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Abstract—With the advent of multi- and many-core architec-
tures, new opportunities in fault-tolerant computing have become
available. In this paper we propose a novel process replication
method that provides transparent failover of non-deterministic
TCP services by utilizing spare CPU cores. Our method does not
require any changes to the TCP protocol, does not require any
changes to the client software, and unlike existing solutions, it
does not require any changes to the server applications either. We
measure performance overhead on two real-world applications,
a multimedia streaming service and an Internet Relay Chat
daemon and show that the imposed overhead is minimal as the
price of seamless failover. Our prototype implementation consists
of a kernel module for Linux 2.6 without any changes to the
existing kernel code.

I. INTRODUCTION

TCP is currently the most prevalent transport-layer com-

munication protocol over the Internet, with several high-level

protocols and a diverse set of distributed applications built on

top of it. However, when a server machine fails, all TCP con-

nections break and the clients get disconnected. Unfortunately,

with the increasing number of components in recent computing

systems, hardware faults have become common place rather

than exceptional [1]. Such outages may cause large impact

on an Internet based service, moreover, they force clients that

had state associated to the connection to loose their state and

redo possibly significant amount of work. Thus, transparent

masking of server failures is a major concern.

Replication can be used to increase the availability of

network services in the presence of hardware failures. There

are two main approaches for software replicating network

services. In the primary-backup [2] approach, every replica

performs the processing of client requests, but only one of

them, the primary replies. If the primary machine fails the

connection is taken over by one of the replicas. In case

of message logging [3], only one replica, the primary is

processing the client requests and all messages are saved to a

stable storage, which is guaranteed to survive server crashes.

Should the primary machine fail, one of the replicas replays

the log and takes over the connection. Message logging can

be combined with checkpointing in order to reduce the size

of the log and hence, the time necessary to replay it [3].

What is common in both scenarios is that before sending a

reply to the client, the system ensures that the state from which

the message is sent will be recovered despite any future failure.

This is commonly referred to as the output commit problem [4]

and the introduced latency in transmitting the reply is called

the output commit stall [5].

Moreover, in both cases, the execution path of the primary

and the backup processes must match, otherwise the backup

machine may never reach the state of the primary and will

not be able to take over the connection. This implies that

the server process is either entirely deterministic on a per

connection basis or that all non-deterministic events that a

process executes can be identified and the information neces-

sary to replay each event during recovery can be logged. This

is called the piecewise deterministic assumption (PWD)[6].

Leader-follower models, which are often referred to as a

solution for overcoming non-determinism in case of primary-

backup replication [7], are also built on top of PWD, because

the leader process needs to inform its followers regarding the

result of each non-deterministic step during its execution [8].

Various sources of non-determinism may be return values

of system calls, such as select and poll, thread scheduling and

signal delivery, order of acquisition and release operations on

locks in multithreaded environments, random values that are

used in the communication, etc [3].

Previous research has shown several approaches for building

fault-tolerant TCP architectures based on replication [7], [9],

[10], [11], [12]. Nevertheless, these solutions all rely on the

assumption that the server process is entirely deterministic or

that the PWD assumption can be easily fulfilled. Despite the

availability of solutions for overcoming certain types of non-

determinism, such as random numbers [13], a recent paper

[5] showed that identifying most sources can be cumbersome.

Furthermore, synchronizing such events between the primary

and the backup machines often requires modifications to the

source code of the server application, which may not be always

available [5].

The main motivation behind message logging and primary-

backup, even with their difficulties of tackling with non-

deterministic execution, is the fact that the output commit stall
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is short enough to impose neglectable performance overhead

to the application.

However, with the current hardware trend toward multi-

and many-core architectures, availability of spare CPU cores

is becoming widespread. This opens opportunity to utilize a

spare CPU core for tracking changes of the server application

(including all non-determinism), in a way that overlaps the

application’s execution and therefore it introduces modest

performance degradation to the server process itself.

In this paper we revisit the idea of checkpointing the

application before each externally visible event [14], and

propose a mechanism, that:

• utilizes a spare CPU core for continuously tracking and

synchronizing changes of the server process (between the

primary and the backup nodes) in order to minimize the

duration of the output commit stall;

• takes a snapshot of the execution context before each ex-

ternally visible event (ensuring that all non-deterministic

steps are reflected at the backup machine);

• and introduces an interposition layer between the appli-

cation and the operating system that aggregates the appli-

cation’s output when possible to decrease the frequency

of the externally visible events.

