
A Multi-Kernel Survey for High-Performance Computing

Balazs Gerofi†, Yutaka Ishikawa†, Rolf Riesen‡,
Robert W. Wisniewski‡, Yoonho Park§, Bryan Rosenburg§

†RIKEN Advanced Institute For Computational Science
‡Intel Corporation

§IBM T. J. Watson Research Center
{bgerofi, yutaka.ishikawa}@riken.jp, {rolf.riesen, robert.w.wisniewski}@intel.com, {yoonho,rosnbrg}@us.ibm.com

ABSTRACT
In HPC, two trends have led to the emergence and pop-
ularity of an operating-system approach in which multiple
kernels are run simultaneously on each compute node. The
first trend has been the increase in complexity of the HPC
software environment, which has placed the traditional HPC
kernel approaches under stress. Meanwhile, microprocessors
with more and more cores are being produced, allowing spe-
cialization within a node. As is typical in an emerging field,
different groups are considering many different approaches
to deploying multi-kernels.

In this paper we identify and describe a number of on-
going HPC multi-kernel efforts. Given the increasing num-
ber of choices for implementing and providing compute node
kernel functionality, users and system designers will find
value in understanding the differences among the kernels
(and among the perspectives) of the different multi-kernel
efforts. To that end, we provide a survey of approaches
and qualitatively compare and contrast the alternatives. We
identify a series of criteria that characterize the salient differ-
ences among the approaches, providing users and system de-
signers with a common language for discussing the features
of a design that are relevant for them. In addition to the
set of criteria for characterizing multi-kernel architectures,
the paper contributes a classification of current multi-kernel
projects according to those criteria.

Categories and Subject Descriptors
D.4 [Operating Systems]: Organization and Design

Keywords
High Performance Computing; Multi kernels; Hybrid kernels

1. INTRODUCTION
Historically, two approaches have been used to address

the challenges of providing an operating system (OS) at ex-
treme scale. In the Full-Weight Kernel (FWK) approach, an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROSS’16, June 1 2016, Kyoto, Japan
Copyright 2016 ACM 978-1-4503-4387-9/16/06 ...$15.00.
http://dx.doi.org/10.1145/2931088.2931092

OS, typically Linux, forms the starting point, and effort is
expended in disabling, removing, tuning, and sometimes re-
implementing OS features so that the system scales up across
more cores and out across larger clusters. A Light-Weight
Kernel (LWK) approach often starts with a new kernel and
effort is then expended in adding more and more function-
ality to more closely emulate an established API, typically
that of Linux. There are challenges with each approach due
to the performance - compatibility tension. As the role of
the classic high-performance computing (HPC) machine is
broadening to include uncertainty quantification, visualiza-
tion, and big-data analytics, with more sophisticated work-
flows on the horizon, the need for greater Linux compatibil-
ity at scale is increasing. With either the pure LWK or FWK
approach, this need conflicts with the HPC requirement for
performance at scale.

Fortunately, another trend that has been occurring has
been an increase in the number of cores in a node. This ca-
pability has allowed the emergence of an approach to com-
pute node kernels that involves simultaneously running mul-
tiple kernels on each node. The promise of a multi-kernel
approach, which most commonly involves running a Linux
kernel and a LWK together, is to deliver high performance
and scalability, but at the same time to maintain a full-
function Linux API. Some approaches focus on performance
isolation, some on application composition, and others triage
system calls, with the LWK handling performance-sensitive
calls and Linux handling the rest for compatibility. The vi-
sion of this approach is compelling given the requirements
placed on the compute node OS and the capability offered
by modern hardware, but it is not without challenges and
tradeoffs. There have been a series of new projects under-
taken to explore this approach [17, 2, 21, 20, 7, 1, 24]. These
projects have taken different approaches as to, for example,
whether the LWK is run in privileged mode or user space,
whether the LWK and Linux are running the same or differ-
ent address spaces, and the mechanisms by which the LWK
makes requests of Linux.

In addition to having a significant impact on the imple-
mentation of a multi-kernel, these tradeoffs affect applica-
tions, runtimes, and especially, tools. For example, the
function to read /proc/cpuinfo may produce different answers
when run on the Linux kernel and on the LWK. /proc/cpuinfo
might show only the cores Linux controls when run on Linux
and the cores the LWK owns when run on the LWK. How-
ever, it may be more subtle; code on the LWK side or even
the Linux side could be modified to recognize it was in a
multi-kernel environment. Or maybe, the LWK or Linux, or

both, should report only the cores that are available to the
application. This example illustrates that the “right” answer
is not always clear, even for simple interfaces, and it high-
lights potential differences among multi-kernel approaches.
Some questions include, should cpuinfo on either side (LWK
or Linux) report the number of cpus available in its kernel or
to the application? Some multi-kernel approaches allow ap-
plications to span the LWK and Linux. For those, should the
answer be different than for systems that do not allow appli-
cations to span the kernels? In the same vein, when a tool
looking at the load on a node reports a number, should it in-
clude cpus owned by the LWK, by Linux, or by both? This
example serves to show that in a multi-kernel design, dif-
ferences in approach as well as in implementation can yield
seemingly different environments on the same node.

