
Workload Adaptive Checkpoint Scheduling of
Virtual Machine Replication

Balazs Gerofi∗ and Yutaka Ishikawa∗
∗ Graduate School of Information Science and Technology

The University of Tokyo

Tokyo, JAPAN

{bgerofi@il.is.s, ishikawa@is.s}.u-tokyo.ac.jp

Abstract—Checkpoint-recovery based Virtual Machine (VM)
replication is an emerging approach towards accommodating VM
installations with high availability, especially, due to its inherent
capability of tackling with symmetric multiprocessing (SMP)
virtual machines, i.e. VMs with multiple virtual CPUs (vCPUs).
However, it comes with the price of significant performance
degradation of the application executed in the VM because of the
large amount of state that needs to be synchronized between the
primary and the backup machines. Previous research improving
VM replication performance focused primarily on decreasing the
amount of data transferred over the network, while relying on
constant checkpoint frequency. Our goal is to investigate how
and to what extent performance degradation can be mitigated
by adjusting the checkpoint period dynamically. We provide a
comprehensive analysis of various workloads from the aspect
of VM replication, paying special attention to their behavior
over the increasing number of vCPUs in the system. We propose
several heuristics for scheduling replication checkpoints in order
to improve quality of service. Our algorithm adapts dynamically
to the properties of the workload being executed in the VM,
such as changes in the number of dirtied memory pages, network
and disk I/O operations, as well as to the network bandwidth
available for replication. We evaluate our scheduling algorithm
over two network architectures, Gigabit Ethernet and Infiniband,
a high-performance interconnect fabric. We find that checkpoint
scheduling has a great impact on the performance of replicated
virtual machines, and show that replicated virtual machines with
up to 16 vCPUs can attain performance close to the native
VM execution, not only over high-performance, but also over
commercial network architectures.

I. INTRODUCTION

With the recent increase in cloud computing’s prevalence,

the number of online services deployed over virtualized infras-

tructures has experienced a tremendous growth. At the same

time, the latest hardware trend of ever growing core number in

modern CPUs makes virtual SMP environments, i.e., Virtual

Machines (VM) with multiple virtual CPUs increasingly im-

portant [1]. Unfortunately, another implication of the growing

component number in current computing systems is the fact

that hardware failures have become common place rather than

exceptional.

Replication at the Virtual Machine Monitor (VMM) layer is

an attractive technique to ensure fault tolerance in virtualized

environments, primarily, because it provides seamless failover

for the entire software stack executed inside the virtual ma-

chine, regardless the application or the underlying operating

system.

There are currently two main approaches to primary-backup

based replication of virtual machines. Log-replay records all

input and non-deterministic events of the primary machine so

that it can replay them deterministically on the backup node

in case the primary machine fails [2], [3]. While this solution

provides high efficacy to uni-processor virtual machines, its

adaption to multi-core CPU environment is cumbersome, be-

cause it requires determining and reproducing the exact order

in which CPU cores access the shared memory. It has been

shown that this approach imposes superlinear performance

degradation with the number of virtual CPUs on several

workloads when applied to multi-core VM setups [4].

On the other hand, checkpoint-recovery based replication of

virtual machines is attained by capturing the entire execution

state of the running VM at relatively high frequency in order

to propagate changes to the backup machine almost instantly

[5], [6], [7], [8]. This solution, essentially, keeps the backup

machine nearly up-to-date with the latest execution state of

the primary machine so that the backup can take over the

execution in case the primary fails [5].

Between checkpoints the VM executes in log-dirty mode,

i.e., write accessed pages are recorded so that when the

snapshot is taken only pages that were modified in the most

recent execution phase need to be transferred, along with the

vCPU context. One phase of dirty logging and transferring the

corresponding changes is often called a replication epoch [5],

[7], [8].

However, any fault tolerant system needs to ensure that the

state from which an output message is sent will be recovered

despite any future failure, which is commonly referred to as

the output commit problem [9]. As a consequence of such

requirement, during the execution phase of each epoch, output

of the running VM needs to be held back, i.e., disk I/O and

network traffic have to be buffered and can be released only

after the backup machine acknowledged the corresponding

update [5], [6], [7].

One of the main strengths of checkpoint-recovery based

replication is its inherent ability to tackle with multi-core

configurations. However, due to the large amount of state

that needs to be synchronized between the primary and the

backup machines, the overhead of replication can be substan-

tial even on uni-processor VM setups. Several recent studies

have explored the idea of accelerating the failure free period

2011 17th IEEE Pacific Rim International Symposium on Dependable Computing

978-0-7695-4590-5/11 $26.00 © 2011 IEEE

DOI 10.1109/PRDC.2011.32

204

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

of replicated virtual machines, considering mainly how to

decrease the amount of data transferred during synchronization

[7], [8]. Nevertheless, they all rely on constant checkpoint

frequency.

Different workloads, however, can exhibit considerably dif-

ferent behavior in terms of the number of dirtied memory

pages, the number of transmitted network packets, and the

number of disk I/O operations. Moreover, these attributes often

change significantly in time and also with the number of

vCPUs in the system. When and how often checkpoints should

be taken is not evident, furthermore, it has a great influence

on the performance of the replicated virtual machine. For

instance, a long lasting computation without I/O would benefit

from less frequent checkpoints, while a workload, sensitive to

network latency, should be checkpointed frequently so that

buffered network packets can be released as soon as possible.

In this paper we propose several heuristics for scheduling

checkpoints dynamically according to the attributes of the

workload being executed in the replicated VM. We make the

following contributions:

• A quantitative analysis of various workloads regarding
their behavior patterns over SMP virtual machines with

respect to checkpoint-recovery based replication.

• A checkpoint scheduling algorithm, which adapts dy-

namically to the properties of the given workload, such

as the number of dirtied memory pages, the number of
pending network packets, and the number of disk I/O
operations as well as to the network bandwidth available
for replication.

• Finally, a fine-grained copy-on-write mechanism that

eliminates the VM downtime during the checkpoints via

protecting only those memory pages, whose value need

to be retained so that changes can be transferred to the

backup host, while allowing concurrent execution of the

virtual machine.