We make the following contribution: a novel replication

method is proposed that is capable of overcoming all sources

of non-determinism, while providing transparent failover of

arbitrary network services. Our method does not require any

changes to the TCP protocol, does not require any changes

to the client software, and contrary to existing solutions,

it does not require any changes to the server applications

either. We measure the overhead on network throughput and

provide evaluation on two real-world services: a multimedia

streaming server, and an Internet Relay Chat (IRC) daemon.

Our experiments suggest that the proposed method imposes

acceptable overhead compared to the regular execution.

II. ARCHITECTURE AND ASSUMPTIONS

In our single IP address cluster each server node is equipped

with a public and a local network interface. The same IP

address is assigned to the public interfaces and the local

ones are used for in-cluster communication. The router simply

broadcasts each incoming packet to all server nodes [15].

Contrary to network address translation (NAT) based single

IP address clusters [16], there are two important benefits of this

configuration. First, the backup machine can capture the same

incoming packets that are received by the primary machine.

Second, should the failover happen, since both machines have

the same public IP address, the backup machine can simply

take over the connection without any extra effort on the router.

In this paper we assume that the router does not fail

delivering incoming packets to both nodes, although software

solutions for ensuring this property have been proposed in

the literature [7], [12]. We also assume that the application

only reads from files and those files are available on both

nodes. Nevertheless, writing files could be handled similarly

with network transmissions and it is left for future work.

III. FAILURE-FREE OPERATION OF THE PRIMARY

MACHINE

A. Initialization

As discussed earlier, there is no need for any modifications

to the server application in order to ensure fault tolerant

operation. The only requirement is to start it via a special tool

that enforces a dynamically loadable library to be attached

during execution. The library installs a special signal handler

and initializes the write aggregation layer. For more details of

the write aggregation layer refer to Section III-B2.

Once the application is running, the replication can be

triggered by another tool that establishes a connection to the

backup machine and signals the threads of the application.

In the signal handler one of the application threads clones

a new thread that we call the tracker thread. The tracker

thread’s main responsibility, which will be described in detail

in Section III-B1, is to track and transfer state changes of

the server application to the backup node asynchronously. In

order to ensure that the tracker thread and the application will

not compete for the same CPU cores, their CPU affinities are

set up to be different. The tracker thread initially transfers

the memory mapping descriptors and non-zero pages of the

address space.

B. Normal Execution

1) Tracker Thread: The tracker thread remains in kernel

space during its whole life cycle and executes a loop in which

it incrementally dumps memory changes (i.e. tracks memory

geometry changes and dirty pages), and tracks socket data

structures that represent the application’s network connections.

At present, TCP and UDP sockets are supported, where TCP

sockets may be in established or listening states.

In between each subsequent loop the tracker thread is

suspended for a user defined interval (in our current configu-

ration this interval is 20 milliseconds). Figure 1 demonstrates

the activity of primary machine’s components including the

tracker thread.

2) Write Buffering Layer: The output commit problem

postulates that a fault tolerant system must ensure that any

state from which a message is sent will be recovered despite

a future failure [4]. Since the operating system’s TCP stack is

deterministic by means of producing the same TCP payload

for the same input byte stream submitted to the same TCP

state, from the application’s point of view, a state from which

a message is sent is where a write, a send or a sendto system

call is invoked. This implies that a checkpoint of the execution

context would have to be taken before any of these calls.

In order to prevent taking context checkpoints before each

write call, the write aggregation layer buffers frequent writes

and submits them together to the operating system. Write

buffering is implemented by hijacking system calls in the

dynamically loaded library. Note that the write aggregation

layer resides in the application’s address space (since it is part

of the library), which ensures that all buffered writes will be

also reflected at the backup machine.
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Fig. 1: Failure-free operation of the primary machine (Dashed

frames denote kernel space).

The write aggregation layer is implemented with the help of

a thread (not to be confused with the tracker thread) that peri-

odically checks if there were any writes buffered, signals the

application threads for checkpointing their execution context

and submits the write calls to the operating system. The period

is a user supplied parameter of the system. We use two values,

50 and 100 milliseconds, depending on the interactivity of the

application.

3) Output commit stall: Preceding the invocation of the

actual write system calls, the application’s execution context

has to be synchronized with the backup machine in order

to ensure that the state will be recovered despite any future

failure.

Taking a snapshot of the execution context is initiated by

the write aggregation layer’s thread. First it sends a special

checkpoint signal to all application threads, including itself.

As the result of signaling, they all enter kernel space from

the signal handler and a leader thread is chosen, based on

setting an atomic variable. The leader thread synchronizes

with the tracker thread and dumps any remaining dirty pages.

It checkpoints (incrementally) network sockets, dumps thread

relations, and finally it saves its registers and signal handlers.

The rest of the threads dump only their registers and signal

handlers. These steps are necessary in order to ensure consis-

tency at the backup machine.