In this paper we will describe different multi-kernel projects
with the intent to compare and contrast them. While differ-
ent definitions are possible, we have chosen to define the do-
main of HPC multi-kernel designs to include just those that
are focused on HPC environments and that run multiple
kernels on individual compute nodes at the same time, with
applications able to use either of the kernels. Our hope is
that the comparison can benefit kernel researchers by high-
lighting the differences between the approaches and their
implications for multi-kernel development, can help applica-
tion developers understand the different usage models, and
can assist tools and middleware developers in supporting
multi-kernel environments. A performance comparison is
beyond the scope of this paper. There are other closely re-
lated classes of work that we describe in the related work sec-
tion but that are not included as part of the analysis in the
paper. The first is the lineage from which multi-kernels arise,
namely LWKs and Linux. Other classes of related projects
include virtualization and container technology. Containers
have some of the characteristics of multi-kernels, but un-
derneath are reliant on a single kernel for providing system
functionality, and thus have different degrees of freedom for
what can and cannot be considered for implementing system
requests.

The paper consists of three primary contributions. First
is a unified summary of the HPC multi-kernel approaches
that have been taken to date. Second is an extensible set of
criteria or a language to describe the differences between the
multi-kernels we have analyzed. Third is a mapping of the
known salient features of the described multi-kernels to the
criteria. The mapping provides illustrative examples that
highlight system differences from the perspectives (user/ap-
plication, tool developer, kernel developer) described above.

2. MULTI-KERNEL PROJECTS
In this paper we look at five projects that combine an

LWK or micro-kernel with Linux.

2.1 FusedOS
FusedOS was the first implementation to combine Linux

with an LWK. The FusedOS design assumed a heteroge-
neous hardware architecture that includes both fullweight
and lightweight cores. The lightweight cores have an ISA
similar to that of the full cores, but, for space and power
reasons, lack functionality such as a supervisor mode.

Linux runs on the full cores and partitions the hardware
resources between itself and LWKs running as user-level pro-
cesses. To run an application, the LWK first requests hard-

ware resources such as lightweight cores and memory from
the FWK. It then loads and starts the application through a
hardware interface to the lightweight cores. All system calls
and exceptions generated by the application are forwarded
to Linux and handled by the LWK process.

A FusedOS prototype has been implemented on IBM’s
Blue Gene/Q and is available on GitHub.1 The LWK is
CNK, which is well known for its low noise signature and
scalability. A small supervisor-state monitor runs on the
LWK cores to emulate the lightweight core hardware inter-
face. The monitor is the only code besides the application
code that runs on the these cores. The monitor and LWK
communicate through a shared memory area. For example,
when an LWK application makes a system call or encounters
an exception, the monitor stores the system call or excep-
tion information in the shared memory area and then passes
control to the LWK. After the LWK services the system call
or handles the exception, it resumes the LWK application.

A significant advantage of the FusedOS approach is the
small number of changes required in the Linux kernel to
support an LWK as a user-level process. Also, much of the
LWK code base, CNK in this case, can be reused.

2.2 IHK/McKernel
IHK/McKernel is a true multi-kernel approach running

Linux and LWK(s) side-by-side on compute nodes. At the
heart of the stack is a low-level software infrastructure called
Interface for Heterogeneous Kernels (IHK) [20]. IHK pro-
vides capabilities for dynamically partitioning resources in a
many-core environment (e.g., CPU cores and physical mem-
ory) and it enables management of lightweight kernels. It
also provides an Inter-Kernel Communication (IKC) layer,
upon which system call delegation is implemented.

McKernel is a lightweight kernel written from scratch. It
is designed for HPC and it can be booted only from IHK [7,
8]. McKernel retains a binary compatible ABI with Linux.
It implements only a small set of performance-sensitive sys-
tem calls and delegates the rest to Linux. Most importantly,
McKernel has its own memory management, it supports pro-
cesses and multi-threading with a simple round-robin co-
operative scheduler, and it implements signaling.

HPC applications run primarily on McKernel, but for each
LWK process there is a corresponding proxy-process created
on Linux. The proxy process’s central role is to facilitate
system call offloading. Essentially, it provides an execution
context on behalf of the application so that offloaded calls
can be directly invoked in Linux. The proxy process also
enables transparent access to kernel drivers in Linux (such
as networking, file systems, etc.).

IHK/McKernel runs certain tools (e.g., GDB) directly
on McKernel, but it is worth noting that this is not in-
herent from the multi-kernel design. Because McKernel is
completely isolated from Linux, pseudo file system support
comes at the price of significant development effort. On the
other hand, the strict isolation enables full control over LWK
kernel mechanisms and it also ensures that Linux OS jitter
can not propagate to the LWK.

2.3 mOS
The mOS project creates a multi-kernel by embedding

an LWK into the Linux kernel. This enables the LWK to
make use of any Linux code when desired but still maintain

1https://github.com/ibm-research/fusedos

isolation at runtime. That is accomplished by running the
LWK code on the compute cores, while letting Linux manage
the remaining cores.

In a sense, this creates an architecture that was used
in previous supercomputers [19] with strong partitioning of
compute resources and service and I/O partitions. In mOS,
the cores running Linux service ssh requests and run tools
and other utilities that are needed to maintain a highly par-
allel system.

Tools, device drivers, and pseudo file systems work be-
cause LWK processes are visible to Linux as any other pro-
cess. Code modifications to Linux isolate LWK processes
from being managed by Linux.

The system administrator decides at node boot time which
CPU and memory resources to assign to the LWK. They will
not be managed by Linux. At application launch time, the
user reserves the resources needed for the duration of the
job. During thread creation or memory requests, resources
from this reserved pool are assigned to the requester. At
each step, the available resources are partitioned with ap-
propriate protection mechanisms and made available to the
requester. There is no demand paging or time-sharing. Re-
quests exceeding the available resources fail.