We find that the price of highly available SMP virtual

machines can be relatively modest when checkpoints are

scheduled carefully, and close to native performance can be

achieved not only over high-speed interconnects, but also with

replication over a commercial network architecture.

We begin with characterizing various workloads in terms of

memory usage and I/O patterns on SMP virtual machines in

Section II. Section III gives background information on VM

replication along with the description of the copy-on-write

mechanism. Section IV introduces our scheduling heuristics

and Section V provides details on the implementation. Exper-

imental evaluation is given in Section VI. Section VII surveys

related work, and finally, Section VIII presents future plans

and concludes the paper.

II. WORKLOADS AND ANALYSIS

In this section we describe each workload we investigated,

which is then followed by a quantitative analysis regarding

their memory usage and I/O patterns on SMP virtual machines.

A. Workloads

Reliable execution may be required by a diverse set of appli-

cations, such as long lasting computations or mission critical

online services. We chose the following four workloads.

- Linux Kernel Compile is an elaborate workload with

good scalability over SMP configurations, stressing

mainly CPU and memory, but doing a fair amount of disk

I/O as well. We compile the bzImage target of the vanilla

Linux kernel version 2.6.31 with default configuration.

- Nas Parallel Benchmarks (NPB) is a collection of

computationally intensive parallel applications perform-

ing various scientific computations [10]. We chose the

OpenMP version of two NPB benchmarks in order to

assess the scalability of our replication mechanism over

multiple vCPUs.

- SPECweb 2005 Banking emulates an Internet personal

banking web-site, where clients are accessing their ac-

counts, making transactions, etc. Requests are transmit-

ted over SSL throughout the whole benchmark [11].

SPECweb is a real world like application and therefore a

good candidate for fault tolerance.

- Hadoop [12] is an open-source implementation of the

MapReduce (MR) [13] distributed data analysis tool,

an emerging framework often used in cloud computing

environments. A Hadoop MR cluster consists of several

worker nodes (called TaskTrackers) that are coordinated

by a central entity, the JobTracker. While TaskTrackers
may fail any time without bringing the entire job down,

the failure of the JobTracker is fatal. Our Hadoop cluster

is composed of 16 worker nodes (i.e., TaskTrackers) and

a separate VM which hosts the JobTracker. We evaluate

the price of protecting the Hadoop master node via VM

level replication through the MR/DB benchmark set [14].

MR/DB operates on random generated HTML data and

it includes various common tasks that can be expressed

either as SQL queries or as MapReduce computations,

such as grep, select, aggregate and join.

B. Analysis

As mentioned earlier checkpoint-recovery based replication

of virtual machines is delivered by capturing snapshots of

the running VM at relatively high frequency so that changes

can be reflected to the backup machine almost instantly. As

it will be described in detail in Section III, the two main

components that contribute to the overhead of checkpoint-

recovery based VM replication are the memory pages dirtied

and the sectors written on block devices during the execution

phase of each replication epoch. In this section we analyze

the chosen workloads from the perspective of memory usage

and I/O patterns with respect to the number of virtual CPUs

deployed in the virtual machine.

To put the numbers into context, all measurements presented

in this Section took place on a 2.4GHz four CPU AMD

Opteron ccNUMA machine, with four cores each CPU (i.e.

16 cores altogether) and 8GBs of RAM. The virtual machines

205

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

��
�����

������
������
������
������
������
������
������
������
������
������
	�����
	�����

�����

�����
������
������
������

�� ��� ��� ��� ���� ���� ���� ���� �	�� ���� 	���
���
��� �	�� ����

�
��
��
��
�	

�

��
��

���
��
��
��

��
��
��
�

��
�����	�������������
	����

�������
��������
��������
 �������
�!�������

(a) Memory pages dirtied (page size is 4kB).

��
�����

������
������
������
������
������
������
������
������
������
������
	�����
	�����

�����

�� ��� ��� ���� ���� ���� �	�� ���� ���� 	��� 	���
	�� ���� ����

�
��
��
��
�	

�

��
��

��"
��
��
�	

��
��
#�

��
��

�
��

��
�����	�������������
	����

�������
��������
��������
 �������
�!�������

(b) Block sectors written (sector size is 512 bytes).

Fig. 1: Kernel Compile memory and disk I/O behavior. Average number of dirtied pages and block sectors written as the

function of replication epoch length and the number of virtual CPUs deployed in the VM.

had 1GB of RAM and the number of vCPUs will be indicated

in the description of each experiment. For further technical

details of our experimental framework, see Section VI.

1) Kernel Compile: We carried out measurements of the

kernel compile workload on virtual machines configured with

up to 16 virtual CPUs. We recorded the number of dirtied

pages and the disk sectors written according to the replication

epoch length up to 1000 milliseconds. Note, that running the

VM in log-dirty mode by itself introduces certain overhead due

to the fact that the first write to each page causes a page fault,

moreover, at the end of each epoch the dirty-log is reinitialized

and all TLB entries have to be invalidated. In Section VI

we provide exact numbers to what extent the dirty-log mode

affects execution time under different setups.

Figure 1a illustrates the numbers obtained. Kernel compile

has good scaling properties with the number of vCPUs de-

ployed in the virtual machine. As seen, the average number of

dirtied pages increases steadily with the increasing number of

virtual CPUs. The key observation, however, is the fact that

regardless the number vCPUs, dirty pages tend to increase

fast in the beginning of an epoch, but the increase declines

once a certain set of pages is written. We call this the dirty
page set. The dirty page set will play an important role in our

scheduling algorithm, which will be discussed in Section IV.

Another observation is the amount of disk I/O involved in

the kernel compile workload. Figure 1b depicts the average

number of sectors written based on the number of vCPUs and

the replication epoch length. The kernel compile workload,

again, scales well and shows steady increase in the number of

I/O operations with the increasing number of virtual CPUs.

Disk I/O is also important from the aspect of replication,

because it needs to be buffered first and can be only released

when the backup machine acknowledged the corresponding

update.

