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ABSTRACT
As systems sizes increase to exascale and beyond, there is a
need to enhance the system software to meet the needs and
challenges of applications. The evolutionary versus revolu-
tionary debate can be set aside by providing system software
that simultaneously supports existing and new programming
models. The seemingly contradictory requirements of scal-
able performance and traditional rich programming APIs
(POSIX, and Linux1 in particular) suggest that approach,
and has lead to a new class of research. Traditionally, op-
erating systems for extreme-scale computing have followed
two approaches: they have either started with a full-weight
kernel (FWK), typically Linux, and removed features which
were impeding performance and scalability, or they started
with a light-weight kernel (LWK), and added capability to
provide Linux compatibility. Neither of these approaches,
succeed in retaining full Linux compatibility and achieving
high scalability.
To overcome this problem, we have been exploring the

design space of providing LWK performance while retain-
ing the Linux APIs and Linux environment. Our hybrid
solution is to run Linux and an LWK side-by-side on the
same node. HPC applications execute on top of the LWK,
but the system selectively provides OS features by leverag-
ing the Linux kernel. In this paper, we discuss two possible
methods of achieving the symbiosis between the two kernels
and the trade-offs between them. Specifically, we detail and
contrast two particular approaches, Intel’s mOS project and
IHK/McKernel, an effort lead by RIKEN Advanced Insti-
tute for Computational Science.

Categories and Subject Descriptors
D.4 [Operating Systems]: Organization and Design

1Linux is the registered trademark of Linus Torvalds in the
U.S. and other countries
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1. INTRODUCTION
With the increasing complexity of high-end supercomput-

ers, the current system software stack faces significant chal-
lenges as we look forward to exascale computing and beyond.
The necessity to deal with extreme amounts of parallelism,
heterogeneous architectures, multiple levels of memory hi-
erarchy, power constraints, etc. suggests the need for oper-
ating systems that can rapidly adapt to new hardware and
software requirements, and that can support novel program-
ming paradigms and runtime systems. Applications have
also become considerably more complex, with an increasing
demand for components such as in-situ analysis, elaborate
monitoring and performance tools. This complexity relies
on rich features of POSIX, and the Linux API in particular.

Traditionally, operating systems in high-end computing
followed two approaches to deliver scalable performance and
the reliability needed for extreme scale. In the full weight
kernel (FWK) approach [14, 16, 20], a full Linux environ-
ment is taken as the basis, and features that inhibit achiev-
ing HPC scalability and performance requirements are re-
moved. The light-weight kernel (LWK) approach [9, 8, 2]
starts from scratch and effort is undertaken to add sufficient
functionality so that it provides a familiar API, typically
something close to that of a general purpose operating sys-
tem such as Linux, while at the same time retaining the de-
sired scalability and reliability attributes. Neither of these
approaches yields a fully Linux compatible environment.

An alternative approach pursued by Intel’s mOS project
and RIKEN Advanced Institute for Computational Science’s
IHK/McKernel effort is to run Linux simultaneously with a
light-weight kernel on the same node[19, 17]. The appli-
cation is run primarily on the LWK to achieve the needed
scalability and reliability, and Linux is leveraged judiciously
to achieve API compatibility. The projects independently
identified the following goals for such a symbiotic system:

• Scalability and performance: The system has to
scale and deliver the parallel performance needed in
an extreme-scale machine, with the goal of achieving
LWK scalability and reliability.

• Nimbleness: The system should be easily adaptable
to new hardware features and to specific software needs
by applications or new programming models.



• Maintainability: The system must be highly main-
tainable, especially with respect to tracking Linux ker-
nel changes. The goal is to be as isolated from Linux
version-to-version changes as possible.

• Linux compatibility: The system needs to support
POSIX and Linux APIs and a Linux environment,
thereby enabling tools that run on top of Linux.

