserve and

release CPU cores dynamically.

Issue: Resource affinity control of multi-component work-

flows.

F. Deep Learning in Cancer Problems

We are using the Exascale Computing Project (ECP) CAN-

DLE application [12] with the Pilot 3 data set to illustrate

the impact of conflicting directives from different parts of the

software stack. CANDLE Pilot 3 is a multi-task, deep neural

network (DNN) for data extraction from clinical reports. It

uses TensorFlow and the Intel MKL-DNN deep learning li-

brary. The latter uses OpenMP to parallelize its work. OpenMP

environment variables can be used to control the number and

placement of the MKL threads. TensorFlow uses two thread

pools, intra_op and inter_op, to stage work. The user can

control the size of the thread pools, but not the placement.

The top line in Figure 6 shows the initial run with 15

trials in the recommended configuration using the mOS multi-

kernel [13]. The gray data points below it show CANDLE

running in the same configuration but under Linux. Because

Linux exhibits such wide variation from run to run, we ran

100 trials of all experiments after the initial mOS runs.

When investigating why mOS was slower than Linux, we

discovered that the recommended settings caused multiple

worker threads to run simultaneously on the same CPUs.

Doing a parameter sweep we were able to find a better com-

bination of thread pool sizes and OpenMP thread placement.

The results are shown in the lower two data sets in Figure 6.

Linux improved by about 9% and mOS by 20%. We achieved

these improvements doing a search over the parameter space

and adjusting the configuration manually in setup scripts.

Challenges: A user of an application that uses multiple run-

time layers with conflicting thread placements may not be

aware that the application could perform much better, and what
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Fig. 6. CANDLE Pilot 3 runs with conflicting and optimized thread placement
under two types of systems: monolithic (Linux) and multi-kernel (mOS).

the root cause of the problem is. Even when the problem has

been identified, it is not obvious how to solve it. Each runtime

layer uses different mechanisms to control thread placement.

This limits what can be done. In the example above, the thread

pool capacities that Tensorflow uses can be configured, but not

the placement of the threads. Luckily, we were able to move

the MKL OpenMP threads. A system where the components

of an application could coordinate would let users discover

earlier that there is a resource management conflict and make

the optimizations easier and portable.

Issue: Multiple, uncoordinated types of threads.

III. SALIENT THEMES AND REQUIREMENTS

The use cases above are real-world examples of applica-

tion domains that require runtime management beyond what

is available today, or accessible to non-advanced users. To

design a framework for multi-runtime resource management

in next-generation systems, we need to clearly understand

the requirements of applications. In this section, we list the

salient challenges we uncovered in the application use cases.

Our goal is to replace application- and architecture-specific

solutions with a unifying approach that benefits a broad class

of applications and usage models. Table I cross-references

our application examples with the themes and programming

abstractions we observed.

A—Multiple, uncoordinated types of threads. A common

theme across most use cases is the highly dynamic and hetero-

geneous nature of runtime components. Most applications have

several phases as a result of multiple physics packages, for

example, or the composition of multiple jobs linked together

to pursue a common goal. These phases neither share the same

complexity, nor the same behavior regarding parallelism. Each

phase may use a specific parallel language/runtime with its

own set of workers and its own set of resources.

We differentiate between explicit workers that are explicitly

launched and managed by an application and implicit workers

that are launched and managed by third-party libraries. We

emphasize that applications may not have visibility into im-

plicit workers. We further consider compute workers and utility
workers. Utility workers are those used by utility libraries such

as nonblocking communication threads or system services

threads (see Section IV).

B—Dynamic work performed by auxiliary libraries. An

experienced developer may be able to rebalance MPI and

OpenMP workers based on when and how many OpenMP

threads are active. Some of our use cases do this. However, this

reconfiguration may not be portable or possible with workers

that application developers are unaware of, i.e., implicit.

Both compute and utility workers may be considered im-

plicit workers in auxiliary libraries. Implicit compute work-

ers include threads from math and linear algebra packages

such as Intel’s MKL. Candle and LBANN include these

type of workers. Utility workers, on the other hand, include

nonblocking communication progress threads from the MPI

library and the NVIDIA NCCL library for communication

between GPUs. GeoFEM, NWCHEM, and LBANN (discussed

in Sections II-A and II-D) are examples that include utility

workers. This type of workers may have different requirements

than compute workers. For example, performance may be

affected by their distance to the network controller or to GPUs.

Since application developers may not be aware of all the

workers running on behalf of an application, it can be difficult

to derive performant resource mapping policies.

