
Utilizing Memory Content Similarity for Improving
the Performance of Replicated Virtual Machines

Balazs Gerofi, Zoltan Vass and Yutaka Ishikawa

Graduate School of Information Science and Technology
The University of Tokyo

Tokyo, JAPAN

{bgerofi@il.is, zvass@il.is, ishikawa@is}.s.u-tokyo.ac.jp

Abstract—Checkpoint-recovery based Virtual Machine (VM)
replication is an emerging approach towards accommodating VM
installations with high availability. However, it comes with the
price of significant performance degradation of the application
executed in the VM due to the large amount of state that needs to
be synchronized between the primary and the backup machines.
It is therefore critical to find new ways for attaining good
performance, and at the same time, maintaining fault tolerant
execution. In this paper, we present a novel approach to improve
the performance of services deployed over replicated virtual
machines by exploiting data similarity within the VM’s memory
image to reduce the network traffic during synchronization. For
identifying similar memory areas, we propose a bit density based
hash function, upon which, we build a content addressable hash
table. We present a quantitative analysis on the degree of similarity
we found in various workloads, and introduce a lightweight
compression method, which, compared to existing replication
techniques, reduces network traffic by up to 80% and yields a
performance improvement over 90% for certain latency sensitive
applications.

I. INTRODUCTION

With the recent increase in cloud computing’s prevalence,

the number of online services deployed over virtualized in-

frastructures has experienced a tremendous growth. At the

same time, however, the latest hardware trend of growing

component number in current computing systems renders

hardware failures common place rather than exceptional [1].

Replication at the Virtual Machine Monitor (VMM) layer is

an attractive technique to ensure fault tolerance in such envi-

ronments, primarily, because it provides seamless failover for

the entire software stack executed inside the Virtual Machine

(VM), regardless the application or the underlying operating

system. One particular approach, checkpoint-recovery based

VM replication, has gained a lot of attention recently [2], [3],

[4], [5].

Checkpoint-recovery based replication of virtual machines

is attained by capturing the entire execution state of the

running VM at relatively high frequency in order to propagate

changes to the backup machine almost instantly. Essentially,

it keeps the backup machine nearly up-to-date with the latest

execution state of the primary machine so that the backup can

take over the execution in case the primary fails [2].

Between checkpoints the VM executes in log-dirty mode,

i.e., write accessed pages are recorded so that when the

snapshot is taken only pages that were modified in the most

recent execution phase need to be transferred. One phase of

dirty logging and transferring the corresponding changes is

often called a replication epoch [2], [4], [5]. In order to reduce

the overhead of transferring dirty pages, replication data can be

transferred asynchronously, overlapping the VM’s execution in

the subsequent epoch.
However, any fault tolerant system needs to ensure that the

state from which an output message is sent will be recovered

despite any future failure, which is commonly referred to as

the output commit problem [6]. As a consequence of such

requirement, during the execution phase of each epoch, output

of the running VM needs to be held back, i.e., disk I/O and

network traffic have to be buffered and can be released only

after the backup machine acknowledged the corresponding

update.
With workloads that touch memory rapidly, the time re-

quired to propagate changes at the end of an epoch may

exceed the replication period itself, leading to substantial

overhead, and causing significant performance degradation

(over 2X slowdown) to the application, even if dirty content is

transferred asynchronously [2]. This anomaly becomes rather

severe in case the application is latency sensitive, such as

several online services [7].
Various recent papers have explored the phenomena of

content redundancy. VMware ESX Server [8] and Satori [9]

eliminates identical pages shared among and within VMs’

memory content for better physical memory utilization. Koller

et al. [10] proposed I/O deduplication, a mechanism that

utilizes content redundancy for improving I/O performance.

All these studies suggest that there is a significant degree of

content self-similarity in nowadays’ complex workloads.
In this paper we investigate how to utilize such similarities

to improve the efficiency of virtual machine replication, and

thus, the performance of services being executed inside the

replicated VM. We make the following contributions:

• A quantitative analysis of several workloads regarding
the degree of self-similarity within their memory content

is presented.

• Taking advantage of such redundancy we propose a

lightweight compression method which, instead of trans-

ferring the actual dirty pages, finds similar areas in the

memory content corresponding to the VM’s previous

replication epoch and transfers a compressed difference.
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Having the backup VM waiting a replication epoch be-

hind the primary enables us to simply apply the difference

and bring its memory content to the latest replication

state.