While not all these goals are easily quantifiable, they serve
as high-level guiding principles. The primary goal is to en-
able scalable, parallel applications to run and perform with
high efficiency on extreme-scale systems. By means of a
small and easy to understand LWK code base, the system
should nimbly incorporate new technologies. At the same
time, since Linux compatibility is also required, this can
only be achieved if the overall system is maintainable and
able to track Linux. Finally, while Linux compatibility is
one of the goals, parts of it may have to be limited, if doing
otherwise would interfere with the other primary goals.
Despite the fact that from an application point of view,

this hybrid/multi-kernel system presents itself as a single
system image, resources (e.g., CPU cores and physical mem-
ory) are explicitly partitioned between Linux and the LWK.
This separation is required so that the LWK can deliver scal-
able, consistent performance without suffering from any dis-
turbance on the Linux side. Accordingly, HPC applications
primarily run on the LWK and thus, performance-sensitive
OS features relevant for HPC should be provided by the
LWK, leaving only non-performance sensitive services to be
provided by Linux. The following are key questions that
need to be addressed to be successful: Where is the bor-
der between the LWK and Linux? How do the two kernels
interact with each other so that they can provide transpar-
ent and unified node resource management? Where do tools
run, and how do they interact with applications?
We discuss two approaches. First, the proxy model, where

for each LWK application there exists a dedicated Linux pro-
cess to serve as a context for delegated system calls. IHK/M-
cKernel uses this method. Second, the direct model, where
the LWK passes kernel data structures directly to Linux to
obtain OS services. This is the approach currently studied as
a possible implementation method for mOS. We then com-
pare these two approaches from various angles and present
the key trade-offs.
The rest of this paper is organized as follows. Section

2 provides background information and motivation, Section
3 discusses the design space and challenges of combining
LWKs with a full weight Linux kernel. Section 4 provides
early experimental results, Section 5 surveys related work,
and finally, Section 6 concludes the paper.

2. BACKGROUND AND MOTIVATION
Before discussing actual design alternatives, we describe

our requirements in more detail.
As described earlier, CPU cores and physical memory of

the compute node are explicitly partitioned between Linux
and the light-weight kernel. An important aspect of achiev-
ing the high-level goal of enabling scalability, is performance
isolation. LWKs have been shown to exhibit low OS noise/jit-
ter, which is essential for large scale execution of bulk syn-
chronous parallel applications. A multi-kernel approach must
preserve the low-noise profile of an LWK. Therefore, the

LWK has to be sufficiently isolated from any negative per-
formance impact of Linux. Furthermore, the LWK should
also use as little memory and CPU resources as possible,
and make the rest available to the application.

Another important requirement for an LWK, is the ability
to nimbly be adapted to new technologies. Therefore, even
in a hybrid configuration, the LWK code base should be
small so that it can serve as a vehicle for rapid prototyping
and implementation of services needed to support leading
edge next-generation hardware and software features. In
fact, in a multi-kernel approach, the LWK should be able to
be even smaller than if it needed to manage a node’s resource
by itself. The need for supporting next-generation hardware
becomes apparent when considering the anticipated archi-
tectural changes of the future, such as new memory tech-
nologies and deep memory hierarchies, heterogeneous core
architectures, possibly multiple cache coherence domains, as
well as new software models such as fine-grained threading
and asynchronicity.

An important aspect of the proposed symbiotic kernel
architecture is to keep the non-up-streamed Linux modifi-
cations and dependence on Linux kernel changes minimal.
This goal is motivated by the desire to minimize the devel-
opment effort of tracking Linux changes.

Finally, full Linux compatibility is highly desired. Per-
formance and monitoring tools, debuggers, etc. are essen-
tial for application development and tuning. Linux exposes
a number of interfaces leveraged by tools. Various system
information via the /proc and /sys file systems, the avail-
ability of hardware performance counters (e.g., the PAPI in-
terface [13]), the ability to track processes and system calls
through the ptrace mechanism should all be available and
work for applications running in the LWK partition.

Depending on the integration technique between Linux
and the LWK some of these requirements are easier or harder
to meet, as we will see in the following sections.

3. DESIGN EXPLORATION
This section describes two approaches to implementing

the required interaction between Linux and an LWK. The
proxy model for which we use McKernel as an example, and
the direct model, which is the approach currently being in-
vestigated for mOS.