C—Rebalancing and remapping of MPI processes and
threads in different application phases. A prevalent hybrid

programming model in HPC is the use of message passing for

inter-node communication and shared memory for intra-node

communication. Efficient data exchange among local threads

requires careful placement and scheduling. Unfortunately, each

runtime attempts to optimize this for its own workers without

regard for other runtimes in the composed application stack.

The most common case of hybrid programming is

MPI+OpenMP. A particular challenging configuration is pure

MPI phases intermingled with MPI+OpenMP phases. Without

dynamic reconfiguration of processes and threads between

phases, some compute resources can be left idle while oth-

ers are overloaded with multiple workers. Under- or over-

subscribing compute resource can significantly limit scalabil-

ity. Application use cases where dynamic rebalancing is re-

quired include SCRIP, Hydrodynamics, and SCALE+LETKF,

discussed in Sections II-B, II-C, and II-E, respectively. Cur-

rently, runtimes lack the ability to share information with each

other to be able to adapt their workers and their placement to

leverage all of the available resources efficiently.

D—Multiple applications working together on the same
problem. A challenging configuration for runtime coordina-

tion is multiple concurrent applications. This arises when

multiple jobs, part of the same simulation, are launched

concurrently and share resources. Examples include in-situ

analytics and code coupling workflows such as SCRIP and

SCALE-LETKF (see Sections II-B and II-E). Code coupling

combines a set of application components, often developed

separately, working together to achieve a common goal.

Since each component is launched separately with its own
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TABLE I
TAXONOMY OF APPLICATIONS BASED ON THEMES A-D AND PARALLEL PROGRAMMING ABSTRACTIONS.

Candle GeoFEM NWCHEM SCRIP Hydro LBANN SCALE+LETKF

A/B Dynamic compute workers
Explicit � � � � � �
Implicit � �

B Dynamic utility workers � � �
C Rebalancing and remapping � � �

D Multiple applications
Single � � � � �

Multiple � �

Parallel programming abstractions

MPI � � � � � � �
OpenMP � � � � � � �

POSIX threads �
NVIDIA CUDA �

C++ threads � �

resource allocation, its knowledge of resource availability is

limited to its local view. The resource allocator is the only

entity that keeps track of all resources allocated to the overall

workflow. To have a global view and efficiently manage

all resources, each local library would have to exchange

information with the resource allocator. Only if they all have

information about the workers and resources available in the

system, can their local libraries make better mappings and

notify each other about the new resource distribution.

Based on the application use cases and their resource

management challenges, we outline a set of requirements for a

general multi-layer resource management framework that can

address the needs of emerging workflows and improve appli-

cation productivity: (1) Dynamic runtime placement based on

worker characteristics including compute and utility threads;

(2) Coordination of all workers from all runtimes within a

compute node; (3) Dynamic reconfiguration and remapping

of workers including processes and threads; and (4) Worker

management across multiple concurrent jobs.

IV. PROPOSED APPROACH

In this section, we propose a system framework to address

the challenges posed by the applications described earlier.

First, some terminology and assumptions:

• For any given user, the global resource manager (RM)

grants hardware resources on the machine. These resources

include multiple compute nodes and, within each node,

compute cores, GPUs, memory, etc. We refer to these

granted resources as a user allocation.

• Within a user allocation the user may launch one or more

jobs (a parallel program or a composition of programs)

sequentially or concurrently.

• A parallel program consists of one or more tasks or

processes and each task may include multiple threads.

• A compute node executes jobs from one or more users as

well as system services.

• System services include processes associated with the OS,

parallel file system, RM, etc., and are often run on isolated

resources. Well-known techniques to mitigate application

interference from system services include Cray’s core

specialization [14] and Fujitsu’s system cores [15].

A central component of the proposed framework is the

Mapping Coordinator (MC), a cross-stack coordination layer

in charge of mapping runtime components to the available

hardware resources. Once resources are granted to a user

by the global resource manager, the Mapping Coordinator

coordinates within-node access to these resources. We em-

phasize this distinction, as the Mapping Coordinator is not

intended to replace the resource manager. Instead, it provides

the missing piece of coordination among multiple runtime

components once resources have been assigned on a compute

node. To this end, the Mapping coordinator provides user

interfaces to request resources and, with this information, it

arbitrates placement among runtime components based on

resource availability. The Mapping Coordinator provides a

set of building blocks for node resource coordination and

management upon which more advanced optimization layers

can be built such as end-to-end workflow managers.