2.4 FFMK (L4)
The Fast and Fault-tolerant Microkernel-based System for

Exascale Computing (FFMK) [1] project investigates the
feasibility of a microkernel-based hybrid OS for HPC. Specif-
ically, it relies on the L4 microkernel and a para-virtualized
Linux instance (a.k.a., L4Linux).

The basic idea of FFMK is to run HPC application di-
rectly on L4, but to provide transparent access to Linux
features via L4Linux. In order to achieve this, FFMK ex-
ploits the underlying software architecture of L4 and the
paravirtualized Linux, where from L4’s perspective not only
regular user-space applications, but also the Linux kernel it-
self, run as regular user processes. This allows L4Linux user
processes to be decoupled from the Linux kernel by moving
the underlying L4 thread to another core. Because the pro-
cess’s address space (from the hardware’s point of view) is
managed by L4, the virtual-to-physical mappings are valid
and the process can simply execute user code. From Linux’
point of view the process is blocked as UNINTERRUPT-
IBLE in the kernel scheduler. When the process makes a
(POSIX) system call, execution is transferred back to Linux.
Currently, every single system call requires a transition back
to Linux.

One of the limitations of this mechanism stems from how
L4 processes grant access to parts of their address spaces
and how the L4 address space corresponding to the L4Linux’
kernel space is mapped internally to user processes via L4’s
mmap() mechanism. L4’s memory mapping mechanism re-
quires that any memory region (i.e., any set of physical ad-
dresses) a user process maps has to be visible in the L4Linux
kernel’s address space as well. For example, a Linux de-
vice driver can not map an arbitrary PCI address into user
space unless the given address is mapped inside the kernel.
Since the IB driver initiates this kind of mapping, IB sup-
port on L4Linux requires some modification to the device
driver code.

In summary, FFMK provides undisturbed execution of
user-space code, but it does not use native L4 implementa-
tions for any system calls. In terms of system call execution,

FFMK’s offloading mechanism is similar to that of mOS,
while its policy to handle all system calls in Linux resembles
that of FusedOS.

2.5 Hobbes (Kitten, Pisces, and Palacios)
Hobbes is one of the DOE funded OS/R projects that

aims to address the needs of an exascale system software
stack [6]. Hobbes is centered around the idea of application
composition, and its node OS piece primarily stands on the
following three pillars: the Pisces node resource manager
(i.e., a Linux kernel module that enables partitioning of node
resources) [16], the Kitten lightweight kernel [2], and the
Palacios virtual machine monitor [11]. Hobbes provides a
range of configurations using these components.

For example, Kitten can be booted either standalone or on
top of a resource partition configured by Pisces. At the same
time, Palacios can run on top of both Linux and Kitten,
regardless of whether Kitten is booted standalone or in a
Pisces partition. In this paper we will focus on two specific
configurations of the Hobbes stack, which we believe are the
two most representative.

2.5.1 Pisces/Kitten
The Pisces/Kitten configuration boots Linux on compute

nodes and the Pisces resource manager is utilized to parti-
tion CPU cores, physical memory, and PCI devices so that
a Kitten instance can be booted on top of a resource subset.
Just as in IHK/McKernel, resources are strictly space par-
titioned in this model. In fact, Pisces plays a very similar
role to IHK, although it is worth noting that contrary to
McKernel, Kitten runs completely isolated from Linux and
it manages its own devices at the PCI level. Moreover, at
the time of writing this paper, Pisces/Kitten does not em-
ploy proxy processes for applications running on Kitten, al-
though such directions are being considered for the purpose
of gaining transparent access to device drivers in Linux.

2.5.2 Kitten/Palacios
The Kitten/Palacios configuration boots Kitten first and

the Palacios VMM is leveraged to run a general purpose op-
erating system, such as Linux, in a virtual machine. This
configuration enables running applications that require the
full Linux APIs in the VM, and it also allows time sharing
with native Kitten processes. It is worth pointing out that
this configuration bears noticeable similarities with FFMK
since Kitten is in full control of the hardware resources (iden-
tically to L4) and Linux runs in a virtualized environment.
Different from FFMK, however, processes are not allowed to
migrate between Kitten and Linux.

3. DEFINING CHARACTERISTICS
To provide structure for this survey of multi-kernels for

HPC, we need a set of characteristics that will help us dif-
ferentiate the various OSes. This is early work and we are
still working on finding the hierarchy and relationships that
will allow us to create a full taxonomy in future work.

In this paper we focus on defining an initial set of charac-
teristics. We begin with four possible viewing angles of these
types of systems. Each is important for a different, possi-
bly overlapping, subset of OS developers, users, application
writers, and system administrators.

3.1 System Administrator Perspective

Multi-kernel systems need additional configuration to stan-
dard OS management procedures and this section enumer-
ates aspects such as the standalone nature of LWK images,
machine booting and resource partitioning.

Criteria 1.1 Standalone LWK: Is the LWK a separate
binary from Linux, and does it boot the cores it runs on?

A bootable LWK requires code, expertise, and detailed
hardware specifications - which are not always available to
the public - to create and maintain the boot image.

A standalone LWK has more flexibility to support futur-
istic hardware which Linux may not support. However, it is
also more difficult to write and maintain such an LWK.

Criteria 1.2 Node boot: Which kernel is booted by the
BIOS/Firmware of the node?

Being able to boot a CPU core is a challenge; booting the
entire node even more so, but it offers the greatest freedom
to innovate. A small OS team may not have the resources to
compete with the world-wide Linux community which often
supports new hardware very quickly. Leveraging that body
of work may be a faster path to success than letting the
LWK do it all.

Criteria 1.3 Resource partitioning: How and when are
node resources partitioned?