• For identifying similar memory areas, we propose a bit
density based hash function, upon which, we build a

content addressable hash table.

• Finally, we eliminate the VM downtime at the data
transfer phase of each replication epoch by having the
virtual machine executed in copy-on-write mode until the

compression is finished.

Our mechanism reduces the amount of data transferred

during replication by up to 80% and improves the performance

of certain latency sensitive applications over 90% as opposed

to the regular asynchronous replication.

We begin with characterizing various workloads in terms

of memory content self-similarity in Section II. Section III

describes the design of our proposed replication method and

Section IV provides details on the implementation. Experi-

mental evaluation is given in Section V. Section VI surveys

related work, and finally, Section VII presents future plans and

concludes the paper.

II. BACKGROUND AND CONTENT SIMILARITY ANALYSIS

In this section we present the motivation and rationale

behind this study. We start with describing each workload we

investigated, which is then followed by a quantitative analysis

regarding the degree of content self-similarity they exhibit.

A. Workloads

We consider three different online services, paying special

attention to the following properties. First, each workload

should be a good candidate for deployment over virtualized

infrastructures (i.e., in the cloud). Second, for each, high

availability should be naturally expected. Moreover, to provide

good variety at the OS level, we deploy two of them over

Ubuntu Linux and one on Windows Server 2003.

- SPECweb 2005 Banking emulates an Internet personal

banking web-site, where clients are accessing their ac-

counts, making transactions, etc. Requests are transmitted

over SSL throughout the whole benchmark [7].

- SPECweb 2005 E-commerce resembles the workload

characteristics of an online store. Customers are brows-

ing, customizing and purchasing products. Both SSL and

plain HTTP are utilized [7].

- Exchange Load Generator is a benchmark utility that

stresses Microsoft’s Exchange Server. It simulates a

scenario where multiple users read and send messages,

browse their calendars, request meetings, etc [11].

B. Analysis

As mentioned earlier checkpoint-recovery based replication

of virtual machines is delivered by capturing snapshots of the

running VM at relatively high frequency so that changes can

be reflected to the backup machine almost instantly.
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Fig. 1: Average ratio of overlapping bytes between the non-
zero dirty memory areas and their most similar matches
in the non-dirty memory region or in the recently dirtied
pages cache according to comparison unit size.

Between subsequent snapshots, write accessed memory

pages are logged to narrow the image necessary to transfer

at the end of each epoch. Previous studies suggested that the

memory content of nowadays’ complex workloads may exhibit

a rather high degree of self-similarity. We were curious to see

to what extent the content of dirty pages could be expressed

with help of the content from the previous epoch. In order to

retain access to most of the previous epoch’s memory content,

we maintain a small cache of the recently dirtied pages (RDP).

The cache consists of 5120 pages and it is updated at the end

of each epoch replacing pages in a least recently used (LRU)

fashion.

We analyzed the similarity attributes of each workload by

performing an extensive search over the non-dirty memory

region and the RDP cache and identified the best match for

every non-zero dirty area. Such comparison were carried out

in every 100 milliseconds for a 10 minutes execution of each

workload. To speed up the search, we utilized our content

addressable hash table, searching through all entries in the

corresponding hash buckets. For detailed information of the

content addressable hash table refer to Section III.

We collected statistics of the average percentage of over-

lapping bytes between each non-zero dirty area and its best

match in the content hash. We were also wondering how the

unit size of the search may affect such property and used 2kB,

1kB, 512B, 256B, 128B and 64B as comparison granularity.

Figure 1 indicates the results obtained for each workload.

Looking at the numbers of SPECweb2005’s Banking work-

load, the figure shows that the degree of similarity scales from

from 77% up to nearly 87% with shrinking the comparison

granularity from 2kB gradually down to 64 bytes. The E-

commerce workload shows less improvements with the com-

parison granularity change and grows approximately 6% from

the initial 79%. Among all workloads, however, the Windows

Server based Exchange Server proved to have the highest

degree of self-similarity, scaling from 79% up to almost 88%.
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Fig. 2: Utilizing content similarity in VM replication.

As seen, for all workloads there is an apparent increase

in the degree of similarity with the decreasing unit size of

the memory comparisons. While a finer grained comparison

granularity clearly leads to higher compression ratio, it also

introduces additional overhead to the compression mechanism

itself. Smaller unit size implies an increase in the number

of data structures representing the memory (see Section III),

as well as in the number of hash table lookups during the

compression. We opted to use 512 bytes as area unit size in

our experiments, because it is fine grained enough to give

reasonable compression and the number of data structures is

also acceptable.