Figure 7 demonstrates the role of the Mapping Coordinator.

In this example, the resource manager has granted resources

as follows: resources 0-3 to system services, resources 4-14 to

Julie’s jobs, and resources 15-20 to Nadine’s job. The resource

manager is in charge of isolating resources between users, as

well as between users and system services on a compute node.

When Julie launches job 1 (consisting of processes P0

and P1), the Mapping Coordinator assigns each process onto

a subset of the resources in Julie’s allocation according to

a mapping policy, the hardware topology, and available re-

sources. If each process has three threads, for example, a

mapping policy may place processes 0 and 1 on resources

4-6 and 7-9, respectively. Similarly, the Mapping Coordinator

maps Julie’s job 2 onto resources 10-14. If job 2 launches

threads, the Mapping Coordinator will map them onto the

scope of resources associated with this job. Since the Mapping

Coordinator keeps track of all the work executed, it reduces

contention and conflicts.

The Mapping Coordinator includes the following abstrac-

tions: scopes to abstract hardware resources associated with a

specific execution context (Section IV-A); affinity policies to
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Fig. 7. The Mapping Coordinator, the central component of the proposed
framework, orchestrates the placement of all workers onto the granted
hardware resources. Scopes associated with Julie’s job 1 process 1 are also
shown. Hardware resources are depicted as numbered gray rectangles.

indicate how to map runtime components onto the hardware

at a high-level (Section IV-B); and a functional interface for

applications, libraries, and resource managers to interact with

the MC (Section IV-C).

A. Resource Scopes

User libraries and applications can use scopes to help the

Mapping Coordinator find the best placement of workers

within the constraints of the resources associated with a user.

A scope is an abstract representation of hardware resources

that may include cores, memory, and accelerators. One may

use scopes to express affinity in a more general way than, for

example, CPUs or NUMA domains. Scopes are hierarchical,

but not necessary disjoint at a given level.

For any given user, we associate four types of scopes:

process, job, user, and system services. Figure 7 shows an

example of the various scopes associated with Julie’s job 1

process 1. The process scope is composed of those resources

assigned to process 1 (7-9); the job scope is composed of

resources 4-9, i.e., those assigned to job 1; the user scope is

composed of resources 4-14, i.e., those assigned to Julie; and

the system services scope is composed of resources 0-3, where

the OS and other system services execute. In addition to these

system-defined scopes provided by the Mapping Coordinator,

users may create scopes dynamically.

B. Mapping and Binding Policies

An important part of the proposed framework is the ability

to leverage and specify mapping policies that determine the

way in which processes, threads, and GPU kernels map to

the hardware. These mappings have a substantial impact on

performance and, at the same time, can be very complex

because of the heterogeneous nature of emerging systems.

We recognize that applications have different requirements

and no single mapping policy can meet the demands of all

applications. To this end, the proposed framework allows

incorporating different affinity policies that can be applied

dynamically at different granularities, including on a code-

phase basis. What this means to an application developer is

choosing mapping policy A or B rather than specifying cores,

memory domains, and GPUs where processes, threads, and

kernels should run. While standardized affinity policies, such

as those specified in OpenMP 4 and above, are important, our

goal is to enable and incorporate emerging policies that focus

on optimizing applications based on heterogeneous aspects of

a system such as accelerators and memory.

C. Main Functions of the Mapping Coordinator
Map and bind runtime components to hardware resources.
The primary function of the Mapping Coordinator is to enable

runtime components to map hardware resources efficiently.

Provide low-level interfaces as well as high-level mapping
polices. To achieve the above mentioned goal we envision the

MC providing interfaces at two levels of abstraction. The low-

level interface allows arbitrary customization with respect to

the association of resources to runtime components, while the

high-level policies express intuitive, frequently used patterns

on how mappings are established.

Keep track of resource utilization. In order to provide

resource mappings, the Mapping Coordinator internally keeps

track of resource utilization.

Provide an interface to query available resources. Runtime

components may query the state of resource usage at any time.

Provide an interface to request and release resources. For

components that require precise resource designation the MC

provides interfaces to request and release specific resources.

Arbitrate access to resources to avoid or reduce oversub-
scription. The MC also serves as a per-user synchronization

point on each compute node enabling runtime components to

efficiently arbitrate resources among each other.