2) NAS Parallel Benchmarks: We performed the same

set of experiments for various applications from the NPB

benchmarks. We used their OpenMP version, due their ex-

cellent scalability over SMP configurations, and set the

OMP NUM THREADS environment variable in the VM

to the number of virtual CPUs. We identify two groups of

applications among the NPB benchmarks regarding their mem-

ory behavior. One touches an increasing amount of memory

with the growing number of vCPUs, while the other does not

dirty significantly more pages with regards to the number of

vCPUs in the system. Figure 2 shows the memory behavior of

the ep.B and sp.B benchmarks, two representatives of the two

groups, respectively. Again, the key observation is that with

long enough replication epochs, these workloads also converge

to a stable dirty page set.

��
�����

������
������
������
������
������
������
������
������

�
��
��
��
�	

�

��
��

���
��
��
��

��
��
��
�

��
�����	�������������
	����

����������� ����������� ����������� ���� ������ �����!������

����������� ����������� ����������� ���� ������ �����!������

Fig. 2: NPB EP and SP memory behavior. Average number

of dirtied memory pages according to replication epoch length

and the number of vCPUs.

3) Hadoop JobTracker: In order to assess the feasibility of

replicating the Hadoop master node, we examined its memory

and network I/O behavior. In our experiments the JobTracker

coordinates a rather small cluster (16 worker nodes), and

thus, the number of vCPUs appeared to be irrelevant. Figure

3a shows the average number of dirtied pages for different

tasks and replication epoch lengths. We present data up to

200 milliseconds in this configuration, because the JobTracker

generates a fair amount of network traffic, and therefore, short

replication epochs will be desired. As seen, the number of dirty

pages is relatively small for each of the MR/DB jobs.

Figure 3b depicts the average number of network packets

sent across all Hadoop jobs we examined. The error-bars

represent the deviation in the number of packets for the

given epoch length. The main observation is precisely the

high deviation, which allows enough space for scheduling

checkpoints in order to minimize the performance degradation

due to the replication.

206

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

��
����
����
	���
����

�����
�����
�����
�	���
�����
�����

�� ��
�

��
�

��
�

��
�

��
�

	�
�

�
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

�	
��

�

��

��
��

��
��

��
���
��
��
��
�	

�

��
��

���
��
��
��

��
��
��
�

��
�����	�������������
	����

$
�	�

����������

�������

�����

(a) Memory pages dirtied (page size is 4kB).

��
����

�	���
�����
�����
�����
�����
�	���
	����

����
�����
�����
�	���

%

�

��
��

���
�	

��	
��
"

�
#�
��

�#
��
��

����������������������
	����

(b) Network packets sent.

Fig. 3: Hadoop JobTracker memory and network I/O behavior. Average number of dirtied pages and network packets sent

(error-bars representing deviation) as the function of replication epoch length.

4) SPECweb2005 Banking: Similarly to the previously

discussed workloads, we carried out the same set of exper-

iments for SPECweb Banking. SPECweb reports two values

for a run, the percentage of tolerable and good answers it

harnesses from the server during the test period. First, we

tuned the SPECweb config file to obtain the highest number

of simultaneous sessions that gives over 97% good and 100%

tolerable answers on the native VM with one virtual CPU.

Then, we started adding more virtual CPUs and increased

the number of simultaneous sessions to see if we get better

results. Our observation was that on this particular setup the

bottleneck of the SPECweb benchmark was memory rather

than computing power. We obtained relatively low numbers

for the dirtied memory pages (compared to the kernel compile

or the NPB workloads), and also for disk I/O operations.

��
����

�	���
�����
�����
�����
�����
�	���
	����

����
�����
�����
�	���

������
������

%

�

��
��

��	
��
"

�
#�
��

�#
��
��
��
	�
�

��
�����	�������������
	����

Fig. 4: SPECweb Banking network behavior. Average num-

ber of network packets sent (error-bars representing deviation)

according to replication epoch length.

The network behavior of SPECweb is shown in Figure 4.

As seen, there is a substantial amount of network packets

sent in the SPECweb workload. However, likewise Hadoop

JobTracker’s network behavior, SPECweb also shows signif-

icant deviation from the average number of packets. Such

differences can be exploited in order to determine when to

take a checkpoint with minimal impact on the performance.

III. CHECKPOINT-RECOVERY BASED VM REPLICATION

As we have mentioned, checkpoint-recovery based replica-

tion of virtual machines is attained by capturing the entire

execution state of the running VM at high frequency in order

to reflect the changes to the backup machine almost instantly.

Between checkpoints the VM executes in log-dirty mode, i.e.,

write accessed pages are tracked so that when the snapshot

is taken only pages that were modified in the most recent

execution phase need to be transferred. In order to reduce

the overhead of transferring dirty pages, replication data can

be buffered and transferred asynchronously, overlapping the

VM’s execution in the subsequent epoch [5].

At the same time, any fault tolerant system needs to ensure

that the state from which an output message is sent will

be recovered despite any future failure, which is commonly

referred to as the output commit problem [9]. Consequently,

during the execution phase of each epoch, output of the

running VM needs to be held back, i.e., disk I/O and network

traffic have to be buffered and can be released only after the

backup machine acknowledged the corresponding update [5],

[6], [7].

A. Fine-Grained Copy-On-Write

It is important to point out, that even in case of asyn-

chronous data transfer, it has to be ensured that the update

transferred to the backup machine holds a consistent view of

the memory corresponding to the given replication epoch. One

possible solution, introduced in Remus [5], is to suspended the

VM, collect the changes into a separate buffer, and resume the

VM before beginning the actual data transfer. In the rest of this

paper we will refer to this solution as the regular asynchronous
replication.

As we showed in Section II-B, several workloads touch an

increasing number of dirty pages during the same period of

time when the number of virtual CPUs is increased in SMP

virtual machines. Although data transfer can overlap the next

epoch’s execution, copying this big amount of data into a

separate buffer by itself takes a significant amount of time,

during which the VM needs to be suspended in the regu-

lar asynchronous replication approach. In order to alleviate

the downtime, we propose fine-grained copy-on-write, which

works as the followings. When the VM is suspended at the end

of a replication epoch so that the dirty page map is obtained,

instead of simply reinitializing the bitmap, it is preserved by

the VMM. During the next execution phase, each time a write

page-fault occurs (note that the VM runs in dirty-log mode),

the old bitmap is first consulted. If the write refers to a page

207

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

present in the old dirty bitmap and the page is not yet copied to

the transfer buffer, then a copy of the original page is retained.