III. SYSTEM DESIGN

In this section we give an overview of the system archi-

tecture, describe how similar memory areas are identified

and detail some of the design choices we faced during the

development of our replication strategy.

The main idea of the algorithm is depicted by Figure 2.

Three major steps are executed during every epoch of the

replication. After the VM is suspended and the dirty page map

is updated, instead of transferring dirty pages directly to the

backup machine, we first attempt to find similar memory areas

both in the VM’s non-dirty memory region and in the cache of

most recent dirty pages. For each area we make an XOR based

diff against the best match and compress it with a lightweight

method, explained below. Second, the compressed data along

with the addresses of the reference areas are transferred to

the backup machine asynchronously. Finally, the backup VM

applies the uncompressed diffs to the referenced memory areas

and updates the dirty regions.

A. Finding Similar Memory Areas

There have been several solutions proposed in the literature

for finding similar elements in high-dimensional spaces, which

may be also considered for application in the context of finding

similar memory regions. A short survey regarding some of the

possible techniques is presented in Section VI.

Hashing is one of the prevalent approaches, although choos-

ing the right hash function in this case is rather complicated,

due to the desire for having similar elements mapped to the

same hash value. Notice, that the ultimate purpose of finding

a similar memory area is to generate an XOR based difference

that holds zero values on most of its offsets. While many of

the existing hashing solutions consider the actual bit sequences

of the input vectors, an XOR based diff may result in many

zeros already if it is just ensured, that the compared vectors

have high bit density on the same offsets.

Driven by this idea, we propose a simple hashing solution

that is built upon a pop-count based projection. Figure 3

depicts the hashing mechanism. Regardless the size of the

memory area concerned, it is divided into 32 sections where

each section corresponds to one bit in the hash (resulting in

a 4 bytes long hash value). On each section the number of

bits set is calculated and compared against a threshold, which

determines whether the corresponding bit in the hash value is

set or not. Our current implementation utilizes an empirical

value of having 80% of the number of bits set as threshold.

Each bit in such projection indicates the density of bits set

in the corresponding section of the original memory area,

mapping similar memory areas to the same hash value. Since

the introduction of SSE4.2 instruction set extension, pop-count

is natively supported by the x86 architecture, which makes it

computationally very efficient. Pop-count also proved to be

sufficient enough throughout our experiments, and while a

more rigorous comparison would be desired among existing

hashing techniques, such study is outside the scope of this

paper.
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Fig. 3: Density based hash function.

B. Content Addressable Hash Table

Using the pop-count based hash function we built a hash

table that can be addressed through two dimensions, address

and content. Figure 4 demonstrates the hash table’s arrange-

ment. Each non-zero memory area is represented by a memory

descriptor, that holds the memory address of the area and

the corresponding content hash value. All descriptors are

inserted through both dimensions, where descriptors residing

in the same hash bucket of the content hash table refer to

memory areas that have likely similar content. Our current

implementation uses 18 bits wide hash tables both in address

and content dimensions.

Once the dirty memory areas are identified at the end of a

replication epoch, the corresponding memory descriptors are

removed from the hash table. Memory descriptors that belong

to the RDP cache are distinguished and they hold a pointer to

the cached data instead of the actual VM memory. Otherwise,
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they play the same role with other entries that describe non-

dirty memory.
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Fig. 4: Content and address based hash table.

The purpose of finding similar areas in the memory content

corresponding to the VM’s previous replication epoch is to

decrease the network traffic required to update the backup

machine. Once we obtain the corresponding memory area, the

most similar the content hash table could identify, an RLE

[12] based compression of the difference is performed.

C. Copy-On-Write

The merit of asynchronous data transfer during replication is

the reduction of VM downtime, i.e., the time while the virtual

machine is suspended when replication data is transferred

to the backup machine. Instead of waiting until the transfer

completes, the regular asynchronous replication first copies all

dirty pages into a local buffer, resumes the VM immediately

and then transfers the data to the backup host [2]. This way,

data transfer overlaps the next epoch’s execution phase.

Unfortunately, in our case this solution is not directly

applicable, because we need the entire memory content of the

VM from the given epoch so that comparison against the non-

dirty memory region can be also performed consistently.

