
Toward Full Specialization of the HPC So�ware Stack:
Reconciling Application Containers and Lightweight Multi-kernels

Balazs Gero�
RIKEN Advanced Institute For Computational Science

JAPAN
bgero�@riken.jp

Rolf Riesen
Intel Corporation

USA
rolf.riesen@intel.com

Robert W. Wisniewski
Intel Corporation

USA
robert.w.wisniewski@intel.com

Yutaka Ishikawa
RIKEN Advanced Institute For Computational Science

JAPAN
yutaka.ishikawa@riken.jp

ABSTRACT
Application containers enable users to have greater control of their
user-space execution environment by bundling application code
with all the necessary libraries in a single software package. Light-
weight multi-kernels leverage multi-core CPUs to run separate
operating system (OS) kernels on di�erent CPU cores, usually a
lightweight kernel (LWK) and Linux. A multi-kernel’s primary
goal is attaining LWK scalability and performance in combination
with support for the Linux APIs and environment. Both of these
technologies are designed to address the increasing hardware com-
plexity and the growing software diversity of High Performance
Computing (HPC) systems. While containers enable specialization
of user-space components, the LWK part of a multi-kernel system
is also a form of software specialization, but targeting kernel space.

This paper proposes a framework for combining application
containers with multi-kernel operating systems thereby enabling
specialization across the software stack. We provide an overview
of the Linux container technologies and the challenges we faced
to bring these two technologies together. Results from previous
work show that multi-kernels can achieve better isolation than
Linux. In this work, we deployed our framework on 1,024 Intel
Xeon Phi Knights Landing nodes. We highlight two important
results obtained from running at a larger scale. First, we show that
containers impose zero runtime overhead even at scale. Second,
by taking advantage of our integrated framework, we demonstrate
that users can transparently bene�t from lightweight multi-kernels,
attaining identical speedups to the native multi-kernel execution.

CCS CONCEPTS
• Operating Systems → Organization and Design;

KEYWORDS
High Performance Computing; Multi-kernels; Containers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ROSS ’17, Washingon, D.C., USA
© 2017 ACM. 978-1-4503-5086-0/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3095770.3095777

ACM Reference format:
Balazs Gero�, Rolf Riesen, Robert W. Wisniewski, and Yutaka Ishikawa.
2017. Toward Full Specialization of the HPC Software Stack: . In Proceedings
of ROSS ’17, Washingon, D.C., USA, June 27, 2017, 8 pages.
DOI: http://dx.doi.org/10.1145/3095770.3095777

1 INTRODUCTION
Containers have emerged as a lightweight virtualization alterna-
tive for e�cient application deployment o�ering the "build once
and deploy everywhere" development model. In scienti�c comput-
ing, application containers have been receiving attention due their
potential for improving productivity, portability, and reproducibil-
ity of experimental results. Application containers enable users to
have greater control of their user-space execution environment by
bundling application code with the necessary libraries in a single
software package. This provides a convenient way for e�ective
distribution of the increasingly non-trivial scienti�c computing
software stack, as well as to incorporate specialized dependencies
needed by HPC environments [12]. Indeed, the increasing preva-
lence of Big Data, analytics, and machine-learning has diversi�ed
the workloads of high-end computing systems to such a degree
that some speculate containers may become the new narrow waist
of the HPC system software stack [5].

At the same time, lightweight multi-kernels have also been re-
ceiving considerable attention [10]. Lightweight multi-kernels lever-
age today’s many-core CPUs to run multiple operating system (OS)
kernels, typically a lightweight kernel (LWK) and a Linux kernel, si-
multaneously. The LWK provides high performance and scalability,
usually through specialization targeting particular hardware fea-
tures or HPC application needs, while Linux provides the necessary
POSIX and Linux compatibility. The multi-kernel promise is to be
able to meet tomorrow’s computing needs of big data, machine and
deep learning, and multi-tenancy, while at the same time, to pro-
vide the strong isolation yielding high performance and scalability
needed by classical HPC applications.

Containers and multi-kernels help address the increasing hard-
ware complexity and the growing software diversity of HPC. While
containers enable specialization of user-space components, the
LWK part of a multi-kernel system is also a form of software spe-
cialization, but targeting kernel space.

Our previous work [9] shows that multi-kernels can achieve bet-
ter isolation than the capabilities that Linux provides. In this paper,

ROSS ’17, June 27, 2017, Washingon, D.C., USA Balazs Gerofi, Rolf Riesen, Robert W. Wisniewski, and Yutaka Ishikawa

we focus on combining application containers with multi-kernel
operating systems with the intention of allowing specialization
across the software stack. Specialization is being explored in the
cloud space as well. Unikernels provide specialized, single address
space images, constructed by using library operating systems [21].
Unikernels target primarily virtualized environments (i.e., virtual
machines), and thus require rebuilding the application. Instead, we
leverage the Linux compatibility of lightweight multi-kernels and
run unmodi�ed Linux containers on top of the LWK.

This paper makes the following contributions:
• We propose a framework for combining application con-

tainers with multi-kernel operating systems, thereby en-
abling specialization across the entire software stack.

• We provide an overview of the Linux container technolo-
gies and describe the challenges of integrating containers
into a multi-kernel environment.

• By deploying our framework on up to 1,024 Intel® Xeon
Phi™ Knights Landing nodes, we show that containers
impose zero runtime overhead even at scale; and by taking
advantage of our integrated framework, we demonstrate
that users transparently bene�t from lightweight multi-
kernels, attaining identical speedups to the native multi-
kernel execution.