TABLE I: Ratio of dirty pages necessary to COW.
Workload Kernel Comp. ep.B sp.B SPECweb
Ratio 41% 56% 30% 40%

Notice, that pages which do not appear in the old dirty

bitmap do not need to be COW protected, because they are

not part of the update. Table I shows the ratio of pages which

was necessary to be copied for some of the workloads, when

executed over 8 vCPUs. As seen, the ratio scales between 30%

and 56%, allowing the fine-grained COW mechanism to save

significant amount of work via not copying unnecessary data.

Our proposed mechanism allows the VM to resume im-

mediately after the dirty bitmap is obtained and the vCPU

context is captured. The replication engine, in turn, uses the

old content of the pages for the data transfer. This approach

essentially follows a similar idea to concurrent checkpointing

[15], although, contrary to capturing the entire address space

each time, it saves changes incrementally.

B. Infiniband

High-speed interconnects, such as Infiniband [16], are

widely used in High Performance Computing (HPC). They

offer features including OS-bypass communication and Re-

mote Direct Memory Access (RDMA). OS-bypass enables

communication directly from user-space without the involve-

ment of the underlying operating system, and RDMA allows

direct data transfer from the memory of one computer to the

other. Besides Gigabit Ethernet, we also integrate Infiniband’s

RDMA feature into our replication engine, so that we can

compare the behavior of the adaptive checkpoint scheduling

over different network architectures.

IV. CHECKPOINT SCHEDULING HEURISTICS

In this section we introduce several heuristics for scheduling

checkpoints during VM replication. Since the four main factors

that affect replication performance are the number of dirtied

memory pages, the number of pending disk and network I/O

operations, and the available network bandwidth for replica-

tion, we now consider each factor one by one.

A. Dirty Memory

In Section II-B we analyzed the behavior of various work-

loads in terms of the number of memory pages they touch

as the function of replication period length. One of the key

observations was that after a certain period of time each

workload tends to reach its dirty page set, i.e. a set of pages

that grows slowly afterwards. In order to avoid retransferring

the same pages frequently, one of our main heuristics is to

continuously monitor the number of dirty pages and delay

checkpoints until the dirty page set is reached. We define that

the dirty page set is attained when the number of dirty pages

grows less than 5% between subsequent dirty page updates.

On the other hand, we also consider the condition of pending

network and disk I/O, which may demand earlier checkpoints.

B. Disk I/O

We have seen previously in Section II-B that the number of

written disk sectors can grow rapidly for certain workloads,

especially with the increasing number of vCPUs in the system.

We follow a very straightforward heuristic with respect to

pending disk I/O. Once the disk buffer is nearly full, a

checkpoint can be no longer delayed. Note, that the disk buffer

size is a parameter of the system, and we use 50MB for this

purpose in our experiments.

C. Network Packets

Pending network I/O is the most intricate factor in the

checkpoint scheduling algorithm. As seen is Section II-B, the

number of pending network packets shows significant variation

with different replication epoch lengths. Unfortunately, the

VMM is unable to determine to what extent a given application

is sensitive for network latency. Thus, we simply assume that

pending network I/O should be released as soon as possible.

One approach would be to initiate a checkpoint immediately

when network packets are buffered. However, this would result

in continuous checkpointing leaving hardly any space for the

application to progress. On the other hand, the longer we

let the VM to progress, the more memory pages will be

touched and consequently, the higher the network latency will

be rendered. Note, that network packets can be only sent out

once the ACK for the given update is received from the backup

machine.

�����
���������
�����
�������

������
������ �

����
!������

�������
���������&'()� �

�
�����&'()��

"�#��

����$�����% �
&'
�$�����%� ��
�������

����$�����% �
&'
�$���
��%�

��

(
��

$�
���

!��
&'

��
'�

&�
��

)�

 �

*+
�

��

��
�

��)�
����

*
���	��
+,�

,�-
���-�.��
.��&��

Fig. 5: Trading throughput for latency. Early VM suspend

slows down the virtual machine so that fewer dirty pages will

have to be transferred, which in turn lowers the latency of

buffered network packets.

We propose a solution that attempts to make a compromise

in between these boundaries. Figure 5 demonstrates our ap-

proach. The idea is to delay the checkpoint, but if pending

network I/O is present, only wait until the number of pages

reaches the lower limit where the replication bandwidth is

already fully utilized. We call this vm stop threshold and

it represents the minimum number of pages for which the

maximum of the application’s state change can be transferred

per unit time. If it’s necessary, the VM is slowed down (by

means of early suspend) once vm stop threshold is reached,

essentially, trading throughput for network latency. As it will

be shown in Section VI, this approach yields significant im-

208

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

provements for latency sensitive workloads, such as SPECweb

and Hadoop’s JobTracker.

D. Replication Bandwidth

The network bandwidth available for replication is another

important factor, therefore, our algorithm maintains an approx-

imation of the available bandwidth. This value is updated after

the transfer phase of each replication epoch, and in turn is

used for determining the vm stop threshold variable discussed

above.

E. Algorithm

Putting it all together, Figure 6 depicts the high-level

scheduling algorithm. Note, that the pseudo code demonstrates

the main execution steps, and the actual low-level implementa-

tion differs in some technical details. The scheduler’s activities

are as the followings. Once a checkpoint is requested, it tracks

the number of dirty pages, the number of network packets and

disk sectors buffered. If there are pending network packets and

the number of dirty pages are bigger than vm stop threshold,

it suspends the VM.