In order to prevent extending VM downtime, we modified

the virtual machine monitor so that it does copy-on-write

(COW) apart dirty page tracking when it is desired. Only

during the compression is COW enabled to ensure that the

similarity scan accesses memory content which corresponds

to the previous epoch. Clearly, COW demands certain amount

of extra memory so that the previous value of write accessed

pages can be retained. However, because COW is only enabled

for a short period of time during each replication epoch, we

observed a modest demand for additional memory, up to 20MB

in the worst case.

IV. IMPLEMENTATION

A. KVM

We chose the Linux Kernel Virtual Machine (KVM) [13] as

the platform of this study. KVM takes advantage of the hard-

ware virtualization extensions so that it achieves comparable

performance with the underlying physical machine.

The most important components of the KVM infrastructure

are the kvm kernel module and qemu-kvm, a KVM tailored

version of QEMU. A major advantage of this architecture is

the full availability of user-space tools in the QEMU process,

such as threading, libraries and so on. We make changes to

all components in order to enable replication.

B. Copy-On-Write
On the lowest level, we extended the KVM kernel module

to perform copy-on-write when it’s requested by qemu-kvm.

Copy-on-write is a well applied technique in operating sys-

tems, particularly for enforcing private access to an otherwise

shared memory area among separate address spaces. However,

in our case, COW is not as straightforward as it is with regular

processes, because the compression threads and the running

VM actually share the same address space. When a page is

written and COWed, the VM still needs to access the most

recent content, while the compression threads should see the

previous epoch’s value. In order to meet both requirements

we remap the old content of the page to another address

and maintain a translation table, which is queried by the

compression threads to find out whether or not a page has

been COWed. Note, that COW pages are recycled in each

epoch once the compression is finished.

C. Compression and I/O Buffering
Most of the replication logic, including the similarity based

compression is implemented in qemu-kvm, leveraging a great

part of the live migration code.
For disk I/O and network buffering we modified the virtio

drivers of qemu-kvm. The disk I/O buffer behaves also as

a hash table that operates on sector granularity so that read

requests referring to sectors which are already buffered can be

accessed consistently. As for network buffering we maintain

an extra packet queue that captures outgoing packets during

the execution phase of a replication epoch. Once the backup

machine acknowledges the update both disk and network

buffers are committed.

V. EVALUATION

A. Experimental Framework
Our experiments were conducted on three server nodes,

each machine equipped with a 4 cores Intel Xeon 2.2GHz

CPU (2 hyperthreads per core), 3 GB of RAM, a 250GB

SATA harddrive and two Broadcom NetXtreme II BCM5716

Gigabit Ethernet network interfaces. One of the physical

network cards were bridged to the virtual machine and used

for application traffic and the other was dedicated to the

replication protocol. The host machines run Ubuntu server 9.10

on Linux kernel 2.6.31 and we used qemu-kvm 0.12.3 with

kvm-kmod 2.6.31.6b as the basis of our implementation. For

both the Linux and Windows Server 2003 virtual machines

we used the KVM virtio disk and network drivers. We do

not present performance results on the native host machine,

because in virtualized environments direct access to the un-

derlying machines is normally not available. However, we had

Intel’s hardware MMU virtualization support, i.e. Extended

Page Tables (EPT) enabled in all experiments. Each VM had

one virtual CPU and 1 GB of RAM allocated with memory

ballooning support disabled.
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(a) SPECweb Banking results.
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(b) SPECweb E-Commerce results.
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(c) SPECweb Banking compression ratio.

Fig. 5: Average percentage of good and tolerable answers and compression ratio in SPECweb workloads.

B. SPECweb

The first two applications we investigate are SPECweb’s

Banking and E-Commerce workloads. The SPECweb con-

figuration requires at least three machines for running the

experiments [7]. One of the server hosts is the actual SPEC-

web application server, which is accompanied by a backend

machine. These were deployed in two VMs residing on two

separate physical machines. Besides these, a desktop machine

was utilized for running the SPECweb client side scripts.

We replicate only the main SPECweb application server,

for which another physical machine was utilized to serve as

backup host. We ran three different setups, first we tuned

the SPECweb configuration so that 99% of the responses are

categorized as good when executed on the native VM. Both the

regular asynchronous replication and the similarity compressed

method were then measured with the same configuration and

we compare the average percentage of good and tolerable re-

sponses reported by the SPECweb client script. The replication

period is set to 50 milliseconds in these experiments, because

SPECweb is network latency sensitive.