The rest of this paper is organized as follows. We begin by pro-
viding background information on containers and multi-kernels in
Section 2. We then describe our framework in Section 3. We pro-
vide experimental evaluation in Section 4, and further discussion in
Section 5. Section 6 surveys related work, and Section 7 concludes
the paper.

2 BACKGROUND
This section provides a brief overview of Linux container technolo-
gies. We �rst discuss their foundations in the Linux kernel and then
survey some of the existing implementations. We also present a
basic overview of multi-kernels.

2.1 Application Containers
From an HPC perspective, containers provide three features. First,
they allow packaging of applications, i.e., the bundling of libraries,
con�guration �les, etc. together with the application code itself,
which makes deployment easier and helps with runtime repro-
ducibility. Second, containers enable node resource management
(e.g., management of CPU cores, memory, etc.) and accounting.
While this is not the most used feature of containers in a typical
HPC environment, there are projects that focus on these properties.
Third, though not a topic of this paper, containers are being used to
isolate a classical HPC application from analytics or deep learning
applications running on the same set of nodes to reduce data move-
ment, while maintaining good performance and scalability for the
HPC application. Linux provides the following features relevant to
containers.

2.1.1 Namespaces. A Linux namespace is a scoped view of ker-
nel resources, a form of lightweight virtualization in the Linux
kernel. Namespaces make system resources appear to the processes
within the namespace as if the processes had their own isolated

instance of the particular resource. Changes to the resource are only
visible to processes that are part of the same namespace. There are
a few exceptions such as the propagation of mount points. Linux
currently supports seven namespaces:

• mnt: Directory hierarchy, mount points
• pid: Process ID number space
• net: Network devices, network stacks, ports, etc.
• ipc: System V IPC, POSIX message queues
• uts: Hostname and NIS domain name
• user: User and group IDs (relatively new, not all Linux

distributions support it)
• cgroup: Cgroup root directory

By default, processes run in the system-wide global namespace,
but there are APIs that enable creating new name spaces. Names-
pace information is exposed in the /proc �lesystem. For all pro-
cesses in the system, the folder /proc/[pid]/ns/ holds one entry
for each namespace. In recent Linux versions these �les are sym-
bolic links and their value is the namespace identi�er in the kernel.

There are a number of system calls that enable manipulating
namespaces. The clone() system call creates a new thread or pro-
cess, and if speci�ed, new namespaces can be created as well. The
new thread will be placed into the new namespace. setns() allows
the calling thread to switch to the namespace speci�ed in the argu-
ment, where the argument is a �le descriptor pointing to one of the
/proc �les mentioned above. Finally, the unshare() system call
enables creating new namespaces and placing the calling thread
into them. One thing that is important from a security point of view
is that most of the namespace creation routines (except for user
namespaces) require root privilege.

Namespaces are the essence of containers, and although general
purpose container implementations make heavy use of most of
the available namespaces, containers targeting HPC environments
usually rely on the mnt namespace. The mnt namespace provides
the fundamental support for application packaging as it enables
processes to have a private view of the �lesystem, including li-
braries, etc. Again, this is the key for specializing an application’s
user-space components. More information on this topic is provided
in Section 2.1.3.

2.1.2 Control Groups (cgroups). Control cgroups (i.e., cgroups)
are a feature of the Linux kernel that enable processes to be orga-
nized into hierarchical groups. Their usage of kernel resources can
then be controlled and accounted for. The cgroups infrastructure
allows controlling resource usage, such as CPU time and a�nity,
memory limitations, access to devices, network usage and tra�c
shaping, I/O control of block devices and throttling of I/O streams,
etc. The Linux kernel’s cgroup API is provided through a pseudo-
�lesystem called cgroupfs.

There are two versions of cgroups. Each version provides mul-
tiple subsystems so that speci�c resources can be controlled. Cur-
rently, from an HPC perspective, CPU and memory limitations are
the most relevant resource to be controlled, which can be accom-
plished via the cpuset subsystem. In the future, with the increasing
importance of multi-tenant deployment, other subsystems may also
gain relevance. However, as described in the related work section,
the granularity of control for these resources is coarse grained

Toward Full Specialization of the HPC So�ware Stack: ROSS ’17, June 27, 2017, Washingon, D.C., USA

Table 1: Overview of Linux container technologies.

Project / Docker [22] rkt [6] Singularity [15] Shifter [24]
Attribute
Supported namespaces all except user user, mount, pid, ipc mount
Uses cgroups yes yes no no
Image format OCI appc img UDI
Standardized image yes yes no no
Daemon process required yes no no no
Network isolation yes yes no no
Direct device access possible possible yes yes
Root �lesystem pivot_root() and chroot() pivot_root() and chroot() chroot() chroot()
Implementation language Go Go C, python, sh C, sh

limiting the applicability of cgroups for HPC scenarios [28]. As de-
scribed in Section 2.1.3, cgroups remain mostly unused in current
HPC targeted container implementations.

2.1.3 Container Implementations. We investigated four con-
tainer implementations and summarize our �ndings in Table 1.
Docker is the most widely used container engine providing a rich
set of features [22]. It can utilize all namespaces of the Linux kernel
(including the user namespace). It also is capable of dealing with
cgroups for resource restrictions and monitoring. Docker relies on
the image format de�ned by the Open Containers Initiative (OCI),
which in turn can be executed by the runC runtime. Docker relies
on a daemon process, running with root privileges, to con�gure
and spawn containers. The daemon provides additional features,
such as �le system layering and the management of container im-
ages and instances. Note, however, that the runC protocol does not
strictly require this. In fact, there are independent implementations
of runC from Docker. Docker’s often mentioned weakness is the
security implications of this daemon based structure.