The systems we are looking at in this paper all have Linux
as one of their kernels. Linux is not capable to share the
management of resources with another kernel. Therefore,
resources must be partitioned and managed by one kernel
or the other in a multi-kernel system. One of the kernels
boots first and at some point resources for the second kernel
need to be handed over. How this is done exactly depends
on the multi-kernel architecture.

We distinguish systems that partition statically or dynam-
ically and the method of partitioning that can be done early
during boot or late after the node is up.

3.2 Application Perspective
Ideally, when an application executes on a multi-kernel, it

has full access to all the features and services Linux offers,
but achieves the scalability and performance of running on
an LWK. Many of the LWK advantages are only possible
by compromising Linux compatibility. This creates tension
and applications will need to decide to restrict themselves
to the capabilities of the LWK or must be willingly to give
up some of the LWK benefits.

Criteria 2.1 POSIX compatibility: What is the level of
POSIX support on the LWK?

LWK of the 1990s offered only limited POSIX compati-
bility. I/O functions were shipped off node while most other
functions were not available. With multi-kernels it is now
possible to execute applications on an LWK and still access
Linux functionality on the same node. This criteria mea-
sures the coverage of POSIX system calls.

Criteria 2.2 Pseudo file system support: Is the Linux
pseudo file system visible and fully supported on the LWK
side?

The pseudo file system in Linux plays an important role.
Without full support, most tools and many libraries will not
work. Unfortunately, this “second API” to Linux changes
quickly. Maintaining Linux compatibility is therefore not
easy for an LWK.

Criteria 2.3 Access method to Linux functionality: How
does an application access Linux functionality?

HPC applications are expected to perform few or no sys-

tem calls during the performance critical phase. However,
the set of calls that must be handled reasonably fast and
with high Linux compatibility is not small. And only a Linux
kernel can provide full Linux compatibility.

Some multi-kernels employ a proxy process in the Linux
partition that make system calls on behalf of the LWK pro-
cesses, while some migrate the calling task to the Linux par-
tition and let it execute the system call. Others provide
no access to Linux while the application is running on the
LWK.

Criteria 2.4 What is the system call overhead?:
All systems surveyed that allow system calls into Linux

have a an additional cost of doing so.
Criteria 2.5 Shared memory between the two kernels:

Can an LWK and a Linux process share memory?
If Linux gets called upon to deliver data to an LWK pro-

cess, it is most efficient, if the data can be deposited directly
into LWK memory. If tools and utilities are meant to run
in the Linux partition and work with LWK processes, then
sharing may be a requirement.

Criteria 2.6 Multi-kernel processes: Can a single process
with multiple threads span Linux and the LWK?

Conceptually, running a main process on Linux with all
features available, and running sub-tasks or worker threads
on LWK cores seems like a natural usage model. However,
this is difficult to implement and may place unwanted re-
strictions on the LWK because this feature would require
binding the two kernels much more tightly than is currently
done. This criteria looks at multi-kernel processes.

Criteria 2.7 NUMA support: Does the LWK support
NUMA?

Modern many-core processors are NUMA architectures.
Scattering processes and their data throughout such a sys-
tem, instead of minding NUMA boundaries, has a huge per-
formance impact. It is important for applications and run-
time systems to align with these boundaries, but the LWK
must provide the necessary information and offer default as-
signments.

Criteria 2.8 Performance isolation: How is Linux limited
from interfering with the LWK?

One of the key goals of an LWK in a multi-kernel is per-
formance isolation from Linux; i.e., the system must en-
sure scalable and predictable application performance and
Linux must not introduce noise or otherwise interfere with
the LWK.

3.3 Linux Perspective
The multi-kernels we cover in this paper all run Linux as

one of their components. This section iterates some of the
Linux specific aspects of this symbiosis.

Criteria 3.1 Linux tools and LWK processes: Are LWK
processes visible to standard tools like ps and top?

One of the reasons for considering Linux for high-end HPC
is the large number of tools available. For these tools to work
with LWK processes, these processes need to be visible on
the Linux side. An alternative approach is to run the tools
in the LWK partition.

Criteria 3.2 Linux kernel modifications: Are modifica-
tions to the Linux kernel necessary?

A changing Linux kernel should have minimal impact on
the LWK. On the other hand, for some multi-kernels to
work, they need to change the Linux kernel. Extensive
changes to the rapidly evolving Linux code base would be

difficult to maintain.
Criteria 3.3 Linux kernel update impact: Do Linux ker-

nel code changes propagate to the LWK?
Some LWK make direct use of Linux code. Changes by

the Linux community to these functions propagate to the
LWK. This has the advantage of being immediately up-to-
date, but brings the danger of unwanted behavior.

3.4 LWK Perspective
The LWK in a multi-kernel is meant to provide a high-

performance environment with excellent scalability. It also
needs to provide the desired Linux features. Doing that
brings up questions of LWK design and the level of Linux
compatibility.

Criteria 4.1 Code isolation: How well is the LWK code
base isolated from Linux?

Multi-kernels have the contradictory goals of maintaining
isolation from Linux code changes while providing access to
the latest Linux features. This criteria measures the degree
of separation and the impact of Linux code changes to the
LWK.

Criteria 4.2 Impact of Linux changes: How difficult is it
for the LWK to track Linux changes?

Keeping up with Linux changes is important for a multi-
kernel. What is the cost of adapting the LWK to the latest
Linux kernel? Low cost makes tracking Linux kernel devel-
opment easier. As the LWK and the Linux kernels evolve,
the complexity to track may increase with each added fea-
ture. Not tracking Linux will lead to obsolescence of the
multi-kernel.