Provide an interface to dynamically rebalance processes
and threads. To enable reconfiguration of resources among

runtime components, the Mapping Coordinator provides an

interface to reconfigure different types of workers and their

hardware mapping dynamically. This would allow coupled

simulations with heterogeneous kernels to inter-operate and

utilize the best configuration for each kernel.

Provide an interface to notify of changes in the resource
set associated with a user allocation. Resource managers

are evolving to provide multi-tenancy and the ability to grow

and shrink user allocations. For example, if a job from user

A completes on a shared node with user B, the resource

manger may reassign A’s resources to user B. The MC needs

awareness of dynamically changing allocations to provide not

only efficient but valid mappings. Thus, the MC provides an

interface allowing resource managers to publish when a user

allocation has changed.

V. RELATED WORK

There is numerous work related to the individual pieces

of our proposed framework. Unlike other studies, our work

places a strong emphasis on understanding the limitations of

real applications, to help derive key requirements for next-

generation systems. Below, we outline impactful studies that
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have helped shape our design of a general framework for

coordination and arbitration across multiple runtimes.

We start by enumerating efforts addressing mapping and

placement of processes and threads onto the hardware. The

main limitation in this category is that most frameworks

are specific to an MPI library implementation, vendor, or

hardware architecture. In other words, portability is not a

first-class concern. Furthermore, many of these affinity solu-

tions require low-level hardware topology information, which

makes it harder for application developers to use. Open MPI’s

LAMA [16] provided a rich set of options to enable user-

defined affinity policies. MPIPP [17] is a placement frame-

work that takes into account the characteristics of the target

hardware, but does not address current architectures with

complex, hierarchical multicore nodes. Other work in this

area include PTRAM [18], TopoMapping [19], RAHTM [20],

TreeMatch [21], LibTopoMap [22], EagerMap [23], and Hier-

TopoMap [24]. Vendor solutions tailored to MPI implementa-

tions include those by IBM [25], Cray [26], and HP [27].

LIKWID [28] provides flexible binding of MPI+Threads

applications, but also requires integration with specific MPI

implementations. QUO [3], on the other hand, is an MPI

implementation-agnostic library that allows for dynamic place-

ment. The user can specify mapping policies that are dy-

namically enforced on parts of an MPI+Threads application,

making QUO suitable for multi-kernel applications such as

those represented by Figure 2.

We also note that OpenMP [29], unlike MPI, has primitives

for affinity and binding defined into the standard. This rep-

resents a significant step toward reaching portability, at least

from a library implementation point of view. Our approach

embraces this type of standard interfaces, which can be applied

within the Mapping Coordinator’s scope abstraction.

Resource and Job Management Software (RJMS) provides

task and job placement options. A few examples include

Torque [30], OAR [31], and Flux [32]. Torque proposes

NUMA-aware job placement. OAR provides a way to place

application proceses on a flexible hierarchical representation

of resources. This work takes into account the network

topology, but the node architecture is left unaddressed. Flux

provides hierarchical scheduling of resources to allow efficient

placement of complex ensembles of jobs, and coordination

among jobs in an ensemble. Coordination between different

runtimes is not addressed, however. Kubernetes [33], a popular

container management framework in cloud environments, is

being considered in HPC as a possible replacement technology

to job submission systems. Unlike Kubernetes, our approach

orchestrates resource coordination at a much finer granularity

than containers.

The Lithe system [34] provides a low-level interface for

composing multiple runtimes and coordinating access to the

hardware resources. Despite this compelling work, the problem

of runtime composition still exists. Our work shares similar

goals and, in addition, focuses on a high-level interface and

abstractions to realize runtime composition at the application

level. More general approaches to coordination and arbitration

across multiple software entities include system designs for

composing applications across operating systems and runtimes

in multi-enclave HPC infrastructures, such as Hobbes [35] and

Argo [36]. Multi-kernel operating systems such as mOS [13]

and McKernel [37] inherently designate subsets of compute

resources for specific needs. These systems, however, partition

resources in a static fashion and do not typically address

dynamic reconfiguration.

Finally, PMIx provides an API for exchanging information

between components of the HPC stack, such as runtimes and

the resource manager. PMIx has been proposed for resource

coordination among containers [38] and is a candidate for

implementing information exchange for arbitration in the

proposed Mapping Coordinator.

VI. SUMMARY

Scientific discovery is increasingly enabled by heteroge-

neous computing hardware. To utilize this hardware, scientists

must compose their applications using a combination of pro-

gramming models and runtime systems. Since these systems

were designed in isolation, their concurrent execution results

in resource contention and interference that limits application

performance and productivity.