Another well-known container engine for commercial/cloud de-
ployments is rkt from CoreOS [6]. rkt’s main innovation was the
elimination of the daemon process, which leads to more straightfor-
ward resource accounting. rkt is also capable of dealing with most
of the Linux namespaces as well as with cgroups. Additionally,
it provides the concept of pods, which is a unit of execution that
allows bundling multiple containers together. rkt uses an image
format called Application Container Image (ACI), whose actual for-
mat is de�ned in the App Container Speci�cation (appc), a similar
standardization e�ort to Docker’s OCI.

On the HPC side of the container spectrum, there are two ef-
forts that have emerged. Singularity from LBNL [15] is a simple
container implementation with the primary motivation of enabling
users to control their application environments through packaging.
Singularity utilizes only a subset of namespaces for this purpose
(i.e., mnt, ipc, pid and user) and it does not support cgroups. It
uses its own image format, but provides tools to convert from other
container images, for example from Docker. Singularity indicates it
runs as an unprivileged user. However, its main container execution
tool occasionally escalates to root privileges (for loop mounting
images, etc.), and thus it runs as a setuid binary owned by root.

Shifter, from NERSC, is another HPC-oriented container en-
gine [24]. Although Shifter primarily focuses on the distribution of
container images to compute nodes, it also provides an execution
runtime. Shifter’s container runtime is simpler than Singularity. It
supports only the mnt namespace. Although Shifter indicates that
it can run Docker containers, in reality it converts Docker images
to its own User De�ned Image (UDI) format, which is then loop
mounted during execution.

What makes both Singularity and Shifter appealing for HPC
is their natural integration with MPI. This partially comes from
their simple execution model (i.e., just setting up namespaces and
clone() the application) and the direct access to network devices.

2.2 Multi-kernel Operating Systems
Lightweight multi-kernels leverage many-core CPUs and run mul-
tiple OS kernels, typically a lightweight kernel and a Linux kernel,
simultaneously. The LWK provides high performance and scala-
bility while Linux provides compatibility for Linux APIs and the
Linux environment. To accomplish this, the LWK component of
a multi-kernel usually implements performance sensitive kernel
services and Linux is relied upon for the rest of the system calls
through an o�oading mechanism.

We consider two multi-kernels in this paper, and provide a short
overview of each. IHK/McKernel is a lightweight multi-kernel de-
veloped at RIKEN. It consists of two main components: A low-level
software infrastructure called Interface for Heterogeneous Ker-
nels (IHK) [26] and an LWK called McKernel [8]. IHK is a general
framework that provides capabilities for partitioning resources in
a many-core environment (e.g., CPU cores and physical memory)
and it enables management of lightweight kernels. We emphasize
that IHK can reserve and release host resources dynamically and no
reboot of the host machine is required when altering con�guration.

McKernel is specialized for HPC workloads. It boots from IHK,
and it requires the presence of Linux for running actual applications.
For each process running on McKernel there exists a process on the
Linux side, which we call the proxy-process. The proxy process’ cen-
tral role is to facilitate system call o�oading. Primarily, it provides
execution context on behalf of the application so that o�oaded
calls can be directly invoked in Linux, but it also enables Linux to
maintain certain state information that would have to be otherwise
kept track of in the LWK. McKernel for instance has no notion of

ROSS ’17, June 27, 2017, Washingon, D.C., USA Balazs Gerofi, Rolf Riesen, Robert W. Wisniewski, and Yutaka Ishikawa

Boot	mul(-kernel	

Spawn	container	
as	daemon	

and	obtain	NS	info	
	

Container	
(Docker	/	

Singularity	/	
rkt)	
	Spawn	app	into			

container	namespace	
using	conenter	

•  set	up	namespaces	
•  cgroups	
•  expose	LWK	informa(on	

•  enter	NS	
•  drop	priviledges	
•  set	RLIMITs		
•  fork	and	exec	app	(over	LWK)	

Mul(-kernel	
(McKernel	/	mOS)	

Tear	down		
container	

Shut	down	
LWK	

Figure 1: Container execution framework architectural overview.

�le descriptors, but all �le I/O operations go through the proxy. As
we will see later, this is crucial with respect to containers, since the
illusion of application packaging is achieved through interaction
with the �le system.

mOS is a lightweight multi-kernel developed at Intel. While mOS
and McKernel share common goals, mOS follows a di�erent de-
sign than IHK/McKernel. It compiles the LWK code base directly
into Linux. One implication of this design decision is that mOS’
system call o�oading mechanism is di�erent than that of the McK-
ernel proxy approach. Instead of running a proxy process on Linux,
mOS retains Linux kernel compatibility at the level of kernel data
structures; e.g., task_struct, enabling mOS to, for example, move
threads directly into Linux. Therefore, system call o�oading is im-
plemented via migrating the issuer thread into Linux, executing the
system call, and migrating the thread back to the LWK component.

3 DESIGN AND IMPLEMENTATION
Our goal was to build a framework that would execute containers
on top of lightweight multi-kernel operating systems transparently
to users. We set the following conditions for our system:

• Seamless integration with MPI.
• Container engine transparency.
• Multi-kernel transparency.