Criteria 4.3 Development effort: What is the cost writing
and maintaining the LWK?

One of the promises of an LWK is that a small team can
write and maintain it. In multi-kernels, there is the added
cost of maintaining Linux compatibility. The Linux kernel
can also reduce cost by providing functionality that would
otherwise need to be built into a stand-alone LWK.

Criteria 4.4 LWK code size and complexity: How large
and complex is the LWK code?

A small LWK is important to maintain nimbleness; i.e.,
adding new features and porting it to novel hardware. The
size of the LWK is determined my the multi-kernel architec-
ture. The more Linux functionality it can leverage, the less
code is required in the LWK.

Criteria 4.5 Physical memory management: How much
control does the LWK have over physical memory

We distinguish between full which means the LWK con-
trols the memory after Linux has released it, and total which
means the LWK determines at boot time which physical
memory blocks to manage.

Criteria 4.6 Memory type management: How does the
LWK manage the deeper and more complex memory hierar-
chy of modern devices?

Letting the application manage memory is important, but
providing good defaults for legacy applications is equally
important.

Criteria 4.7 Virtual address management: Which kernel
decides what virtual address ranges to use?

Linux uses a specific virtual memory address system. Some
libraries, for example glibc, have some dependencies on that
layout. Letting Linux manage virtual space offers the great-
est level of compatibility, but also limits what the LWK can
do to offer novel features.

Criteria 4.8 Process scheduling: What scheduling policy
does the LWK provide?

The scheduler is a crucial component to provide a noise
free LWK environment. Unlike the common time-sharing
paradigm, LWK usually provide only cooperative, non-preemptive
scheduling.

Criteria 4.9 Device drivers: Do device drivers need to be
re-implemented in the LWK?

Taking advantage of the world-wide Linux device driver
development effort is equally important to maintaining the
capability to let an LWK control a device entirely.

4. COMPARISON
In this section we summarize similarities and differences

among the OSes we introduced in Section 2. Our main find-
ings are compiled in Table 1, where each project is cate-
gorized based on the criteria enumerated previously. We
emphasize that the table reflects the conditions of the ker-
nels as they are at the time of writing. These projects are
evolving and will undergo modifications in the future.

We first consider the viewpoint of system administration.
As seen, except for FusedOS and mOS all projects provide
a standalone LWK image. An isolated LWK executable can
have both advantages and disadvantages. For example, sys-
tems that support isolated LWK images can also deploy
proprietary executables, while a Linux integrated code base
needs to be open. Less integration with Linux also implies
higher degree of control over what can and cannot be im-
plemented, which we will discuss below under the aspect
of standalone LWK source code. As for booting the host
machine, besides configurations where Linux is run in a vir-
tual machine, basically all projects rely on Linux. Except
FFMK, which boots L4 natively, the machine is either di-
rectly booted by Linux or booting is built on top of existing
Linux code. For example, although Kitten/Palacios boots
the LWK on the node first, it borrows the Linux boot se-
quence to perform this task.

With respect to resource partitioning, there are mainly
two approaches. mOS and FusedOS follow a static solution,
which reserves LWK resources at boot time. On the other
hand, McKernel, Kitten/Palacios, Pisces/Kitten and FFMK
allow dynamic repartitioning of resources and most of them
rely either on hot-swap capabilities of Linux or simply do
time sharing in the form of hosting a virtual machine.

From an application point of view, some of the central
questions of these systems are how Linux functionality is ob-
tained and to what extent a Linux compatible environment
on the LWK is provided. We distinguish two main aspects of
a Linux-like environment. The POSIX system call interface,
and other Linux specific APIs, such as Linux pseudo filesys-
tems. From a portability point of view, availability of the
full POSIX system call interface is highly desired and one of
the preeminent promises of a multi-kernel architecture is the
ability to execute applications on an LWK, but at the same
time to access Linux functionality in a transparent fash-
ion. Full POSIX syscall support is provided by most of the
projects, except the ones based on Kitten. Kitten/Palacios
and Pisces/Kitten isolate the LWK from Linux entirely and
force applications that require the full POSIX API to run
directly on Linux. Other projects provide a POSIX exe-
cution environment on the LWK by means of Linux proxy
processes and system call forwarding (i.e., McKernel and
FusedOS) or by directly migrating threads into Linux (such

Table 1: Comparison of HPC multi-kernels.

Project/ FusedOS IHK/ mOS Pisces/ Kitten/ FFMK (L4) Criteria

Property McKernel Kitten Palacios

Standalone LWK image No Yes No Yes Yes Yes 1.1

Node booted by Linux Linux Linux Linux Kitten L4 1.2

Resource partitioning Static Dynamic Static Dynamic Dynamic Dynamic 1.3

Late Late Early Late Late Late

POSIX compatibility on LWK Yes Yes Yes No No Yes 2.1

/proc, /sys support on LWK No No Yes No No No 2.2

Access method to Linux features Proxy Proxy Migrate No No Migrate 2.3

Linux sys call overhead High High High – – High 2.4

Inter-kernel shared memory Yes Yes Yes Yes Yes Yes 2.5

Multi-kernel processes No No No No No Possible 2.6

NUMA support on LWK No No Yes No No No 2.7

Kernel level performance isolation Yes Yes Yes Yes Yes Yes 2.8

Linux tools for LWK tasks Yes Yes Yes No No Yes 3.1

LWK side Linux side – – Linux side

Unmodified Linux kernel No Yes No Yes Yes No 3.2

Linux updates propagate to LWK No No Yes No No No 3.3

Isolated LWK code base Yes Yes No Yes Yes Yes 4.1

Impact of Linux changes Minimal Minimal Code merge Minimal No L4Linux port 4.2

Development effort Small Significant Ideally small Significant Significant Significant 4.3