3.1 The Proxy Model
The basic idea of the proxy model is that for each appli-

cation executed on the LWK, a corresponding proxy pro-
cess (also referred to as ghost process) on the Linux side is
spawned. This architecture is shown in Figure 1.

Because the LWK implements only a subset of the Linux
services, i.e., the performance sensitive system calls, the rest
of the OS services need to be executed on Linux. Essentially,
the proxy process provides the execution context on behalf of
the application (running on the LWK) so that the offloaded
calls can be directly invoked. The proxy process also serves
the purpose of ensuring that Linux maintains certain state
information that would have to be otherwise kept track of
in the LWK. As we will see later, McKernel has no notion
of file descriptors, but rather it simply returns the number
it receives from the proxy process when a file is opened.
The actual set of open files (i.e., file descriptor table, file
positions, etc..) are managed by the Linux kernel. On the
other hand, holding state in Linux implies a certain degree



Figure 1: Overview of the proxy model and the sys-
tem call delegation mechanism.

of synchronization between the LWK and the Linux state,
e.g., the unified address space described below.

3.1.1 IHK and McKernel
We give a brief introduction to the main components of

McKernel to provide a basis for further discussion [6, 17].
McKernel relies on a low-level software infrastructure called
Interface for Heterogeneous Kernels (IHK) [17]. IHK is a
general framework that provides capabilities for partition-
ing resources in a many-core environment (i.e., partitioning
CPU cores and physical memory). It enables management
of lightweight kernels (i.e., loading, booting, etc.) and it also
provides an Inter-Kernel Communication (IKC) layer, upon
which system call delegation can be implemented. McKer-
nel is a lightweight kernel designed for HPC workloads. It
can only be booted from IHK, and it requires the presence
of Linux for running actual applications.
When it comes to designing such a hybrid LWK system,

one of the most important questions is: which kernel fea-
tures should the LWK itself implement? According to the
requirements discussed in Section 2, McKernel provides na-
tive support only for a minimal set of kernel features, the
ones that are either performance critical or change the lo-
cal processor’s state. It has its own memory management, it
supports processes and multi-threading with a simple round-
robin co-operative scheduler, and it implements signaling. It
also allows inter-process memory mappings and it provides
interfaces to hardware performance counters. McKernel has
no native support for disk device drivers, file systems, etc.,
and all these services are available with the help of Linux.
In terms of system calls, our approach is that McKer-

nel implements only the very necessary set of calls so that
the aforementioned services are attainable. The rest of the
system calls are offloaded to Linux (also detailed in Figure
1). In Linux, a delegator kernel module handles IKC chan-
nels for system call delegation between McKernel and the
proxy process that performs the calls on behalf of the ac-
tual application. During system call delegation, McKernel
sends a message to Linux via a dedicated IKC channel. As
mentioned earlier, for each application on the LWK, a corre-
sponding proxy process exists in Linux. The proxy process
waits for system call requests via an ioctl() call into the del-
egator kernel module. The delegator kernel module’s IKC
interrupt handler wakes up the ghost process when it re-
ceives a system call request, passing the information neces-

sary to execute the system call (i.e., system call number and
its arguments). The ghost process then executes the system
call and requests that the delegator module sends the result
back to McKernel, which simply passes the return value to
user-space.

A problem arises, however, as to how the ghost process on
Linux can access the memory of the application running on
McKernel and how the virtual addresses in arguments can
be resolved. The problem arises because certain system call
arguments may be just pointers (e.g., the buffer argument
of a read() system call).

3.1.2 Handling Pointers in Delegated System Calls
There are multiple ways to tackle the pointer problem.

One solution would be that McKernel rewrites the pointer
arguments in system calls to physical addresses. Linux could
then map McKernel’s physical memory to its local virtual
memory, and perform the system call by rewriting again the
address of the physical pointers to Linux virtual addresses.
Note, that in an SMP environment the physical addresses
are the same both on the Linux side and for the LWK. How-
ever, this requires the knowledge of which arguments are
pointers for all system calls. This is cumbersome (and may
not be possible) because certain system calls can have con-
text dependent semantics of their arguments, such as ioctl().
Furthermore, this solution would also require that mappings
are contiguous in physical memory.