Seamless integration with MPI implies that we should be able to
pass a containerized binary to mpirun in a straightforward manner,
and at the same time the framework should allow running multiple
MPI ranks inside a node. Only HPC targeted container engines
provide this feature by default. For example, when running MPI
with Docker, an often mentioned solution is to spawn a container
on each compute node with a dedicated IP address �rst and ex-
ecute mpirun separately using the new IP addresses as host list.
This behavior is very di�erent than what regular MPI users expect.
Container engine transparency means that we should be able to
execute di�erent container types in a uni�ed fashion. Note that this

does not imply the framework internally understands the image for-
mat of the container, but rather it interacts with the corresponding
container runtime.

As an example of our framework, to execute the following MPI
invocation:

mpirun -n <N> -env OMP_NUM_THREADS =4 -hostfile ~/hosts \
-ppn 64 /miniapps/miniFE/miniFE.x nx=660 ny=660 nz=660

The following command can be used:

mpirun -n <N> -env OMP_NUM_THREADS =4 -hostfile ~/hosts \
-ppn 64 conexec --lwk mckernel \
docker:// ubuntu:miniapps /miniapps/miniFE/miniFE.x \
nx=660 ny=660 nz=660

As shown, the executable passed to mpirun is conexec. An ar-
chitectural overview of conexec is shown in Figure 1. As mpirun
may spawn multiple conexec processes, i.e., when multiple MPI
ranks are executed inside a node, we use �le locks and reference
counters internally to determine when booting the multi-kernel
and/or spawning the container is necessary. Speci�cally, the main
execution steps of the framework are as follows. The �rst conexec
process will set up or initialize the multi-kernel. Depending on
the degree of �exibility the multi-kernel o�ers, this may involve
o�ining resources and booting an LWK, or just simply verifying
that the multi-kernel is ready. The framework then spawns the
container by examining its type (Docker in the example above) and
calling the corresponding container APIs. Note that we spawn an
empty daemonized container �rst, and then obtain its namespace
identi�cation. Information about the multi-kernel also needs to be
exposed in the container, i.e., the necessary device �les and tools
(e.g., mcexec for McKernel and yod for mOS) that are used to in-
struct the LWK to run an application. These steps are performed by
conexec automatically. Subsequent conexec processes will simply
obtain the namespace information.

Another component of our framework, denoted by conenter in
Figure 1 utilizes the nsenter() system call to spawn the actual ap-
plication in the container identi�ed by the namespace information
in the previous step. The framework then waits until the application

Toward Full Specialization of the HPC So�ware Stack: ROSS ’17, June 27, 2017, Washingon, D.C., USA

returns. Relying on reference counting, the last conexec process
that exits tears down the container and shuts down the LWK.

As we mentioned above, both multi-kernels utilize system call of-
�oading for �le operations. This provides us with a very convenient
framework to enforce that the LWK application’s view of Linux
resources corresponds to that of the container’s namespaces. In case
of McKernel, what we need to do is to run the proxy process in the
container and the LWK process will automatically inherit the right
attributes. Similarly, for mOS we need to run the tool that spawns
the LWK process in the container. This is shown conceptually in
Figure 2.

	
	
	
	
	

	
	
	
	
	

Applica'on	Container	
	
	

Memory	

	
	
	
	
	
	

IHK	Linux	

Delegator	
	module	

CPU	 CPU	CPU	 CPU	
…	 …	

McKernel	
Linux	

	
	

System	
daemon	

Kernel	
daemon	

Proxy	process	

IHK	Co-kernel	

HPC	ApplicaAon	

Interrupt	

System	
call	

System	
call	

ParAAon	 ParAAon	O
S
 j
it
te

r
c
o
n
ta

in
e
d

in
 L

in
u
x,

 L
W

K
 i
s

is
o
la

te
d	

Figure 2: Containerized execution on top of IHK/McKernel.

There are a number of implementation issues we encountered
to make this work. IHK’s Linux kernel module makes heavy use of
process IDs to identify internal data structures when system call
o�oading is performed. These needed to be all namespace aware
to make sure we �nd the correct data.

Another issue worth mentioning was the Singularity container’s
lack of support for spawning daemonized containers as well as
the missing APIs for obtaining namespace information. For this
purpose, we modi�ed the Singularity execution runtime to support
those. Note, that this does not have any impact on compatibility
with actual Singularity container images. Our framework currently
supports Docker and Singularity, while rkt support is still work in
progress.

4 EVALUATION
This section describes the experiments we performed and discusses
their results.

4.1 Experimental Environment
Our experiments were performed on two platforms. A small 32-
node Xeon cluster comprising Intel® Xeon™ CPU E5-2670 v2 nodes
interconnected by Mellanox In�niband MT27600 Connect-IB and on
Oakforest-PACS (OFP), a Fujitsu built, 25 peta-�ops supercomputer
installed recently at The University of Tokyo [7]. OFP is comprised
of eight-thousand compute nodes that are interconnected by Intel’s
Omni Path network. Each node is equipped with an Intel® Xeon
Phi™ 7250 Knights Landing (KNL) processor, which consists of 68
CPU cores, accommodating 4 hardware threads per core. The pro-
cessor provides 16 GB of integrated, high-bandwidth MCDRAM and
is accompanied by 96 GB of DDR4 RAM. For all experiments, we
con�gured the KNL processor in SNC-4 �at mode; i.e., MCDRAM
and DDR4 RAM are addressable at di�erent physical memory lo-
cations and both are split into four NUMA nodes. Altogether, the

operating system sees 272 logical CPUs organized around eight
NUMA domains. We emphasize that our experiments utilized the
high-performance interconnects on both platforms.