Code size (kLOC)2 150 65 12 213 (entire Hobbes) 32 4.4

LWK control over physical memory Full Full Full Full Total Total 4.5

LWK memory type control Full Full Full Full Total Total 4.6

Virtual address space control Total Total Linux Total Total Linux 4.7

Scheduler in LWK Cooperative Cooperative Cooperative Cooperative Cooperative Time sharing 4.8

Device driver transparency No Yes Yes No No No 4.9

as in mOS or in FFMK). The degree of support for pseudo
file systems (i.e., /proc and /sys), which are crucial compo-
nents of a full Linux runtime environment, is also uneven.
Except mOS, most of the kernels provide very little availabil-
ity of these features. McKernel employs a technique which
overlaps some of the Linux pseudo files with LWK specific
content, but support is far from complete.

Depending on whether system calls are selectively shipped
or not, Linux specific calls can have a higher associated cost.
Function shipping can be built on top of shared memory
between Linux and the LWK, but regardless if shipping is
performed or not, support for sharing memory appears to
be a fundamental property of multi-kernel environments. As
Linux functionality is obtained by temporally moving execu-
tion to Linux, the question of multi-kernel processes arises.
Although most of these systems do not allow threads exe-
cuting across the two kernels to co-operate explicitly, FFMK
doesn not exclude the possibility of doing so.

The status of supporting non-uniform memory access ar-
chitectures across these projects is also disparate. Except for
mOS, most projects are either unaware of, or simply make
no NUMA information available for applications. One ex-
ception, Kitten, provides a unique interface for discovering
NUMA topology, however, at this time it is not integrated
into standard tools and libraries.

Finally, another key aspect of application level concerns
is performance isolation; i.e., the ability of a multi-kernel
system to contain Linux OS jitter and provide consistent

2The source trees of FusedOS and Hobbes (i.e.,
Pisces/Kitten and Kitten/Palacios) borrow a significant
amount of code from Linux.

and predictable HPC application performance. The degree
and difficulty of achieving this differs among the OS projects,
but all claim a high level of isolation at this point.

Let us turn our attention to more Linux specific aspects
of a multi-kernel system now and discuss support for Linux
based tools first. Tools, such as debuggers or performance
profilers, are of great importance in HPC systems. There
are differences across the surveyed projects in how and to
what extent they support execution of tools. Ideally, tools
would run on Linux so that they will not expend application
resources, but they would still have access to information
regarding LWK processes. By architectural design, mOS,
FusedOS and FFMK have the ability to run tools in this
fashion. On the other hand, McKernel runs certain tools
(e.g., GDB) directly on the LWK, which comes at the price
of explicit support for interfaces like prtrace(), prctl(), and
perf_event_open().

Another important Linux perspective is whether or not
Linux kernel code is modified. The Linux code base is a
rapidly evolving target and keeping patches up-to-date with
the latest kernel changes can be a major development ef-
fort, thus keeping modifications minimal is a great concern.
McKernel and Pisces/Kitten are confined to Linux kernel
modules. On the other hand, both mOS and FusedOS re-
quire a small set of changes to the Linux kernel. FFMK uti-
lizes a paravirtualized version of Linux. While these three
projects do modify the Linux kernel code base, adapting
those changes to different Linux versions has been up till
now reportedly straightforward.

A tight integration with Linux can be beneficial. Linux
is continuously being updated to support new CPU features

which need special initialization code. mOS can naturally
exploit those updates, while other projects need new code
in the LWK to enable them.

We will now iterate through various aspects of a multi-
kernel system from the LWK’s point of view. The first two
criteria we consider are the relationship of the LWK code
base and Linux and the impact of Linux kernel changes
on a given system. As a matter of fact, these two an-
gles are closely related. Except for mOS, the source code
of all LWKs are completely independent from Linux, al-
though McKernel’s IHK and the Pisces resource manager
of Pisces/Kitten are somewhat entangled with Linux. Con-
sequently, the impact of Linux kernel changes divide these
systems in a similar pattern, the most sensitive being mOS,
which requires adapting the LWK component every time a
new Linux version is utilized. It is also worth noting that
one of the primary motivations behind developing LWKs is
their potential to support rapid experimentation with un-
usual software or hardware features, also referred to as the
nimbleness of the kernel. From this aspect, an isolated LWK
code base is highly beneficial because it provides a higher
degree of freedom and control over what exactly can be ex-
plored. On the other hand, the standalone nature usually
comes at the price of more significant development effort and
an increased LWK code size, which is well reflected in the
Table 1.

LWKs in all considered projects generally manage only the
physical memory which they are given, although in case of
Kitten/Palacios and FFMK the LWK has control over the
machine’s entire physical memory. Virtual address space
management is also an interesting aspect. mOS currently
lets Linux manage the virtual address space, while McKernel
simply remains binary compatible with Linux. It also fol-
lows a unified address space model between the proxy pro-
cess and the application so that system call offloading can
proceed naturally. Kitten/Palacios and FFMK adopt their
own virtual address space layout. Scheduling in most LWKs
takes a simple, co-operative (i.e., non preemptive) approach,
although the L4 microkernel in FFMK provides time sharing
as well.