�
�!���,���
� ��/��
��".�"0��'��1�
�
� "�����2���"�',�&���� �
� � ���"0��������	
��1�
� � ���"0�
�������	�����1�
� � ���"0����������������1�
� � ��&�����	�������1�
� � �
� � ����
�������	������33��
� � �����������	
���4������������������ �
� � �
����*+1�
� � �	��
� �	��
� �
� ��&�����	
�������	�����1�
� ��&����������������������56��	
�������	�����1�
�
� "�������	��������5�%��7-+�8-79:;<9�=>�33�
�� �������������2
�����������	������33�
� �������������2�����������������4�>�<�-?@A-=�+�7 �33�
� �������������2��������	
������".�&�B��0'�)�
���
'C� �
� � �
� � ���"0��������	
��1�
� � ���"0�
�������	�����1�
� � ���"0����������������1�
� � ��&�����	�������1� �
� �
� �	��
�	��

Fig. 6: Checkpoint scheduling algorithm pseudo code.

When the ACK of the update is received from the

backup machine, it updates bandwidth approximation and

vm stop threshold accordingly. Unless there are pending net-

work packets, it enters a waiting period where it continues

tracking the number of dirty pages, and the number of buffered

network packets and disk sectors. In case it detects pending

network packets, the disk sectors exceed the disk buffer limit,

or the overall wait time is above a predefined limit (currently

WAIT MAX THRESHOLD is 2 seconds in our implementa-

tion) it requests a checkpoint and restarts its activities.

V. IMPLEMENTATION

A. KVM

We chose the Linux Kernel Virtual Machine (KVM) [17]

as the platform of this study. KVM takes advantage of the

hardware virtualization extensions so that it achieves nearly

the same performance with the underlying physical machine.

The most important components of KVM are the kvm kernel

module and qemu-kvm, a KVM tailored version of QEMU. On

top of these, libvirtd is an often used facility for managing

virtual machines, for which virsh provides a command line

interface. A major advantage of the KVM architecture is the

full availability of user-space tools in the QEMU process, such

as threading, libraries and so on.

B. Replication Logic and I/O Buffering

The replication logic is entirely implemented in qemu-kvm,

leveraging a great amount of the live migration code.

For disk I/O and network buffering we modified the virtio

drivers of qemu-kvm. The disk I/O buffer behaves also as

a hash table that operates on sector granularity so that read

requests referring to sectors which are already buffered can be

accessed consistently. As for network buffering we maintain

an extra packet queue that captures outgoing packets during

the execution phase of a replication epoch. Once the backup

machine acknowledges the update both disk and network

buffers are committed.

C. Transactional Updates

Another particular issue worth mentioning is the transac-

tional nature of updating the backup machine. When replica-

tion data are sent to the backup host, qemu-kvm cannot just

read and apply the changes directly, because a failure during

the update would leave the backup machine in an inconsistent

state.

For this reason we extended the QEMUFile object with a

buffer and a flag that indicates that the file is in buffered mode.

The primary machine toggles this flag on the file correspond-

ing to the backup connection and all subsequent writes are first

buffered. The backup machine, on the other hand, associates

the replication receive buffer to the QEMUFile object referred

in the VM state loaders. It then toggles the file’s flag to indicate

that subsequent read operations issued by qemu-kvm should

access the buffer instead of trying to receive data from the

network.

D. Copy-On-Write

On the lowest level, we extended the KVM kernel module

to perform copy-on-write when it’s requested by qemu-kvm.

Copy-on-write is a well applied technique in operating sys-

tems, particularly for enforcing private access to an otherwise

shared memory area among separate address spaces. However,

in our case, COW is not as straightforward as it is with regular

processes, because the replication mechanism and the running

VM actually share the same address space. When a page is

written and COWed, the VM still needs to access the most

recent content, while the replication engine should see the

209

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

previous epoch’s value. In order to meet both requirements

we copy the old content of the page to another address and

maintain a translation table, which is queried by the replication

engine to find out whether or not a page has been COWed.

Note, that COW pages are recycled in each epoch after COW

is disabled.

E. Infiniband RDMA

We implement the RDMA transfer through OpenFabrics’

native Infiniband verbs API [18]. The native Infiniband verbs

form the lowest software layer for the IB network, and allow

direct user-level access from the qemu-kvm process to the IB

host channel adaptor (HCA) resources while bypassing the

operating system. At the IB verbs layer, we used the queue

pair model for supporting channel-based communication se-

mantics during the handshake between the primary and backup

machines, as well as for memory-based communication se-

mantics, i.e., RDMA.

VI. EVALUATION

This section provides performance results of our adaptive

replication method. We follow the evaluation scheme of prior

studies in the context of VM replication [7], [8] and focus on

the overhead to the failure free execution.

A. Experimental Setup

Throughout our experiments the host machine of the repli-

cated VM was a 2.4GHz four CPU AMD Opteron ccNUMA

machine, with four cores each CPU (i.e. 16 cores altogether),

8GBs of RAM and a 250GB SATA harddrive. The machine

was equipped with two Intel 82546GB Gigabit Ethernet net-

work interfaces. One of the physical network cards were

bridged to the virtual machine and used for application traffic

and the other was dedicated to the replication protocol for

the experiments, when replication took place over Gigabit

Ethernet. Moreover, a Mellanox MT26428 Infiniband QDR

HCA was also present in both the primary and the backup

hosts for the experiments utilizing RDMA.

The host machines run Ubuntu server 9.10 on Linux kernel

2.6.37 and we used qemu-kvm 0.14.50 with kvm-kmod 2.6.37

as the basis of our implementation. For the virtual machines

in each experiment we used the KVM virtio disk and network

drivers. We do not present performance results on the native

host machine, because in virtualized environments direct ac-

cess to the underlying machines is normally not available.

However, it is worth noting that in all experiments we had

AMD’s hardware MMU virtualization support, i.e. Nested

Page Tables (NPT) enabled. Unless stated otherwise, the VM

had 1 GB of RAM allocated.

B. Results

1) Kernel Compilation: Our first target is the kernel com-

pilation workload. In this experiment we compile the bzImage
target of Linux kernel version 2.6.31 using the default con-

figuration. We repeated each experiment three times for each

VM setup and report the average wall-clock time measured.

��

��

���

���

���

���

���

��,�#@� ��,�#@
� ��,�#@
� ��,�#@
� �	�,�#@
�

�-
��

�
�

	�
��
�
��
��

�	

�
��
��

%
�����
��+�����

	�����+,�
����./
����00����
1����2��'&����00����
1����2��'&�)*�3�4�
&5674,����00����
&5674,�)*�3�4�

Fig. 7: Kernel Compile runtimes.