The software environment we used is as follows. The Xeon
cluster runs CentOS 7.2 with Linux kernel 3.10.0-327.4.5. The
compute nodes on OFP run XPPSL 1.4.1 with Linux kernel ver-
sion 3.10.0-327.22.2. XPPSL is a CentOS based distribution with
various Intel provided kernel level improvements speci�cally sup-
porting the KNL processor.

For the miniapp experiments on OFP, we dedicated 64 CPU cores
to the application and 4 CPU cores for OS activities. For the Linux
runs we used the Fujitsu’s HPC optimized production environment.
For the McKernel measurements we deployed IHK and McKernel,
commit hash 7b3872ed and c32b1ada, respectively. We deployed
Docker 1.11 and Singularity 2 on the Xeon cluster, and on OFP we
used only Singularity.

4.2 Results
We highlight that our experiments aim at demonstrating the fol-
lowings: First, that the proposed container execution framework
works with a variety of container engines and that it can also han-
dle multi-kernels. Second, that containers impose no overhead on
execution even at large scale. And �nally, that by executing the
same applications in a container on top of specialized LWKs we can
transparently gain the same bene�ts as if we ran the codes natively
on the LWK.

To highlight the contrast between the host’s CentOS and the OS
in the container, we deployed an Ubuntu 14.04 installation both in
Docker and in Singularity. Besides the application executable we
added the necessary shared libraries, i.e., the network drivers and
Intel MPI.

The �rst measurement was performed on the smaller Xeon clus-
ter and we used the Intel MPI Benchmark (IMB) to assess the over-
head that containers impose on ping-pong communication. Figure
3 summarizes the results. We ran six scenarios: native execution
on Linux, native execution on McKernel, Docker on Linux, Docker
on McKernel, Singularity on Linux and Singularity on McKernel.
Note that we used the exact same application binary and the same
libraries in the container as on the host. The key observations from
these results are that indeed containers impose no overhead on
communication and that we see the same latency improvement
for the containerized execution on top an LWK as the native LWK
case. This was expected as high-performance interconnects (such
as In�niband) are driven from user-space, bypassing the OS kernel.

In our second experiment we used up to 1,024 nodes of the OFP
machine. We deployed our container execution framework as well
as Singularity and used the same Ubuntu image as previously. We
only needed to add the necessary shared libraries to support the
Omni Path network.

The mini applications we used are as follows. GeoFEM is a con-
jugate gradient code developed at The University of Tokyo [23].
CCS-QCD is lattice Quantum Chromodynamics (QCD) simulation
from The University of Hiroshima that is part of the Fiber mini appli-
cation suite, available at https://github.com/�ber-miniapp/ccs-qcd.
Finally, miniFE is an proxy application for unstructured implicit
�nite element codes from the CORAL benchmark suite, available

https://github.com/fiber-miniapp/ccs-qcd

ROSS ’17, June 27, 2017, Washingon, D.C., USA Balazs Gerofi, Rolf Riesen, Robert W. Wisniewski, and Yutaka Ishikawa

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	
La
te
nc
y	
(u
s)
	

Message	size	

Na*ve	(Linux)	 Na*ve	(McKernel)	 Docker	on	Linux	 Docker	on	McKernel	 Singularity	on	Linux	 Singularity	on	McKernel	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

Figure 3: Intel MPI Benchmark Ping-Pong Results.

0	

2	

4	

6	

8	

10	

12	

14	

16	

1024	 2048	 4096	 8192	 16k	 32k	 64k	

Fi
gu
re
	o
f	m

er
it	
(s
ol
ve
d	
pr
ob

le
m
	si
ze
	

no
rm

al
iz
ed

	to
	e
xe
cu
8o

n	
8m

e)
	

Number	of	CPU	cores	

Linux	 IHK/McKernel	 IHK/McKernel	+	Singularity	

(a) GeoFEM

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

1024	 2048	 4096	 8192	 16k	 32k	 64k	

M
Fl
op

/s
ec
/n
od

e	

Number	of	CPU	cores	

Linux	 IHK/McKernel	 IHK/McKernel	+	Singularity	 38%	

(b) CCS-QCD

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

1024	 2048	 4096	 8192	 16k	 32k	 64k	

To
ta
l	C
G
	M

Fl
op

s	

Number	of	CPU	cores	

Linux	

IHK/McKernel	

IHK/McKernel	+	Singularity	

3.5X	

(c) miniFE

Figure 4: Mini applications scalability results.

at https://asc.llnl.gov/CORAL-benchmarks/Throughput/MiniFE_
ref_2.0-rc3.tar.gz.

We compare the execution of these application on Linux, on
McKernel and running them in a container on top of McKernel.
McKernel outperforms Linux at scale on all of these benchmarks.
The detailed analysis of where these speedups derive from is outside
the scope of this paper and is published elsewhere [11], however,
we note that one of our main �ndings was that most of the per-
formance improvement was due to the LWK’s ability to be easily
modi�ed to suite unconventional requirements, which corresponds
to the specialization argument of this paper. Again, what we seek
to con�rm here is whether or not running these benchmarks in
a container on top of McKernel results in identical performance
improvements as the native McKernel execution. Figure 4 depicts
the results.

Note that both the native Linux and McKernel results are average
of multiple (up to �ve) runs, but due to the limited availability for
exclusive usage of the OFP machine, we obtained only one exe-
cution for the containerized scenario. Unfortunately, we had no

opportunity to test our hypothesis on mOS, but we did observe
similar improvements for the native mOS case [11]. As one can see
the results for running the benchmarks in a Singularity container
on top of McKernel look almost identical to the native McKernel ex-
ecution. Speci�cally, we observed up to 18%, 38% and 3.5x speedups
on GeoFEM, CCS-QCD and miniFE, respectively. Note that the mea-
surements were not run directly after each other and we could not
ensure to have the exact same 1,024 nodes in all cases. We attribute
the slight performance di�erences to that.