The last aspect we consider is device driver support. Large
scale HPC environments usually rely on a relatively limited
set of devices, with high speed interconnects being the most
important. However, access to Linux device drivers is cer-
tainly a great benefit. mOS and McKernel provide transpar-
ent access to Linux device drivers, while Pisces/Kitten and
FFMK require porting drivers to the LWK codebase. As
a matter of fact, FFMK can utilize Linux device drivers in
L4Linux, but there are minor modifications required. Simi-
larly, Kitten/Palacios may also take advantage of Linux de-
vice drivers executing in the Palacios VM, however, at this
time Kitten processes have no transparent access to those.

5. RELATED WORK
This section covers related studies on HPC lightweight

kernels, container technologies, hybrid HPC solutions that
are similar to multi-kernels, but do not strictly run heteroge-
neous kernels, and multi-kernels targeting commercial work-
loads.

Lightweight kernels explicitly designed for HPC workloads
date back over two decades now. Catamount [10] from San-
dia National Laboratories was one of the notable systems
which has been developed from scratch and successfully de-

ployed on large scale supercomputers. The IBM BlueGene
line of supercomputers have also been running an HPC tar-
geted lightweight kernel called CNK [9]. While most of the
above mentioned kernels provide a very small set of the
Linux APIs, CNK borrows a significant amount of code from
Linux (e.g., from glibc) so that it can comply with more
elaborate Unix features. The most current in Sandia Na-
tional Laboratories’ lightweight compute node kernels line
of effort is Kitten [2], which we studied extensively in this
paper. Kitten distinguished itself from their prior LWKs
by providing a more complete Linux-compatible user en-
vironment. However, with the ever growing appetite for
full Unix/POSIX feature compatibility from the application
side, it has become increasingly difficult to support all these
features without compromising the primary goal of LWK
performance.

On the other end of the lightweight kernel spectrum are
kernels which originate from Linux, but have been heavily
modified to meet HPC requirements. Cray’s Extreme Scale
Linux [15, 18], Fujitsu’s Linux on the K Computer [14] and
ZeptoOS [22] follow this approach. They often employ tech-
niques, such as eliminating daemon processes, simplifying
the scheduler or replacing the memory management system.
There are mainly two problems with the Linux approach.
First, the heavy modifications occasionally break Linux com-
patibility. Second, because HPC tends to follow (or rather
dictate) rapid hardware changes that need to be reflected
in kernel code, Linux often falls behind with the necessary
updates which results in an endless need for maintaining
Linux patches. Many of the above described issues served
as motivation to investigate multi-kernel architectures for
HPC environments.

Container technologies, such as Docker [13] or rkt [4], also
bare some resemblance to LWKs in multi-kernel configu-
rations. Although containers primarily address the prob-
lem of packaging an application along with all of its de-
pendencies so that they can be run smoothly in disparate
environments, they heavily rely on the Linux kernel’s Con-
trol Groups (cgroups) facility, which implements resource
accounting and limiting. Resource limiting plays the same
role as dedicated resource sets in multi-kernel environments,
however, they are implemented inside the Linux kernel. As
a consequence, containers have less direct control over re-
source management.

Nevertheless, ARGO, one of two large OS and runtime
projects (alongside Hobbes) funded by the US DOE, inves-
tigates whether or not container technologies are feasible for
HPC. By modifying various aspects of the Linux cgroups

behavior (e.g., fine grained exclusive reservation of physical
memory), introducing a specialized scheduler for HPC, etc.,
ARGO attempts to reach similar goals as the multi-kernel
projects in Section 2 in a less disruptive manner [24].

Multi-kernels have also been considered in the commercial
domain. Tessellation [12] and the Multikernel [5] are built
upon the observation that modern node hardware resembles
a networked system and so the OS should be modeled as
a distributed system as well. The Tessellation project [12]
follows a resource partitioning approach that divides CPU
cores into groups, where each group is responsible for a par-
ticular application or some system services. This structure
resembles many of the HPC projects discussed earlier, where
HPC workloads are explicitly assigned to LWK cores while
system daemons reside in the Linux partition. Multiker-

nel [5] runs a small kernel on each CPU core and the OS is
built as a set of cooperating processes that communicating
via message passing, similarly to the proxy model. Popcorn
Linux [3], a recent effort of running multiple Linux instances
on a single node, targets heterogeneous ISAs, while Zell-
weger et. al have recently proposed decoupling CPU cores,
kernels and operating systems [23]. Their system enables
applications to be seamlessly migrated over to a separate
OS node while the kernel is updated on a particular CPU
core, similarly how threads migrate in mOS or FFMK.

6. CONCLUSION AND FUTURE WORK
With the recent emergence of multi-kernel OS projects

for high-performance computing there is a need to provide
a basis for understanding their fundamental properties and
defining characteristics. To this end, we have surveyed a
number of efforts and compiled a set of criteria that underlie
them. Mapping each OS to those criteria provides us not
only a better understanding of the particular characteristics
of these efforts, but it also exposes a clearer view of the
multi-kernel design space itself.

In the future, we will further extend our exploration, hop-
ing that we can establish a more complete taxonomy of these
systems.

Acknowledgment
We acknowledge Adam Lackorzynski from TU Dresden and
Kevin Pedretti from Sandia National Laboratories for their
invaluable discussions on L4 and Kitten, respectively.

7. REFERENCES
[1] FFMK: A Fast and Fault-tolerant Microkernel-based

System for Exascale Computing (Accessed: Mar,
2016). http://ffmk.tudos.org/.

[2] Kitten: A Lightweight Operating System for
Ultrascale Supercomputers (Accessed: Mar, 2016).
https://software.sandia.gov/trac/kitten.