Figure 2: Unified virtual address space of the proxy
process on Linux and the corresponding application
on the LWK.

The second solution, the one McKernel utilizes, is that the
proxy process employs the same virtual to physical mappings
as the actual application, as illustrated in Figure 2. This so-
called unified address space layout allows the ghost process
to access the memory area of the application using the same
virtual addresses. The code and data segments specific to
the proxy process are mapped in an address range which is
explicitly excluded from McKernel’s user space region.

The benefit is that there is no need to recognize which
arguments of a system call are addresses. Moreover, any
side effects of a system call (e.g., modifications to user-space
data carried out by the Linux kernel) can naturally proceed.

The proxy does not need to know in advance which virtual
address is mapped to which physical page. This is because
Linux uses a special mapping that covers the entire McK-
ernel user space virtual address range, and every time an



unmapped address is accessed, the page fault handler con-
sults the page tables corresponding to the application on
the LWK. As described earlier, this requires that the map-
pings are occasionally synchronized, for instance, when the
application calls munmap() or modifies certain mappings.

3.2 The Direct Model
In the direct model, an LWK sends requests directly to the

Linux kernel without going through a user-space proxy pro-
cess. The mOS team is currently investigating a mechanism
called Evanescence to accomplish this. It plays a similar role
as McKernel’s IKC described in Section 3.1.1, but uses the
Linux process affinity mechanism. When an LWK process
makes a system call for which mOS will leverage Linux to
service, the processing of that request is moved to the Linux
core instead of explicitly moving data (e.g., system call ar-
guments). This means the LWK and Linux are more tightly
integrated with each other thereby allowing the LWK to use
Linux functionality that would otherwise have to be written
in the LWK.
The Evanescence mechanism works as follows. When an

LWK task makes a system call that will be handled by Linux,
the task is temporarily moved to the Linux core (without any
additional communication between the kernels), the system
call is processed there and then the task is moved back to
the LWK. The data, arguments and buffer contents, logi-
cally remain on the LWK side. Since the LWK and Linux
share memory, Linux can access that data from its CPU core
and no data movement or marshaling is necessary. Due to
hardware caching, some data may migrate from the cache of
one core to another and back.

Figure 3: System call execution using the Evanes-
cence mechanism.

The Evanescence mechanism is shown in Figure 3. When
a task on the LWK side makes a system call and requests a
service that Linux will provide, it is moved (briefly vanishing
or fading away) from the LWK side to be processed on Linux.
It will return once Linux has done the work needed by the
system call requested by the process.

3.2.1 mOS
To explore Evanescence, we implemented a prototype in

mOS [19]. In the Evanescence model, there is a closer inte-

gration between Linux and the LWK than the proxy model.
In mOS’ current prototype, the LWK code is compiled di-
rectly into the Linux image, as opposed to McKernel, where
the LWK is an independent ELF binary. This tight integra-
tion allows mOS to take advantage of Linux functionalities in
a more straightforward fashion, which will be demonstrated
in Section 3.3.

mOS employs techniques to ensure that Linux does not in-
terfere with the LWK resources (i.e., CPU cores and memory
assigned to the LWK) when responding to requests. How-
ever, it allows Linux to be aware of their existence. These
techniques involve isolating the LWK CPU cores from the
Linux kernel scheduler, reserving physical memory to the
LWK, and ensuring that no Linux interrupts are delivered
to LWK cores. The LWK code base primarily provides pro-
cess and memory management, and a simple scheduler.

The way Evanescence implements system call delegation
is through the task’s processor affinity and is performed as
follows. After the LWK decides to hand-off a particular call,
it saves the affinity mask of the process and changes the
active mask so it only contains Linux CPUs. The original
mask only stores LWK CPUs. Since the LWK scheduler
does not migrate processes unless explicitly told so by the
application, in most cases only one of the LWK bits is set.

After saving and modifying the process affinity mask, the
process is enqueued in the soft real-time FIFO queue of the
Linux scheduler. That is the highest priority queue on the
Linux side and will give LWK processes preferred treatment.
This may impact interactive response time when many LWK
processes demand the attention of the Linux kernel, but that
is acceptable behavior for a compute node in a high-end HPC
system. Moreover, the same issue exists in the proxy model.