In summary, our framework enabled us to deploy an approxi-
mately 500 MB Ubuntu image, which contained all necessary li-
braries, and by running it on top of a lightweight multi-kernel we
could transparently bene�t from kernel level improvements.

5 DISCUSSION
This section provides further discussion on the limitations and
challenges we identi�ed while running containers in HPC envi-
ronments. Although containers are often depicted as the enablers
of full control over user-space execution environments, they do

https://asc.llnl.gov/CORAL-benchmarks/Throughput/MiniFE_ref_2.0-rc3.tar.gz
https://asc.llnl.gov/CORAL-benchmarks/Throughput/MiniFE_ref_2.0-rc3.tar.gz

Toward Full Specialization of the HPC So�ware Stack: ROSS ’17, June 27, 2017, Washingon, D.C., USA

impose certain limitations. As user-space libraries often have depen-
dencies with respect to the OS kernel’s device drivers, the libraries
deployed in the container need to comply with the host kernel.
This is particularly true in the HPC context, where high perfor-
mance networks and/or accelerators require very speci�c libraries
to match the hardware’s performance pro�le1.

Similarly, application binaries that leverage speci�c hardware
features (e.g., rely on speci�c CPU instructions) may not be de-
ployed on platforms that do not support those features.

The second issue we found is with regard to MPI, particularly
how MPI jobs are spawned. As MPI processes are created by executa-
bles that reside on the host machine, i.e., the Process Management
Interface (PMI) proxy process, the MPI library in the container needs
to adhere to the host’s PMI protocol. Unfortunately, while there
have been e�orts to establish an ABI level PMI protocol standard
that would span across all MPI implementations, this is currently
not possible.

6 RELATEDWORK
We survey a number of related studies covering operating systems
for multi-cores, multi-kernels in HPC as well as containers.

The K42 [14] research project took scalability as the primary
concern in OS design. Similarly how mOS and IHK/McKernel se-
lectively implement a set of performance sensitive system calls on
the LWK side, K42 enabled application to bypass the Linux APIs
and call directly into native K42 interfaces. However, it involved a
signi�cant entanglement with Linux which made it cumbersome
to keep up with the latest Linux modi�cations. While mOS and
McKernel also rely on Linux, one of their primary design criteria
was to minimize the e�ort required to keep up-to-date with the
rapidly moving Linux kernel.

Multi-kernels in general purpose computing have also been stud-
ied. Tessellation [20] and Multikernel [2] are driven by the obser-
vation that modern computers have similar architectural attributes
to networked system and so the OS should also be modeled as a
distributed system. The Tessellation project [20] proposed Space-
Time Partitions, an approach that partitions CPU cores into groups
called cells. Each cell hosts speci�c system services or a particu-
lar application. Because applications and system services can be
assigned to distinct cells, Tessellation’s structure is similar to both
mOS and IHK/McKernel, where HPC applications are assigned to
LWK cores while system daemons reside on CPU cores managed
by Linux.

Multikernel [2] runs a small kernel on each CPU core and OS
services are built as a set of cooperating processes. Each process
is running on one of the multi-kernels and communicates using
message passing. Similarly to Multikernel, the IHK/McKernel model
relies on a message passing facility that allows communication
between the two types of kernels, and consequently between the
application and its Linux proxy process.

The idea of multi-kernels in the HPC context has also been
studied for a number of years. FusedOS [25] was the �rst system to
combine Linux with an LWK. FusedOS’ primary objective was to
address core heterogeneity between system and application cores
and at the same time to provide a standard operating environment.

1Note that our multi-kernels can take advantage of Linux device drivers [9].

Contrary to mOS and McKernel, FusedOS runs the LWK at user
level. The kernel code on application CPU cores is simply a stub
that o�oads all system calls to a corresponding user-level proxy
process called CL. The proxy process itself is similar to that in
IHK/McKernel, but in FusedOS the entire LWK is implemented
within this CL process that runs on Linux. Consequently, FusedOS
provides the same functionality as the Blue Gene CNK from which
CL was derived. The FusedOS work was the �rst to demonstrate that
Linux noise can be isolated to the Linux cores to avoid interference
with the HPC application running on the LWK CPUs. This property
has been one of the main driver for both mOS and McKernel.

Hobbes [4] was one of the projects in DOE’s Operating System
and Runtime (OS/R) framework for extreme-scale systems. The cen-
tral theme of the Hobbes design is to support application composi-
tion, which is emerging as a key approach to address scalability and
power concerns anticipated in future extreme-scale architectures.
Hobbes utilizes virtualization technologies to provide the �exibility
to support requirements of application components for di�erent
node-level operating systems and runtimes. The Kitten [16] LWK
forms the base layer of Hobbes, and Palacios [18], running on top
of Kitten, serves as a virtual machine monitor.

Argo [17] is another DOE OS/R project targeted at applications
with complex work�ows. While Argo originally also targeted a
multi-kernel based software architecture, it recently turned toward
primarily relying on container technologies. Currently, it investi-
gates how to enhance the Linux kernel’s container framework so
that it can meet HPC requirements [28].