[3] Popcorn Linux (Accessed: Mar, 2016).
http://www.popcornlinux.org/.

[4] rkt - App Container runtime (Accessed: Mar, 2016).
https://github.com/coreos/rkt.

[5] Baumann, A., Barham, P., Dagand, P.-E.,
Harris, T., Isaacs, R., Peter, S., Roscoe, T.,
Schüpbach, A., and Singhania, A. The multikernel:
a new OS architecture for scalable multicore systems.
In Proceedings of SOSP’09, pp. 29–44.

[6] Brightwell, R., Oldfield, R., Maccabe, A. B.,
and Bernholdt, D. E. Hobbes: Composition and
Virtualization As the Foundations of an Extreme-scale
OS/R. In Proceedings of ROSS’13, pp. 2:1–2:8.

[7] Gerofi, B., Shimada, A., Hori, A., and Ishikawa,
Y. Partially Separated Page Tables for Efficient
Operating System Assisted Hierarchical Memory
Management on Heterogeneous Architectures. In
Proceedings of CCGrid’13.

[8] Gerofi, B., Shimada, A., Hori, A., Masamichi,
T., and Ishikawa, Y. CMCP: A Novel Page
Replacement Policy for System Level Hierarchical
Memory Management on Many-cores. In Proceedings
of HPDC’14 (New York, NY, USA), ACM, pp. 73–84.

[9] Giampapa, M., Gooding, T., Inglett, T., and
Wisniewski, R. W. Experiences with a Lightweight
Supercomputer Kernel: Lessons Learned from Blue
Gene’s CNK. In Proceedings of SC’10, pp. 1–10.

[10] Kelly, S. M., and Brightwell, R. Software
architecture of the light weight kernel, Catamount. In
In Cray User Group (2005), pp. 16–19.

[11] Lange, J., Pedretti, K., Hudson, T., Dinda, P.,
Cui, Z., Xia, L., Bridges, P., Gocke, A.,
Jaconette, S., Levenhagen, M., and
Brightwell, R. Palacios and Kitten: New high
performance operating systems for scalable virtualized
and native supercomputing. In Processing of
IPDPS’10, pp. 1–12.

[12] Liu, R., Klues, K., Bird, S., Hofmeyr, S.,
Asanović, K., and Kubiatowicz, J. Tessellation:
Space-time Partitioning in a Manycore Client OS. In
Proceedings of HotPar’09, pp. 10–10.

[13] Merkel, D. Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux
Journal 2014, 239 (Mar. 2014).

[14] Moroo, J., Yamada, M., and Kato, T. Operating
System for the K computer. In Fujitsu Journal of
Science and Technology (2012), pp. 295–301.

[15] Oral, S., Wang, F., Dillow, D. A., Miller, R.,
Shipman, G. M., Maxwell, D., Henseler, D.,
Becklehimer, J., and Larkin, J. Reducing
Application Runtime Variability on Jaguar XT5. In In
Proceedings of Cray User Group (2010), CUG’10.

[16] Ouyang, J., Kocoloski, B., Lange, J. R., and
Pedretti, K. Achieving Performance Isolation with
Lightweight Co-Kernels. In Proceedings of HPDC’15
(New York, NY, USA), ACM, pp. 149–160.

[17] Park, Y., Van Hensbergen, E., Hillenbrand, M.,
Inglett, T., Rosenburg, B., Ryu, K. D., and
Wisniewski, R. FusedOS: Fusing LWK Performance
with FWK Functionality in a Heterogeneous
Environment. In Proceedings of SBAC-PAD’12,
pp. 211–218.

[18] Pritchard, H., Roweth, D., Henseler, D., and
Cassella, P. Leveraging the Cray Linux
Environment Core Specialization Feature to Realize
MPI Asynchronous Progress on Cray XE Systems. In
In Proceedings of Cray User Group (2012), CUG’12.

[19] Riesen, R., Brightwell, R., Bridges, P. G.,
Hudson, T., Maccabe, A. B., Widener, P. M.,
and Ferreira, K. Designing and implementing
lightweight kernels for capability computing.
Concurrency and Computation: Practice and
Experience 21, 6 (Apr. 2009), 793–817.

[20] Shimosawa, T., Gerofi, B., Takagi, M.,
Nakamura, G., Shirasawa, T., Saeki, Y., Shimizu,
M., Hori, A., and Ishikawa, Y. Interface for
Heterogeneous Kernels: A Framework to Enable
Hybrid OS Designs targeting High Performance
Computing on Manycore Architectures. In Proceedings
of HiPC’14.

[21] Wisniewski, R. W., Inglett, T., Keppel, P.,
Murty, R., and Riesen, R. mOS: An Architecture
for Extreme-scale Operating Systems. In Proceedings
of ROSS’14 (New York, NY, USA), ACM, pp. 2:1–2:8.

[22] Yoshii, K., Iskra, K., Naik, H., Beckmanm, P.,
and Broekema, P. C. Characterizing the
Performance of Big Memory on Blue Gene Linux. In
Proceedings of ICPPW’09, IEEE Computer Society,
pp. 65–72.

[23] Zellweger, G., Gerber, S., Kourtis, K., and
Roscoe, T. Decoupling Cores, Kernels, and
Operating Systems. In Proceedings of OSDI’14
(Broomfield, CO), pp. 17–31.

[24] Zounmevo, J. A., Perarnau, S., Iskra, K.,
Yoshii, K., Gioiosa, R., Essen, B. C. V.,
Gokhale, M. B., and Leon, E. A. A
Container-Based Approach to OS Specialization for
Exascale Computing. In Proceedings of WoC’15.