In this paper, we characterize this problem by analyzing

seven real-world applications and quantify their limitations

on current HPC software environments. We have drawn ap-

plications from various scientific fields and leverage them as

use cases to identify the underlying functionality needed in

next-generation systems. Understanding these requirements,

derived from real applications, is a substantial step toward

devising a productive software stack for next-generation HPC

environments.

These use cases inform the general framework we are

proposing to address resource contention and interference from

multiple runtime systems. We focus on a cross-stack coordi-

nation layer called the Mapping Coordinator, which provides

key functionality and interfaces to dynamically manage node-

local resources based on user demand and resource availability.

It satisfies user requests, minimizing interference and resource

contention. We also describe high-level abstractions, including

resource scopes and mapping policies, to help manage the

complexity and portability challenges involved in worker affin-

ity and placement. Finally, we are working on implementing

the proposed framework with a particular emphasis on pro-

viding interfaces that can be used across operating systems,

resource managers, and computer architectures. A detailed

evaluation is the subject of future work.
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P. Neyron, and O. Richard, “A batch scheduler with high level com-
ponents,” in Cluster Computing and Grid 2005 (CCGrid05). Cardiff,
United Kingdom: IEEE, 2005.

[32] D. H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer, and
M. Schulz, “Flux: A next-generation resource management framework
for large HPC centers,” in 43rd International Conference on Parallel
Processing Workshops, ICPPW 2014, Minneapolis, MN, USA, Septem-
ber 9-12, 2014, 2014, pp. 9–17.

[33] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” ACM Queue, vol. 14, pp. 70–93, 2016.

[34] H. Pan, B. Hindman, and K. Asanovic, “Composing parallel software
efficiently with Lithe,” in Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, B. G. Zorn
and A. Aiken, Eds. ACM, 2010, pp. 376–387.

[35] B. Kocoloski, J. Lange, K. Pedretti, and R. Brightwell, “Hobbes:
A multi-kernel infrastructure for application composition,” in Oper-
ating Systems for Supercomputers and High Performance Computing,

9

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:47:53 UTC from IEEE Xplore.  Restrictions apply. 



B. Gerofi, Y. Ishikawa, R. Riesen, and R. W. Wisniewski, Eds. Singa-
pore: Springer, Oct. 2019.

[36] S. Perarnau, R. Gupta, P. Beckman, P. Balaji, C. Bordage, G. Bosilca,
F. Cappello, J. Dongarra, D. Ellsworth, B. V. Essen, D. Genet,
R. Gioiosa, M. Gokhale, T. Herault, H. Hoffman, K. Iskra, L. Kale,
G. Kestor, S. Krishnamoorthy, E. A. León, J. Lifflander, H. Lu,
A. Malony, N. Mishra, K. Raffenetti, B. Rountree, M. Schulz, S. Seo,
S. Shende, M. Snir, W. Spear, Y. Sun, R. Thakur, K. Yoshii, X. Zheng,
H. Zhang, and J. Zounmevo, “ARGO: An exascale operating system and
runtime,” in International Conference for High Performance Computing,
Networking, Storage and Analysis; Research Poster, ser. SC’15. Austin,
TX: ACM/IEEE, Nov. 2015.

[37] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and
Y. Ishikawa, “On the scalability, performance isolation and device driver
transparency of the IHK/McKernel hybrid lightweight kernel,” in 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2016, pp. 1041–1050.

[38] G. Vallee, C. E. A. Gutierrez, and C. Clerget, “On-node resource
manager for containerized HPC workloads,” in Workshop on Containers
and New Orchestration Paradigms for Isolated Environments in HPC,
ser. CANOPIE-HPC’19. Denver, CO: IEEE/ACM, Nov. 2019.

10

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:47:53 UTC from IEEE Xplore.  Restrictions apply. 



Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

(1) Ran CANDLE with Pilot 3 data set on an Intel Platinum

8168 CPU @ 2.70GHz under Linux 4.14.134 and the mOS

multi-kernel v0.7 using CentOS Linux 7.

(2) Ran NEMO-BENCH on two dual-socket Xeon E5-2698v4

CPU @ 2.2GHz under bullx scs with various configurations

of MPI processes and OpenMP threads.

(3) Ran GeoFEM sol1 and sol7i on 32 compute nodes of the

JCAHPC Oakforest-PACS system; sol7i uses non-blocking

collective calls, which can be accelerated by MPI progress

threads.