The applicability of Linux containers in high-performance com-
puting has received considerable attention in recent years. An early
evaluation by Xavier et al found that containers impose near zero
overhead on HPC workloads, although their experiments were per-
formed on very small scale using hardware that is not typically used
in the supercomputing context [27]. Jacobsen et al demonstrated
containers’ advantages from a storage perspective. In particular,
they showed how containers can alleviate pressure on parallel �le
systems by keeping metadata operations local when a large number
of shared libraries are utilized by the application [13]. Hale et al.
compared various container technologies deployed on a Cray XC30
system in [12]. One of their key �ndings is that optimized images
can occasionally outperform native user installations as the con-
tainer environment can be suitably specialized by the developers
of a library. While all this work focuses on containers in an HPC
context, it only considers running on Linux, as opposed to our
e�orts of specializing kernel space as well.

As we brie�y mentioned in Section 1, an approach toward ad-
dressing cloud computing as a platform for elastically scaling ser-
vices are Unikernels, such as MirageOS [21] and IncludeOS [3].
Unikernels are specialized, single-address-space machine images
constructed by using library operating systems. Note that the con-
cept of library operating systems is not new, Libra [1] proposed a
similar system for JVM. Some of the bene�ts Unikernels provide are
small footprints and more opportunity for kernel level specializa-
tion. Unikernels, however, usually run in virtualized environments
and require the application to be recompiled. On the other hand,
lightweight multi-kernels can provide a Linux compatible environ-
ment via service o�oading.

ROSS ’17, June 27, 2017, Washingon, D.C., USA Balazs Gerofi, Rolf Riesen, Robert W. Wisniewski, and Yutaka Ishikawa

A recent e�ort, HermitCore [19], investigates Unikernels’ appli-
cability to HPC. HermitCore has a very similar goal to multi-kernels,
however, we see two main di�erences between multi-kernels and
HermitCore. First, HermitCore does not provide system call of-
�oading, which implies that any OS service it supports must be
implemented in the Unikernel itself. With HPC applications becom-
ing increasingly complex, we are not convinced that this is the right
approach. Additionally, while HermitCore’s co-kernel management
is very similar to IHK, e.g., they both leverage the Linux kernel’s
o�ining features, HermitCore requires modi�cations to the Linux
kernel, which makes its deployment more cumbersome.

7 CONCLUSION AND FUTUREWORK
The increasing hardware complexity and the growing software
diversity in HPC environments encourage software specialization
to address these challenges. While containers enable greater control
over user-space components, lightweight multi-kernel operating
systems allow software specialization of kernel space.

In this paper, we proposed a uni�ed framework that enables
the deployment of containers on top of lightweight multi-kernels,
thereby extending software specialization across the entire software
stack. Through a large-scale deployment of our framework on 1,024
Xeon Phi nodes we have demonstrated that identical speedups to the
native multi-kernel deployment can be achieved from containerized
environments. We believe that specialization of HPC software will
play an increasingly important role as we move towards exascale
and beyond.

In the future, we will further extend our framework to support
a wider range of container engines. We also intend to investigate
how the incompatibility between containerized libraries and the
host kernel may be addressed.

ACKNOWLEDGMENT
This work is partially funded by MEXT’s program for the Develop-
ment and Improvement for the Next Generation Ultra High-Speed
Computer System, under its Subsidies for Operating the Speci�c
Advanced Large Research Facilities.

We acknowledge Tomoki Shirasawa and Gou Nakamura from
Hitachi for their McKernel development e�orts.

REFERENCES
[1] Glenn Ammons, Jonathan Appavoo, Maria Butrico, Dilma Da Silva, David Grove,

Kiyokuni Kawachiya, Orran Krieger, Bryan Rosenburg, Eric Van Hensbergen,
and Robert W. Wisniewski. 2007. Libra: A Library Operating System for a JVM
in a Virtualized Execution Environment. In Proceedings of the 3rd International
Conference on Virtual Execution Environments (VEE ’07). ACM, New York, NY,
USA, 44–54.

[2] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The multikernel: a new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles
(SOSP ’09). 29–44.

[3] A. Bratterud, A. A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum. 2015.
IncludeOS: A Minimal, Resource E�cient Unikernel for Cloud Services. In 2015
IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom). 250–257.

[4] Ron Brightwell, Ron Old�eld, Arthur B. Maccabe, and David E. Bernholdt. 2013.
Hobbes: Composition and Virtualization As the Foundations of an Extreme-scale
OS/R. In Proceedings of the 3rd International Workshop on Runtime and Operating
Systems for Supercomputers (ROSS ’13). Article 2, 8 pages.

[5] BDEC Committee. 2017. The BDEC "Pathways to Convergence" Report. Technical
Report.

[6] CoreOS. 2017. rkt: A security-minded, standards-based container engine. https:
//coreos.com/rkt. (April 2017).

[7] Joint Center for Advanced HPC (JCAHPC). 2017. Basic Speci�cation of Oakforest-
PACS. http://jcahpc.jp/�les/OFP-basic.pdf. (March 2017).

[8] Balazs Gero�, Akio Shimada, Atsushi Hori, and Yutaka Ishikawa. 2013. Partially
Separated Page Tables for E�cient Operating System Assisted Hierarchical
Memory Management on Heterogeneous Architectures. In Cluster, Cloud and
Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on.

[9] B. Gero�, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and Y. Ishikawa.
2016. On the Scalability, Performance Isolation and Device Driver Transparency
of the IHK/McKernel Hybrid Lightweight Kernel. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1041–1050. DOI:https:
//doi.org/10.1109/IPDPS.2016.80

[10] Balazs Gero�, Masamichi Takagi, Yutaka Ishikawa, Rolf Riesen, Evan Powers,
and Robert W. Wisniewski. 2015. Exploring the Design Space of Combining
Linux with Lightweight Kernels for Extreme Scale Computing. In Proceedings of
ROSS’15. ACM, Article 5, 8 pages.