Figure 7 illustrates the execution times on the native virtual

machine, the VM running in log-dirty mode, replicated over

Gigabit Ethernet and Infiniband RDMA, with either fixed

checkpoint frequency or dynamic scheduling. Similarly to

related work [5], we set the fixed replication period in this

experiment to 100 milliseconds. As seen, having the VM run in

log-dirty mode by itself imposes a certain level of performance

degradation, however, this is inevitable in case of checkpoint-

recovery based VM replication, especially, if the checkpoint

frequency is set beforehand.

Figure 1a indicated previously, that the kernel compile

workload exhibits a growing demand in terms of dirtied

memory and the number of I/O operations when executed over

multiple CPUs. Consequently, as seen on Figure 7, RDMA

based replication attains an increasing performance improve-

ment compared to Gigabit Ethernet with the growing number

of CPUs in the system, when the replication period is fixed.

The key observation, however, is the effect of adaptive check-

point scheduling, which can dynamically decrease checkpoint

frequency so that data transfer can be entirely overlapped with

VM execution. The scheduling algorithm detects the absence

of pending network I/O and adjusts checkpointing frequency

based on the condition of the disk buffer. For instance, we

observed an average 1.2 seconds replication epoch length in

case of 8 vCPUs. Accordingly, the achieved performance is

much closer to the native VM even over Gigabit Ethernet.

On a 16 vCPUs replicated VM with dynamic checkpoint

scheduling, the kernel compilation suffers 32%, and 20%

slowdown over Gigabit Ethernet and Infiniband, respectively,

while with 8 vCPUs the performance degradation is only 8%

for GigE and 2% for Infiniband.

2) NAS Parallel Benchmarks: We present runtimes for two

benchmarks from the NPB benchmark set. Figure 8a illustrates

the results for ep.B. As shown before in Section II-B, ep.B is

a light workload in terms of the number of dirtied memory

pages. This is well reflected on the runtimes, which show

nearly no performance degradation regardless the replication

method and the network connection used.

On the other hand, as seen in Figure 8b, replicated sp.B

attains significant performance improvements from adaptive

scheduling compared to fixed checkpoint frequency. Up to 4

210

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

�
��
��
	�
��

���
���
���

*�#@� *�#@� *�#@� *�#@� *�#@�	

�-
��

�
�

	�
��
�
��
��
��

	

��
�

%
�����
��+����

	�����+,
����./
����00���
1����2��'&����00���
1����2��'&��)�*�����(8
&5674,����00���
&5674,��)�*�����(8

(a) ep.B runtimes.

�

���

���

	��

���

����

����

*�#@� *�#@� *�#@� *�#@� *�#@�	

�-
��

�
�

	�
��
�
��
��
��

	

��
�

%
�����
��+����

	�����+,
����./
����00���
1����2��'&����00���
1����2��'&��)�*�����(8
&5674,����00���
&5674,��)�*����(8

(b) sp.B runtimes.

Fig. 8: NAS Parallel Benchmarks runtimes.

vCPUs it achieves close to native VM performance, and yields

runtimes slightly better than the 100ms fixed dirty log mode.

Nevertheless, performance degradation for 8 and 16 vCPUs is

substantial, 35% and 44%, respectively, when replicated over

Gigabit Ethernet.

3) SPECweb: The SPECweb configuration requires at least

three machines for running the experiments [11]. One of the

server hosts is the actual SPECweb application server, which

is accompanied by a backend machine. These were deployed

in two VMs residing on two separate physical machines.

Besides these, a desktop machine was utilized for running the

SPECweb client side scripts.

�D�

��D�

��D�

��D�

��D�

��D�

	�D�

�D�

��D�

��D�

���D�

��
��
�	

��
��
�

��*

��
�"

��
���

��

	

��
��

+,��
	���
����
	�

7�����$�����
B��
� E��&���
B��
�

Fig. 9: SPECweb Banking scores.

We replicate only the main SPECweb application server and

ran five different setups: native VM, replication over GigE

and Infiniband, with fixed and adaptive replication frequency.

All results reported here were obtained on a VM configured

to have 4 virtual CPUs. As we discussed before, network

I/O must be held back during the execution phase of each

replication epoch and can be released only after the backup

machine acknowledges the corresponding update. Therefore,

both Infiniband’s faster data transfer and the adaptive schedul-

ing algorithm are expected to yield significant performance

improvements.

We obtain our measurements by first tuning the SPECweb

configuration so that 99% of the responses are categorized as

”good” when executed on the native VM. All the different

replicated VM setups were then measured with the same

configuration and we compare the average percentage of

”good” and ”tolerable” responses reported by the SPECweb

client script.

Figure 9 shows the results we obtained from these experi-

ments. As seen, the performance attained by fixed checkpoint

frequency over Gigabit Ethernet based replication is low, 45%

and 76% for ”good” and for ”tolerable” answers, respectively.

Infiniband’s extreme network speed achieves 92% and 99%

with the same checkpoint frequency. However, the perfor-

mance degradation over GigE is mitigated by the adaptive

checkpoint scheduling, which scores 79% and 91%, for ”good”

and ”tolerable” answers, respectively. When adaptive schedul-

ing is utilized in conjunction with Infiniband, the attained

performance is 96% and 99% of the native scores.

4) Hadoop Jobtracker: The last application we investigate

is Hadoop. In this experiment we replicate Hadoop’s master

node, the JobTracker, which is responsible for coordinating

the MapReduce job among the worker nodes. The JobTracker

does not perform any computation related to the job itself,

but its role is crucial for orchestrating the parts of the whole

execution, and therefore, a good candidate for fault tolerant

execution.

��
����
����
����
����
����
	���

���
����
����

�����
�����
�����

)����
���"�� �))��)���� F�'��

�-
��

�
�

	�
��
�
��
��
��

	

��
��

3��

��$
��

	�����+,�
7����.	���90����
*�����(8�

Fig. 10: Hadoop Job runtimes.