The Linux scheduler will pick the next runnable task from
the queue and resume the system call that had started on
the LWK side. When the call finishes, its affinity mask is set
back to the original LWK-only mask, the process is trans-
ferred back to the LWK side, and control is returned to user
space. During the system call execution, the LWK thread
sits idle, waiting for the system call to complete and the task
to migrate back.

Figure 4: System call routes in mOS with the cor-
responding number of calls for each path.

There are three routes an mOS system call can take. If
it is a high-performance I/O call, it may get intercepted in
user space and routed to the parallel file system on the I/O
nodes. The second route is taken if the call is to be processed
by the LWK, and the third route is used if the Linux kernel
is to handle the call. Figure 4 illustrates this and shows the
approximate number of different calls implemented by each
route.

Although this is not specific to the direct model, we dis-
cuss the mOS’s intended system call distribution. There are



134 system calls related to I/O. Many of those, will be inter-
cepted in user space and directed to the parallel file system.
If they are directed at local devices and pseudo devices such
as RAM disks or procfs, then those 134 calls are handled by
Linux on the node.
There are 110 system calls that deal with process and

memory management. They are handled by the LWK and
comprise the main pieces of the LWK. There are 64 calls that
deal with device management, information, or are mixed;
e.g., calls like mmap() which deal with memory and I/O.
These 64 calls need to be handled by Linux and, in some
cases, also by the LWK.

3.3 Comparison
This section offers a comparison between the two models.

3.3.1 POSIX Compliance and Tools Support
One of the major concerns with the Linux+LWK inte-

gration is to maintain full POSIX and Linux compatibility
also on the LWK side. This involves multiple components,
such as correct system call API and execution, valid signal-
ing behavior, and access to various statistical information,
such as the /proc, /sys file systems or other Linux specific
interfaces. Furthermore, the availability of the ptrace inter-
face, upon which multiple tools rely on, as well as access to
performance counters, such as the PAPI interface [13], are
also required.
Providing POSIX compliance in the proxy model is gen-

erally a significantly bigger effort than in the direct one,
mainly because the LWK in the proxy model is completely
isolated from Linux kernel code. McKernel for instance im-
plements a Linux ABI compatible syscall interface, signaling
and the ptrace infrastructure entirely from scratch. Tools
that rely on the ptrace interface therefore should either ex-
ecute the directly on the LWK, or an additional component
(such as the GDB server) would be required.
Accessing the /proc and /sys file systems is enabled in

McKernel via redirections from the syscall delegation kernel
module, which means for each /proc entry, the underlying
implementation has to consult the LWK to obtain the right
information. Performance counters, at the time of writing
this paper, are only available via special system calls that
expose direct access to the counters from user-space, but
PAPI is part of our future plans.
In contrast, because mOS maintains Linux compatibility

on the level of core kernel data structures, /proc and /sys
entries can directly fetch the necessary information from the
kernel without an additional indirection. Because mOS is
in a considerably early phase at this moment, it is unclear
whether signaling and ptrace will also be available without
any extra development, but hopes are high that they will
be. Accordingly, most of the tools are expected to run in
the Linux partition. Obviously, the syscall interface and
PAPI can be directly leveraged from Linux.
Another interesting example is virtual dynamic shared ob-

jects (VDSO). McKernel implements its own VDSO page,
which at this point simply falls back to an actual system
call, while mOS can take advantage of the Linux implemen-
tation. In summary, the proxy model needs to implement
substantially more features by itself than the direct model,
but in turn it has more control over the implementation de-
tails of those features.

3.3.2 LWK Flexibility
Full control over the kernel source code as well as the

features implemented in the LWK is one of the major argu-
ments in favor of a light-weight kernel. While it has been
shown earlier that with careful modifications Linux can also
attain scalable performance on a large-scale system [14, 16,
20], rapidly prototyping exotic features, such as support for
unconventional hardware is substantially easier on a smaller
code base.