[11] Balazs Gero�, Masamichi Takagi, Rolf Riesen, Robert W. Wisniewski, Kengo
Nakajima, Taisuke Boku, and Yutaka Ishikawa. 2017. Performance and Scalability
of Lightweight Multi-Kernel based Operating Systems. In Submission (SC ’17).

[12] Jack S. Hale, Lizao Li, Chris N. Richardson, and Garth N. Wells. 2016. Con-
tainers for portable, productive and performant scienti�c computing. CoRR
abs/1608.07573 (2016).

[13] Douglas M. Jacobsen and Richard Shane Canon. 2015. Contain This, Unleashing
Docker for HPC.

[14] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wisniewski, Jimi
Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan Appavoo, Maria Butrico,
Mark Mergen, Amos Waterland, and Volkmar Uhlig. 2006. K42: Building a
Complete Operating System. SIGOPS Oper. Syst. Rev. 40, 4 (April 2006), 133–145.

[15] Gregory M. Kurtzer. 2016. Singularity 2.1.2 - Linux application and environment
containers for science. http://dx.doi.org/10.5281/zenodo.60736. (Aug. 2016).

[16] Sandia National Laboratories. 2017. Kitten: A Lightweight Operating System for
Ultrascale Supercomputers. https://software.sandia.gov/trac/kitten. (Jan. 2017).

[17] Argonne National Laboratory. 2017. Argo: An Exascale Operating System. http:
//www.mcs.anl.gov/project/argo-exascale-operating-system. (March 2017).

[18] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Zheng Cui, Lei Xia, P. Bridges, A.
Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell. 2010. Palacios and
Kitten: New high performance operating systems for scalable virtualized and
native supercomputing. In IEEE International Symposium on Parallel Distributed
Processing (IPDPS). DOI:https://doi.org/10.1109/IPDPS.2010.5470482

[19] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore: A Unikernel
for Extreme Scale Computing. In Proceedings of the 6th International Workshop
on Runtime and Operating Systems for Supercomputers (ROSS ’16). ACM, New
York, NY, USA, Article 4, 8 pages. DOI:https://doi.org/10.1145/2931088.2931093

[20] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanović, and John
Kubiatowicz. 2009. Tessellation: Space-time Partitioning in a Manycore Client
OS. In Proceedings of the First USENIX Conference on Hot Topics in Parallelism
(HotPar’09). 1. http://dl.acm.org/citation.cfm?id=1855591.1855601

[21] Anil Madhavapeddy and David J. Scott. 2013. Unikernels: Rise of the Virtual
Library Operating System. Queue 11, 11, Article 30 (Dec. 2013), 15 pages.

[22] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux J. 2014, 239, Article 2 (March 2014).
http://dl.acm.org/citation.cfm?id=2600239.2600241

[23] K. Nakajima. 2003. Parallel Iterative Solvers of GeoFEM with Selective Blocking
Preconditioning for Nonlinear Contact Problems on the Earth Simulator. In
Supercomputing, 2003 ACM/IEEE Conference. 13–13. DOI:https://doi.org/10.1145/
1048935.1050164

[24] NERSC. 2017. Shifter - Linux Containers for HPC. https://github.com/NERSC/
shifter. (March 2017).

[25] Yoonho Park, E. Van Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg,
Kyung Dong Ryu, and R.W. Wisniewski. 2012. FusedOS: Fusing LWK Perfor-
mance with FWK Functionality in a Heterogeneous Environment. In Computer
Architecture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th Inter-
national Symposium on. 211–218.

[26] Taku Shimosawa, Balazs Gero�, Masamichi Takagi, Gou Nakamura, Tomoki
Shirasawa, Yuji Saeki, Masaaki Shimizu, Atsushi Hori, and Yutaka Ishikawa.
Interface for Heterogeneous Kernels: A Framework to Enable Hybrid OS Designs
targeting High Performance Computing on Manycore Architectures.

[27] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. De
Rose. 2013. Performance Evaluation of Container-Based Virtualization for High
Performance Computing Environments. In 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. 233–240.

[28] J. A. Zounmevo, S. Perarnau, K. Iskra, K. Yoshii, R. Gioiosa, B. C. V. Essen, M. B.
Gokhale, and E. A. Leon. 2015. A Container-Based Approach to OS Specializa-
tion for Exascale Computing. In 2015 IEEE International Conference on Cloud
Engineering. 359–364.

https://coreos.com/rkt
https://coreos.com/rkt
http://jcahpc.jp/files/OFP-basic.pdf
https://doi.org/10.1109/IPDPS.2016.80
https://doi.org/10.1109/IPDPS.2016.80
http://dx.doi.org/10.5281/zenodo.60736
https://software.sandia.gov/trac/kitten
http://www.mcs.anl.gov/project/argo-exascale-operating-system
http://www.mcs.anl.gov/project/argo-exascale-operating-system
https://doi.org/10.1109/IPDPS.2010.5470482
https://doi.org/10.1145/2931088.2931093
http://dl.acm.org/citation.cfm?id=1855591.1855601
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1145/1048935.1050164
https://doi.org/10.1145/1048935.1050164
https://github.com/NERSC/shifter
https://github.com/NERSC/shifter

	Abstract
	1 Introduction
	2 Background
	2.1 Application Containers
	2.2 Multi-kernel Operating Systems

	3 Design and Implementation
	4 Evaluation
	4.1 Experimental Environment
	4.2 Results

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