Figure 5a compares the results obtained for the Banking

workload. SPECweb reports two separate values for each

experiment, the ratio of good and tolerable answers. A closer

look at the results reveals that again, the regular asyn-

chronous replication introduces severe performance degrada-

tion to SPECweb. The ratio of results marked as good dropped

below 45% in this case, although 85% were still evaluated as

tolerable.

When similarity compression with copy-on-write is per-

formed, the ratio of good results increased to 88%, yielding

a 95% improvement compared to the regular asynchronous

replication. As for the ratio of tolerable answers, in case of

similarity compression, 98% of the results are tolerable, which

is nearly as good as the performance of the native VM.

Figure 5b illustrates the same comparison for the E-

Commerce workload. As previously, the configuration was

tuned to achieve 99% of the replies marked as good on

the native VM. The performance degradation imposed by

regular asynchronous replication is not as heavy as in case

of the Banking workload and it only drops to 90% and

74%, for tolerable and for good, respectively. We observed

that E-Commerce workload is substantially lighter in terms

of memory usage compared to Banking. We believe this

implies the lower degradation in performance due to the fact

that the overhead’s main factor is the amount of data to

be transferred. Our proposed method mitigates this overhead

achieving 99% tolerable and 92% good responses, which,

respectively, corresponds to a 10% and 24% improvement over

the regular asynchronous replication.

Figure 5c depicts the obtained compression ratio for the

Banking workload. We recorded the number of bytes trans-

ferred and the compression ratio achieved from which we

computed the amount of bytes the regular replication would

have had to transfer. The key observations is the fact that

the Ethernet bandwidth would be insufficient to keep up with

the pace of the produced dirty data in case of the regular

replication. As shown, our proposed mechanism attains an

average of 20% compression ratio for the Banking workload.

C. Exchange Server

The results presented so far were all obtained on Ubuntu

Linux. In this section we evaluate the performance of our

mechanism when applied to Microsoft Exchange Server 2007

deployed over Windows Server 2003. The Microsoft Exchange

Server is a messaging system that provides e-mailing, cal-

endars, attachments, contacts, etc. We used the Microsoft

Exchange Load Generator utility [11], which simulates the

server workload that is generated by interaction of multiple

users. This benchmark tool is mainly used for the purpose

of server sizing and deployment plan validation, but it also

provides a facility for stress-testing server installations.

We ran the Exchange Load Generator on a separate Win-

dows XP client machine. Only the server host was replicated

in our experiments and we used the same three setups as

we did with SPECweb, native VM, regular asynchronous

replication, and similarity compression with copy-on-write.

The replication period was calibrated to 50 milliseconds. The

Exchange Load Generator was executed three times for 10

minutes under stress-test mode and we report the average

number of tasks finished for each setup.
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(b) Task latency details. The values for RequestMeet-
ing are truncated for clarity. They are 24583, 66763,
and 32583, respectively.
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(c) Compression ratio.

Fig. 6: Microsoft Exchange Load Generator results.

Figure 6a demonstrates the average number of Exchange

tasks completed in 10 minutes with respect to the different

VM setups. Compared to the native VM’s over 10000 tasks,

the achieved performance in case of regular asynchronous

replication degrades to as low as 3954. Our proposed mecha-

nism alleviates this degradation finishing approximately 7100

tasks in 10 minutes, which in turn is a 79% performance

improvement.

Exchange Load Generator provides detailed information

on certain attributes of the executed tasks. We computed

the average latency of the most frequent tasks during the

experiments. Figure 6b depicts the actual numbers obtained.

As seen, when compared to the native VM’s performance,

the general tendency is that responses generated during the

regular replication have significantly higher latency. On the

other hand, latencies for the similarity compression method

reside in the interval of the native and the regular replication’s,

yielding significant improvements in some cases, such as the

SendMail, MakeAppointment, or the CreateContact tasks. A

closer look at the numbers reveals that similarity compression,

for these particular tasks, attains substantially closer efficiency

to the native VM than to the regular asynchronous replication.

Another key observation is that all tasks have higher latency

than 50 milliseconds even in case of the native VM, which

implies that the main factor of the regular replication overhead

is the inability of propagating changes to the backup VM

fast enough. We have verified this by running a couple

of experiments with 100 milliseconds replication epoch and

observed very similar results.