As we mentioned earlier, even the near term anticipated
changes in architectures, such as heterogeneous cores, multi-
ple levels of memory hierarchy, etc. raise concerns of Linux’
ability to adapt. Considering the possibility of more dis-
ruptive changes in the future (e.g., elimination of CPU ring
zero, configurable cache coherency domains or a much sim-
plified, segmentation-like virtual memory system) are even
more alarming.

In theory, an LWK in the proxy model (and McKernel
in particular) runs its own ELF image and thus it is in full
control of its code base. There is nothing that prevents
its feature set as well as their implementation details to be
considerably more simple and easy to modify, which we have
already demonstrated in some of our previous studies [18, 7].

mOS, on the other hand has slightly tighter integration
with Linux, because it needs to be able to pass Linux ker-
nel compatible data structures in its system call offloading
mechanism and makes use of Linux macros and utility func-
tions when appropriate. Theoretically, an LWK in the direct
model could still diverge from using Linux compatible data
structures internally, but it would have to carefully translate
them back when offloading system calls. Consequently, the
need for such conversion could impose certain restrictions
on the degree of nimbleness an LWK could possibly attain.
However, practical implications of this restriction remains
to be seen.

It is also worth noting that the LWK’s separate nature in
case of the proxy model allows a proprietary kernel image to
be deployed. Because the direct model compiles the LWK
code directly into Linux, it automatically inherits its GPL
restrictions.

3.3.3 Required Linux Modifications
As we outlined above, taking either path of integration

between Linux and an LWK, it is highly desirable to keep
Linux changes minimal. The Linux code base is a rapidly
evolving target and keeping patches up-to-date with the lat-
est kernel changes can be a major development effort.

The proxy model in principle requires no changes to Linux
and can work in the form of a stand-alone kernel module.
IHK/McKernel currently demonstrates this, although IHK
relies on accessing unexported kernel symbols for resource
partitioning. While this is not the intended usage of kernel
modules in general, the Linux community seems to accept
it and modules with similar mechanisms (e.g., the BLCR
checkpoint/restart library [5]) are part of major Linux dis-
tributions.

Evanescence requires a minimal set of patches to Linux,
and mOS at this time comprises approximately 150 lines of
code changes to the Linux kernel. These are mostly related
to changes to the system call wrapper macros, which enable
Evanescence’s offloading mechanism. Of course, mOS’ ob-
jective is to keep the number of changes small and implement
most LWK features isolated from the Linux codebase.



3.3.4 LWK Reboot Capability
The reboot capability of an LWK is a somewhat controver-

sial issue with diverse opinions across the HPC OS commu-
nity. While a reboot may require extra time, and technically
it is possible to correct any issues that are overcome by re-
booting, the reality is that rebooting can fix many problems
that are difficult to diagnose and may provide features that
reduces complexity of the overall system.
We believe that the ability of rebooting an LWK with rel-

atively low overhead may provide the following advantages:

• A reboot can ensure that the LWK starts from a clearly
defined, clean state with contiguous chunks of free
memory.

• Rebooting allows easy deployment for different ver-
sions of an LWK image, depending on the specific ker-
nel features an application may require.

• Application performance tuning is difficult and adding
variables of previous job execution history is not help-
ful, rebooting on the other hand leads to more pre-
dictable behavior.

• The reboot every time design might highly simplify the
LWK itself, it may not need concepts such as switching
between applications or between users.

The proxy model, and IHK/McKernel in particular, al-
lows warm-rebooting LWK cores. Unless Linux kernel state
is corrupted, a warm reboot of LWK cores may solve prob-
lems where otherwise rebooting the whole node would be
required, such as if the LWK is trapped in an inconsistent
state.
The direct model, using Evanescence, is built upon a much

tighter symbiosis between Linux and the LWK and directly
rebooting LWK cores is not supported in its strict sense. In
Evanescence, LWK cores do not go through their own tram-
poline code, nevertheless, the Linux CPU hotplug system
can be used to unplug and re-plug cores. However, because
the hotplug system assumes a correct CPU state in the first
place, it may not be able to handle reboot requests to the
same degree as the proxy model.