(4) Ran NWChem to calculate energy of 10 water molecules on

32 compute nodes, each with two Intel Xeon E5-2680 v2 CPU

@ 2.80GHz, under RHEL Server 6.5.

ARTIFACT AVAILABILITY

Software Artifact Availability: There are no author-created soft-

ware artifacts.

Hardware Artifact Availability: There are no author-created hard-

ware artifacts.

Data Artifact Availability: There are no author-created data

artifacts.

Proprietary Artifacts: None of the associated artifacts, author-

created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://doi.org/10.5281/zenodo.3880099
Artifact name: Experimental environment, scripts, and

data↪→

BASELINE EXPERIMENTAL SETUP, AND

MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: (1) Intel Platinum 8168 CPU @

2.70GHz, dual sockets, 24 cores each. 196 GB DDR4, no accelerators;

(2) Intel Xeon E5-2698v4 @ 2.2GHz, dual sockets, 20 cores each;

(3) Oakforest PACS, Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40GHz.

Quadrant flat mode (MCDRAM exposed as NUMA node 1). 272

logical CPUs (Hyper-Threading enabled); (4) Intel(R) Xeon(R) CPU

E5-2680 v2 @ 2.80GHz 10 CPU cores (Hyper-Threading disabled) x

2 sockets.

Operating systems and versions: (1) Linux experiments: CentOS

Linux 7 with 4.14.134 from kernel.org mOS experiments: mOS v0.7

from https://github.com/intel/mOS based on 4.14.134 Linux; (2)

bullx SCS; (3) CentOS Linux release 7.6.1810 (Core). Linux kernel

version 3.10.0-693.11.6.el7.x86_64; (4) Red Hat Enterprise Linux

Server release 6.5. Linux kernel version 2.6.32-754.27.1.el6.x86_64.

Compilers and versions: (1) Intel Parallel Studio XE 2018.3.051.

Python 3.7 using anaconda for package management; (2) Intel

v16.1.150; (3) Intel icc (ICC) 19.0.1.144 20181018; (4) Intel icc (ICC)

17.0.3 20170404.

Applications and versions: (1) CANDLE from the CORAL-2

Deep Learning Suite: https://asc.llnl.gov/coral-2-benchmarks/; (2)

BENCH configuration of NEMO 4.0; (3) GeoFEM versions sol1, sol7i;

(4) NWChem version 6.6, revision 27746 (2015-10-20).

Libraries and versions: (1) Python 3.7 using anaconda for package

management. Packages: candle intelpython3_core intel tensorflow

pandas keras scikit-learn requests opencv tqdmmatplotlib graphviz

pydot; (2) Intel MPI v5.1.2.150; (3) Intel MPI 2018.3.222 (without

progress threads). Intel MPI 2019.1.144 release_mt (with progress

threads). Hook pthread_create and control thread placement to

emulate UTI library binding behavior; (4) MVAPICH2 version 2.1

modified to integrate UTI library UTI library: git commit hash:

348ed82; prefix hwloc symbols with ’uti_’.

Key algorithms: (1) OpenMP thread alloca-

tion algorithm: KMP_BLOCKTIME=0. Initial:

KMP_AFFINITY="granularity=fine,compact,1,0." Optimized:

KMP_AFFINITY="granularity=fine,proclist=[10-23,34-47,58-71,82-

95],explicit;" (2) Switch hybrid parallel configuration at runtime.

This dynamic parallelism is controlled by HIPPO: two different

configurations are defined and used for SCRIP and NEMO routines,

respectively. NEMO-BENCH: 40 and 80 MPI tasks per node.

SCRIP: 1 MPI task with 40 and 80 OpeMP threads per node; (3)

Process/thread binding: 8 ranks / node, 8 OMP threads / rank.

KMP_AFFINITY=compact. KMP_HW_SUBSET=1T. Progress

threads bound to logical CPU cores 68,69,134,135,66,67,202,203; (4)

Process/thread binding: 16 ranks / node bound to physical CPU

cores 2-9 and 12-19, 1 OMP thread / rank. Progress threads bound

to CPU cores 0,1,10,11.

Input datasets and versions: (1) CANDLE Pi-

lot 3 data set from https://github.com/ECP-

CANDLE/Benchmarks/tree/master/Pilot3 using the P3B1

benchmark p3b1_baseline_keras2.py; (2) BENCH-1 degree

resolution configuration; (3) N/A; (4) Cluster: Ten water molecules.

Method: Partial-direct CCSD(T). Basis: cc-pvdz. Task (what to

calculate): Energy.
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