Figure 6c illustrates the compression ratio similarity com-

pression achieves against the regular data transfer. We used

the same method to generate this figure as for the previous

workloads and we draw similar conclusion. The main source

of the attained performance improvement is the fact that the

compressed stream can propagate more changes than the reg-

ular replication. Our proposed solution maintains an average

26% compression ratio for the Exchange Server workload.

D. CPU and Memory Consumption

Previously, we showed how replication of various workloads

benefits from our proposed compression technique. Clearly,

performing such activity in every 50/100 milliseconds requires

additional resources on the primary VM’s host machine. In

this Section we turn our attention to evaluate the price of the

compression in terms of CPU and memory consumption.

There are several sources for additional memory demand

when performing VM replication. Disk I/O buffering and net-

work packet capturing both allocate extra chunks of memory

We logged two attributes of the block cache, the frequency

how often disk I/O was involved in replication data, and

the number of sectors dirtied when disk I/O occurred. The

replication epoch was set to 100 milliseconds and the block

sector size was 512 bytes.

Table I illustrates the obtained results for all workloads. The

first column shows the percentage of replication epochs when

block I/O was involved, the second and third columns show

the maximum and the average size of the I/O buffer per epoch

during the experiment. As seen, block I/O varies significantly

according to the workload considered. Across all workloads

the average amount of memory consumed as block cache

scales from 160kB to 265kB, reaching 4.7MB in the worst

case. Table I also shows the average and the maximum size

of the content hash table. It reveals that the memory allocated

for the content descriptors scales from 21MB to 50MB, and

from 22MB to 51MB, as average, and maximum, respectively.

Moreover, we maintain an LRU cache of 5120 pages that

allocates another 20MBs. Overall the memory consumption

of the content hash scaled from 38MB up to 70MB in our

experiments, which we think is acceptable for a 1GB virtual

machine.

We used the atop [14] utility for logging CPU consumption

of qemu-kvm during the experiments both with and without

replication enabled. To assess the replication overhead in terms

of CPU consumption, we computed the average CPU usage

in both cases and report the difference between the replication

enabled and the native VM cases. The last column of Table
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TABLE I: Replication resource consumption.
Workload I/O Max. size of Avg. size of Max. size of Avg. size of CPU

Freq. disk I/O buff disk I/O buff content hash content hash overhead
SPECweb Banking 6% 850kB 280kB 24MB 23MB 134%
SPECweb E-commerce 6% 352kB 160kB 22MB 21MB 132%
Microsoft Exchange 70% 4.6MB 265kB 52MB 50MB 148%

I indicates the obtained results, note that 100% corresponds

to one CPU core here. As seen, the additional CPU power

required is about 135%, which we believe is a reasonable price

for high availability, especially with the ever growing core

number of recent CPU architectures.

VI. RELATED WORK

Similar Elements in High Dimensional Spaces. Finding

similar regions to dirty memory areas is essentially a similarity

search in a high dimensional space. Previous works have

yielded several approaches for finding similar elements in

high-dimensional spaces. Solutions, such as K-clustering [15]

or R-trees [16] could provide very accurate results, however,

due to their computational complexity they cannot be applied

in the scenario of VM replication.

Another prevalent approach is hashing, although, one-way

hash functions such as MD5 or SHA-1 are not feasible,

because by definition, they map elements that are close in the

input space to different hash values. To overcome this problem,

local-sensitive hash functions [17] have been proposed in the

literature, but none of them turned out to be efficient enough

in our case. In the context of network filesystems, LBFS

[18] suggested combining SHA-1 with Rabin fingerprints in

order to locate identical areas on different offsets within files.

However, we are aiming at finding similar areas, not only

identical ones. In this paper we proposed a pop-count based

hash function, which is computationally less expensive and

extracts information based on bit density.

Memory Content Similarity and Deduplication. Content

similarity in memory has been also investigated in the lit-

erature. VMware ESX Server [8] and Satori [9] introduced

techniques for better utilizing the physical memory in vir-

tualized systems by eliminating duplicate memory content

across and within virtual machine instances. Identical pages

are detected and deduplicated into one single read-only page.

Copy-on-write is then utilized to ensure consistency in case

the page is modified. Difference Engine [19] aims at the

same goal, but it leverages sub-page level page sharing and

memory compression to further improve memory efficiency.