4. EVALUATION
While IHK/McKernel is in a more advanced phase than

mOS at this moment, both projects are too early in their de-
velopment cycle for doing an exhaustive performance study.
Nevertheless, we provide some comparative results on the

cost breakdown of offloading an empty system call. The
measurements were carried out on an Intel Xeon Ivy Bridge
(E5-2670) system and for both the McKernel and mOS sce-
narios the same set of CPU cores were partitioned between
Linux and LWK.
Figure 5 indicates the results, averaged over 1,000,000

samples. Considering the fact that IHK/McKernel involves
significantly more components (i.e., the delegator kernel mod-
ule, the proxy process, etc.) we found it surprising that the
two mechanisms perform similarly. As seen, in McKernel’s
case the most expensive component is the IKC communica-
tion, which involves IPIs, the cost of the IRQ handlers, and
waking up the proxy process. On the other hand, the num-
bers on mOS clearly show that reaffinitization is the heaviest
component. Because mOS is an early prototype phase, we
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Figure 5: Cost breakdown of system call delegation.

are hoping that this number can be significantly improved
in the future.

5. RELATED WORK
Taking the hybrid nature of the proposed kernel architec-

tures into account, a large number of related projects could
be discussed. Without striving for completeness, we pin-
point some of the most relevant studies on HPC lightweight
kernels, existing hybrid solutions, and kernels for many-cores
in general.

5.1 Lightweight Kernels
Lightweight kernels explicitly designed for HPC workloads

date back over 20 years now. Catamount [9] from Sandia
National Laboratories was one of the notable systems which
has been developed from scratch and successfully deployed
on a large scale supercomputer. The IBM BlueGene line
of supercomputers have also been running an HPC targeted
lightweight kernel called CNK [8]. Nevertheless, CNK bor-
rows a significant amount of code from Linux (e.g., glibc,
NPTL) so that it can comply with elaborate Unix features,
which have been increasingly demanded by the growing com-
plexity of nowadays’ HPC applications. The most current in
Sandia National Lab’s lightweight compute node kernels line
of effort is Kitten [2], which distinguishes itself from their
prior LWKs by providing a more complete Linux-compatible
user environment. It also features a virtual machine moni-
tor capability via Palacios [11] that allows full-featured guest
OSs. However, with the ever growing appetite for full Unix/-
POSIX feature compatibility from the application side, it
has become increasingly difficult to support all these fea-
tures without compromising the primary goal of LWK per-
formance.

On the other end of the lightweight kernel spectrum are
kernels which originate from Linux, but have been heav-
ily modified to meet HPC requirements ensuring low noise,
scalability and predictable application performance. Cray’s
Extreme Scale Linux [14, 16] and ZeptoOS [20] follow this
approach. They often employ techniques, such as eliminat-
ing daemon processes, simplifying the scheduler or replac-
ing the memory management system. There are mainly two
problems with the Linux approach. First, the heavy mod-
ifications occasionally break Linux compatibility, which is
highly undesirable. Second, because HPC tends to follow
(or rather dictate) rapid hardware changes that need to be
reflected in kernel code, Linux often falls behind with the
necessary updates which results in an endless need for main-



taining Linux patches. In contrast, both mOS and IHK/M-
cKernel aim at full Linux compatibility without sacrificing
LWK performance.

5.2 Kernels for Multi/Many-cores
K42 [10] was a research OS designed from the ground up to

be scalable. Similarly how mOS and IHK/McKernel selec-
tively implement a set of performance sensitive system calls
on the LWK side, K42 allowed the application to circumvent
the Linux APIs and call native K42 interfaces. However, it
involved a significant entanglement with Linux which made
it difficult to keep track of the latest kernel changes. While
mOS and McKernel also rely on Linux, as discussed above,
one of their important design criteria was to minimize the
engineering effort required to keep them up-to-date with the
rapidly evolving Linux kernel code base.
Multiple kernels such as Tessellation [12] and Multiker-