We used four jobs from the MR/DB benchmark set [14],

grep, select, aggregate, and join. Our Hadoop cluster consists

of 16 worker nodes, each of them is a 1 vCPU VM with

1 GB of RAM, residing on four different physical hosts

211

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

equipped with Intel Xeon 2.2GHz Quad-core CPUs. We use

approximately 2GB of raw data on each node as input. Figure

10 shows the results we obtained from each experiment. We

replicate the JobTracker over Gigabit Ethernet with fixed (50

milliseconds) checkpoint frequency and with our adaptive

scheduling algorithm.

As seen, the price of replication in this experiment is

modest, with fixed checkpoint frequency the worst case perfor-

mance degradation is around 33%, in case of grep. However,

adaptive scheduling alleviates the performance degradation

and renders the worst case overhead to 15%, while the best

performance it achieves is a 4% difference from the native

VM execution in case of the join job.

VII. RELATED WORK

A. Virtual Machine Migration

Checkpoint-recovery based fault tolerance captures snap-

shots of the running VM at high frequency, often leveraging

the live migration support of the underlying Virtual Machine

Monitor (VMM). Thus, VM live migration is closely related

to checkpoint-recovery based replication. Solutions, such as

Xen [19], KVM [17], and VMware’s VMotion [20] all provide

the capability of live migrating VM instances. Pre-copy is

the dominant approach to live VM migration [19], [20]. It

initially transfers all memory pages then tracks and transfers

dirty pages in subsequent iterations. When the amount of data

transferred becomes small or the maximum number of iteration

reached, the VM is suspended and finally, the remaining dirty

pages and the VCPU context is moved to the destination

machine. VM replication, on the other hand, leaves the VM

running in pre-copy mode at all times so that dirty pages are

logged and the entire execution state can be reflected to the

backup node at the end of each replication epoch [5], [6].

Performance improvement to VM migration has been the

focus of several prior studies. Xian et al. showed how data

deduplication can be exploited to accelerate live migration

[21], while Microwiper [22] proposed ordered propagation of

dirty pages to transfer them according to their rewriting rates,

reducing service downtime during the migration.

High performance interconnects have also been used in the

context of virtual machine migration, Huang et al. presented

RDMA based migration over Infiniband [23], Note however,

that they only consider uni-processor VMs, besides, VM

replication involves various additional technical issues.

B. Virtual Machine Replication

Bressoud and Schneider [2] introduced first the idea of

hypervisor-based fault tolerance by executing the primary and

the backup VMs in lockstep mode, i.e., logging all input and

non-deterministic events of the primary machine and having

them deterministically replayed on the backup node in case

of failure. While Bressoud and Schneider demonstrated this

technique only for the HP PA-RISC processors VMware’s

recent work implements the same approach for x86 architec-

ture [3]. These works, however, can handle only uni-processor

environments. Deterministic-replay imposes strict restrictions

on the underlying architecture and its adaption to multi-

core CPU environment is cumbersome, because it requires

determining and reproducing the exact order in which CPU

cores access the shared memory.

In the context of deterministic (i.e. replayable) SMP ex-

ecution, solutions on different abstraction levels have been

proposed. Flight Data Recorder [24] is a hardware extension

that enables deterministic replay for SMP environments, but

it is unclear what degree of concurrency they can handle

without significant performance degradation. Runtime system

level solutions, such as Respec [25] and CoreDet [26] ensure

deterministic execution of multi-threaded applications, but

their main weakness compared to VM level solutions is the

inability to provide fault tolerance for an entire software stack

(including the operating system), which is encompassed by

a virtual machine. SMP-ReVirt [4] exploits hardware page

protection to detect and accurately replay sharing between

virtual CPUs of a multi-core virtual machine, however, their

experiments report superlinear slowdown with the increasing

number of virtual CPUs.

Checkpoint-recovery based solutions such as Remus [5]

and Paratus [6] can overcome the problem of multi-core

execution by capturing the entire executions state of the

VM and transferring it to the backup machine. Although

most of the data transfer can be overlapped with speculative

execution, transferring updates to the backup machine at very

high frequency still comes with great performance overhead.

Kemari [27] follows a similar approach to Remus, but instead

of buffering output during speculative execution, it updates the

backup machine each time before the VM omits an outside

visible event.

Improving the performance of checkpoint-recovery based

VM replication has become an active research area recently.

Lu et al. [7] proposed fine-grained dirty region identification to

reduce the amount of data transferred during each replication

epoch, while Zhu et al. [8] improved the performance of log-

dirty execution mode by reducing read- and predicting write-

page faults. All the above mentioned studies in the domain of

checkpoint-recovery based VM replication, however, deal only

with uni-processor environments. To the contrary, we focus

on multi-core virtual machines in conjunction with workload

adaptive scheduling of checkpoints.

VIII. CONCLUSIONS AND FUTURE WORK

Checkpoint-recovery based virtual machine replication is

attractive, it provides high availability for the entire software

stack executed in the VM, and it is inherently capable of

dealing with SMP configurations. However, it comes with

great overhead due to the large amount of state that needs

to be synchronized frequently between the primary and the

backup hosts.

In this paper we have analyzed various workloads from their

memory usage and I/O patterns, focusing particularly on their

behavior as the function of the increasing number of CPUs in

SMP virtual machines.

212

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

We have proposed several heuristics for scheduling check-

points during VM replication in a workload adaption fashion.

Our algorithm dynamically adjusts the checkpoint frequency

based on the properties of the given workload, such as the

number of dirtied memory pages, the number of disk I/O

operations and the number of transferred network packets.

Moreover, it also takes the network bandwidth available for

replication into account. It attempts to minimize the overhead

of replication by delaying checkpoints and it trades throughput

for latency if there are pending network packets. In order

to eliminate VM downtime during the replication we have

proposed fine-grained copy-on-write, that retains the original

values only for pages that belong to the given update, allowing

the VM to proceed with its execution simultaneously with the

replication mechanism.