Koller et al. [10] proposed I/O deduplication, a mechanism that

utilizes content similarity for improving I/O performance by

eliminating I/O operations and reducing the mechanical delays

during I/O operations. Of these, Difference Engine and I/O

deduplication have apparent similarities to our work because

they both utilize a content based hash table to find similar

content in the memory. However, our hashing mechanism and

sharing granularity is different than those proposed in the

above papers.

Virtual Machine Migration. Checkpoint-recovery based

fault tolerance captures snapshots of the running VM at

high frequency, often leveraging the live migration support

of the underlying Virtual Machine Monitor (VMM). Thus,

VM live migration is closely related to checkpoint-recovery

based replication. Solutions, such as Xen [20], KVM [13],

and VMware’s VMotion [21] all provide the capability of live

migrating VM instances. Pre-copy is the dominant approach to

live VM migration [20], [21]. It initially transfers all memory

pages then tracks and transfers dirty pages in subsequent

iterations. When the amount of data transferred becomes small

or the maximum number of iteration reached, the VM is

suspended and finally, the remaining dirty pages and the VCPU

context is moved to the destination machine. VM replication,

on the other hand, leaves the VM running in pre-copy mode at

all times so that dirty pages are logged and the entire execution

state can be reflected to the backup node at the end of each

replication epoch [2], [3]. In parallel with our work a recent

paper proposed a technique similar to ours, where content

similarity is exploited in the context of VM live migration

[12]. However, their proposed technique for identifying sim-

ilar memory pages is different than ours, furthermore, VM

replication involves various different technical issues, which

distinguishes our work from this study.

Virtual Machine Replication. Bressoud and Schneider [22]

introduced first the idea of hypervisor-based fault tolerance

by executing the primary and the backup VMs in lockstep

mode, i.e., logging all input and non-deterministic events

of the primary machine and having them deterministically

replayed on the backup node in case of failure. While Bres-

soud and Schneider demonstrated this technique only for the

HP PA-RISC processors VMware’s recent work implements

the same approach for x86 architecture [23]. Deterministic-

replay, however, imposes strict restrictions on the underlying

architecture and its adaption to multi-core CPU environment is

cumbersome, because it requires determining and reproducing

the exact order in which CPU cores access the shared memory.

Checkpoint-recovery based solutions such as Remus [2] and

Paratus [3] overcome the problem of multi-core execution by

capturing the entire executions state of the VM and transfer-

ring it to the backup machine. Although most of the data trans-

fer can be overlapped with speculative execution, transferring

updates to the backup machine at very high frequency still

comes with great performance overhead. Kemari [24] follows

a similar approach to Remus, but instead of buffering output

during speculative execution, it updates the backup machine

each time before the VM omits an outside visible event.
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Improving the performance of checkpoint-recovery based

VM replication has become an active research area recently.

Lu et al. [4] proposed fine-grained dirty region identification to

reduce the amount of data transferred during each replication

epoch, while Zhu et al. [5] improved the performance of log-

dirty execution mode by reducing read- and predicting write-

page faults. In this paper we also focus on reducing the amount

of data transferred during each replication epoch, although we

utilize content similarity instead of fine-grained dirty region

identification.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have first presented a quantitative analysis

of various workloads in terms of content similarity in their

memory image. For all workloads we investigated, we have

found that the degree of overlapping bytes between dirty data

and the previous epoch’s memory content is high, about 80%

when the comparison granularity is 512 bytes.

We have proposed a novel compression method to alleviate

VM replication overhead by exploiting such similarities. Our

mechanism uses a content addressable hash table to identify

similar memory areas to the dirty content in memory region

corresponding to the previous replication epoch and expresses

the changes with a compressed difference.

The proposed compression method can reduce network

traffic by up to 80%, thus, propagating changes faster and

yielding a performance improvement of over 90% for certain

latency sensitive applications when compared to the regular

asynchronous replication. We have also showed that the com-

pression comes with modest resource consumption, it requires

up to 70MB extra memory when it is applied to a 1GB VM and

utilizes a little more than an extra CPU core for computation.

One of the merits of checkpoint-recovery based replication

is its inherent capability of handling symmetric multiprocess-

ing (i.e. multiprocessor) virtual machines. Checkpoints cover

the entire execution state of the VM, including any non-

determinism that arises due to concurrent access of shared

memory in case of SMP configurations. Since wide-spread

usage of SMP virtual machines is highly anticipated [25], in

the future we intend to evaluate the scalability of our approach

over VMs with multiple virtual CPUs.
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