nel [3] are built upon the observation that modern node
hardware resembles a networked system and so the OS should
be modeled as a distributed system as well. The Tessellation
project [12] follows a resource partitioning approach called
Space-Time Partitions. It divides CPU cores into groups
called cells, where each cell is responsible for a particular
application or some system services. Since applications and
system services can be assigned to separate cells, Tessella-
tion’s structure resembles both mOS and IHK/McKernel,
where HPC workloads are explicitly assigned to LWK cores
while system daemons reside on the Linux partition.
Multikernel [3] runs a small kernel on each CPU core and

the OS is built as a set of cooperating processes, where each
process is running on one of the kernels and communicating
via message passing. Similarly to Multikernel, the IHK/M-
cKernel model employs a message passing facility which en-
ables communication between the two types of kernels and
thus, between the actual application and its proxy process.
Zellweger et. al have recently proposed decoupling CPU

cores, kernels and operating systems [21]. Their system en-
ables applications to be seamlessly migrated over to a sep-
arate OS node while the kernel is updated on a particular
CPU core. In Evanescence, process representation in LWK
retains compatibility with Linux kernel data structures so
that it can directly migrate processes for system call offload-
ing. This mechanism is similar to the idea of decoupling the
application state from the OS, as proposed in [21], although
Evanescence’s purpose is to execute certain system calls in a
different kernel context where a richer set of kernel features
is available.

5.3 Hybrid Kernels for HPC
FusedOS [15] was the first proposal to combine Linux

with an LWK. It’s primary objective was addressing core
heterogeneity between system and application cores and at
the same time providing a standard operating environment.
Contrary to mOS and McKernel, FusedOS runs the LWK
at user level. In the FusedOS prototype, the kernel code on
the application core is simply a stub that offloads system
calls to a corresponding user-level proxy process called CL.
The proxy process itself is similar to that in IHK/McKer-
nel, but in FusedOS the entire LWK is implemented within
the CL process on Linux. This provides the same function-
ality as the Blue Gene CNK from which CL was derived.
The FusedOS work was the first to demonstrate that Linux
noise can be isolated to the Linux cores and avoid interfer-

ence with the HPC application running on the LWK cores.
This property has been one of the main driver for both mOS
and McKernel models.

Hobbes [4] is one of the DOE’s on-going Operating Sys-
tem and Runtime (OS/R) framework for extreme-scale sys-
tems. The central theme of the Hobbes design is to explic-
itly support application composition, which is emerging as
a key approach for applications to address scalability and
power concerns anticipated with coming extreme-scale ar-
chitectures. Hobbes makes use of virtualization technologies
to provide the flexibility to support requirements of applica-
tion components for different node-level operating systems
and runtimes. At the bottom of the software stack, Hobbes
relies on Kitten [2] as its LWK component, on top of which
Palacios [11] is in charge to serve as a virtual machine mon-
itor.

Argo [1] is another DOE OS/R project targeted at appli-
cations with complex work flows. Like Hobbes, they envi-
sion using OS and runtime specialization inside the compute
node. In Argo’s architecture, each node may contain a het-
erogeneous set of compute resources, a hierarchy of memory
types with different performance (bandwidth, latency) and
power characteristics. Given such a node architecture, Argo
expects to use a ServiceOS like Linux to boot the node and
run management services. It then expects to run different
ComputeOS instances that cater to the specific needs of the
application. Similar to mOS and McKernel, Argo’s kernels
cooperate and are trusted, but do not form a single system
image. Unlike Hobbes, virtualization is not used on a node.

6. CONCLUSION AND FUTURE WORK
Moving to exascale and beyond, there is a need to en-

hance system software so that it meets the needs and chal-
lenges of applications. Both Intel and RIKEN AICS have
been investigating a hybrid Linux plus LWK solution, with
the goal of providing LWK performance while retaining the
Linux APIs. Through our collaboration, we have explored
alternative mechanisms for interaction between the LWK
and Linux and in this paper we detailed the approaches and
their tradeoffs.

In summary, the direct model, due to its tight integration
with Linux, requires less development effort for providing
Linux compatibility and for supporting tools. On the other
hand, the proxy model can retain full control over the code
base of the LWK and thus has a higher degree of flexibility
for nimbly incorporating new technologies.

We will continue working closely together and exchanging
experiences on a regular basis. We are excited to see how
the two approaches evolve and to what extent they will be
successful.
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