We have evaluated our checkpoint scheduling algorithm

over two different network architectures and showed that the

price of replicated virtual machines with up to 16 vCPUs

can be modest even over commercial Gigabit Ethernet, in

case checkpoints are carefully scheduled. For instance, the

kernel compile workload suffers only 32% slowdown when

run over a 16 vCPUs replicated VM, while the price of a

replicated Hadoop master node is approximately a 10% slow-

down compared to the native execution. SPECweb Banking,

in turn, attains 80% of the native score with workload adaptive

scheduling of replication over Gigabit Ethernet.

Reduction of replication data is an orthogonal approach

to scheduling, and therefore it may provide further improve-

ments. In the future we intend to investigate how a lightweight

compression method could be integrated into our scheduling

algorithm, and to what extent it could yield further perfor-

mance improvements.

ACKNOWLEDGMENT

This work has been supported by the CREST project of the

Japan Science and Technology Agency (JST).

REFERENCES

[1] R. McDougall and J. Anderson, “Virtualization performance: perspec-
tives and challenges ahead,” SIGOPS Oper. Syst. Rev., vol. 44, pp. 40–56,
December 2010.

[2] T. Bressoud and F. B. Schneider, “Hypervisor-based fault tolerance,”
in Proceedings of the fifteenth ACM symposium on Operating systems
principles, ser. SOSP ’95. New York, NY, USA: ACM, 1995, pp. 1–11.

[3] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a
practical system for fault-tolerant virtual machines,” SIGOPS Oper. Syst.
Rev., vol. 44, pp. 30–39, December 2010.

[4] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in Proceedings of
the fourth ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, ser. VEE ’08, 2008, pp. 121–130.

[5] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: high availability via asynchronous virtual ma-
chine replication,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, ser. NSDI’08, 2008,
pp. 161–174.

[6] Y. Du and H. Yu, “Paratus: Instantaneous Failover via Virtual Machine
Replication,” in Proceedings of the 2009 Eighth International Con-
ference on Grid and Cooperative Computing, ser. GCC ’09. IEEE
Computer Society, 2009, pp. 307–312.

[7] M. Lu and T. cker Chiueh, “Fast memory state synchronization for
virtualization-based fault tolerance,” in Dependable Systems Networks,
2009. DSN ’09. IEEE/IFIP International Conference on, 2009, pp. 534
–543.

[8] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and X. Li, “Improving
the Performance of Hypervisor-based Fault Tolerance,” in Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, 2010, pp. 1 –10.

[9] Strom, R.E. and Bacon, D.F. and Yemini, S.A., “Volatile logging
in n-fault-tolerant distributed systems,” in Fault-Tolerant Computing,
Eighteenth International Symposium on, Jun 1988, pp. 44 –49.

[10] “NASA. NAS Parallel Benchmarks.” http://www.nas.nasa.gov/Software/
NPB.

[11] R. Hariharan and N. Sun, “Workload Characterization of
SPECweb2005,” http://www.spec.org/workshops/2006/papers/02
Workload char SPECweb2005 Final.pdf, 2006.

[12] “Hadoop.” http://hadoop.apache.org.
[13] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” Commun. ACM, vol. 51, pp. 107–113, January 2008.
[14] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,

A. Pavlo, and A. Rasin, “MapReduce and parallel DBMSs: friends or
foes?” Commun. ACM, vol. 53, pp. 64–71, January 2010.

[15] K. Li, J. F. Naughton, and J. S. Plank, “Low-Latency, Concurrent
Checkpointing for Parallel Programs,” IEEE Trans. Parallel Distrib.
Syst., vol. 5, pp. 874–879, August 1994.

[16] “InfiniBand Trade Association. InfiniBand Architecture Specification,
Release 1.2.”

[17] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the Linux virtual machine monitor,” in Ottawa Linux Symposium, July
2007, pp. 225–230. [Online]. Available: http://www.kernel.org/doc/ols/
2007/ols2007v1-pages-225-230.pdf

[18] “OpenFabrics Alliance.” http://www.openfabrics.org.
[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield, “Live Migration of Virtual Machines,” in NSDI’05:
Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation. Berkeley, CA, USA: USENIX Association,
2005, pp. 273–286.

[20] M. Nelson, B. H. Lim, and G. Hutchins, “Fast transparent
migration for virtual machines,” in ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical Conference. Berkeley,
CA, USA: USENIX Association, 2005, p. 25. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1247360.1247385

[21] X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting Data Deduplication
to Accelerate Live Virtual Machine Migration,” in Cluster Computing
(CLUSTER), 2010 IEEE International Conference on, 2010, pp. 88 –96.

[22] Y. Du, H. Yu, G. Shi, J. Chen, and W. Zheng, “Microwiper:
Efficient Memory Propagation in Live Migration of Virtual Machines,”
in Proceedings of the 2010 39th International Conference on Parallel
Processing, ser. ICPP ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 141–149. [Online]. Available: http://dx.doi.org/10.
1109/ICPP.2010.23

[23] W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High performance
virtual machine migration with RDMA over modern interconnects,”
in Proceedings of the 2007 IEEE International Conference on Cluster
Computing, ser. CLUSTER ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 11–20. [Online]. Available: http:
//dx.doi.org/10.1109/CLUSTR.2007.4629212

[24] M. Xu, R. Bodik, and M. D. Hill, “A ”flight data recorder” for enabling
full-system multiprocessor deterministic replay,” in Proceedings of the
30th annual international symposium on Computer architecture, ser.
ISCA ’03. ACM, 2003, pp. 122–135.

[25] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and
J. Flinn, “Respec: efficient online multiprocessor replayvia speculation
and external determinism,” ser. ASPLOS ’10. ACM, 2010, pp. 77–90.

[26] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman, “Core-
Det: a compiler and runtime system for deterministic multithreaded
execution,” in Proceedings of the fifteenth edition of ASPLOS on Ar-
chitectural support for programming languages and operating systems,
ser. ASPLOS ’10. ACM, 2010, pp. 53–64.

[27] Y. Tamura, “Kemari: Virtual Machine Synchronization for Fault Toler-
ance using DomT,” NTT Cyber Space Labs, Technical Report, 2008.

213

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:28:09 UTC from IEEE Xplore. Restrictions apply.