We anticipate that due to the tracker thread’s activity, i.e.

keeping the backup machine almost up-to-date with the pri-

mary, the output commit stall will take reasonably short time.

In Section V we measure the output commit stall latency for

real-world applications and show that the introduced overhead

is acceptable.

IV. BACKUP MACHINE

A. Initialization

Initially, the backup machine creates a new process and

clones one more thread than the number of threads the server

application contains. Note that the write aggregator thread

also counts as part of the application. Once the threads are

spawned, they all enter kernel space and a leader thread is

chosen, we call this thread the updater. All threads, besides

the updater, will wait for the failover notification. The updater

first re-creates the server application’s memory mappings and

applies the initial non-zero pages sent by the primary machine.

B. Failure-free Operation

During failure-free operation, the backup machine receives

and manages updates from the primary server. It is always pre-

pared to perform an immediate failover. Incremental changes

in the address space and the network socket representation

are simply stored first. Only when the primary machine

dumps execution context (during output commit stall) are the

changes applied in order to ensure that the backup machine

always maintains the last consistent state of the application’s

execution.

1) Capturing incoming packets: Besides ensuring that the

execution context is carefully synchronized with the backup

machine before each output event, another important task is

to log incoming traffic between two context snapshots.

Exploiting the router’s broadcast configuration, the logging

mechanism captures network packets, which match any of the

connections that the application maintains. Matching is based

on remote IP address, remote port and local port numbers.

When the backup machine receives an execution context

dump, packets that were already acknowledged by the primary

machine are dropped. Note that acknowledged packets can be

easily identified based on the sequence numbers of the TCP

state machine.

C. Failover

The backup machine periodically exchanges heartbeat mes-

sages with the primary in order to monitor its health. Should

the primary machine go down, the backup recognizes the

failure. At this point the application threads, which have been

suspended since the initialization of the backup process, get

notified and restore the latest execution snapshot received from

the primary machine.

Before resuming the application’s execution however, pack-

ets that were captured after the last context update are injected

into the network stack. Once all sockets are ready for commu-

nication, each thread restores its registers, signal handlers and

resume their execution. Note that along with the application’s

original threads the write aggregation thread is also resumed.

It flushes any pending writes from the aggregation buffer and

finally, it disables checkpointing.

It is also worth noting that the recovered process might

retransmit several packets that were already transmitted by

the primary machine before it failed. The backup machine has

no knowledge on when exactly the failure occurred (before or
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Fig. 2: Evaluation on network throughput and the Live555 streaming server.

after replying the client), which is a fundamental limitation

of any fault-tolerant system [5]. However, this is not a prob-

lem in the case of TCP, because the protocol itself handles

retransmissions naturally.

V. EXPERIMENTAL EVALUATION

We evaluate our system’s performance on a broadcast based

Single IP Address cluster. Both the primary and the backup

machines are equipped with a 2.4GHz Dual-Core AMD

Opteron processor and two gigabytes of RAM. The nodes are

interconnected with Gigabit Ethernet network for in-cluster

communication and each machine has a 100Mbps Ethernet

public interface to which the router broadcasts incoming

packets.

A. Network Throughput

For studying the effect of our replication mechanism on

network throughput we used the ttcp utility [17], a simple

bandwidth testing tool available online. All data in ttcp are

generated by the sender and discarded by the receiver.

Figure 2a shows the results we obtained from running ttcp

under regular and fault tolerant operation. Besides showing

the obtained transmission rates, we grouped the measurements

for in and out traffic, where the direction is meant from the

server’s point of view.

Compared to its clean operation ttcp achieves 99% of the

incoming and 97% of the outgoing network throughput in

the case when replication is enabled. We explain the higher

overhead for outgoing traffic with the buffering behavior of the

write aggregation layer, which dirties extra pages that need to

be reflected at the backup machine. However in both cases,

ttcp spends most of its execution time on waiting for results

of the actual write and read calls, leaving enough space for

occasional context checkpoints.

B. Live555 Media Server

The Live555 Media Server [18] is an open-source me-

dia server application that supports on-demand streaming of

various file formats over the Real-Time Streaming Protocol

(RTSP). The default setup for streaming a video file utilizes

a TCP connection for obtaining the media’s meta-file and for

exchanging streaming commands, while the actual content is

transmitted over UDP.

We apply our fault tolerant mechanism to the Live555

streaming server without any modifications to its source code

and measure several aspects of the execution. In each experi-

ment we use a 352x240 MPEG4 video file for streaming.

The tcpdump tool has been used for logging packets trans-

mitted by the server in order to assess the effect of the write

aggregation. We use 50 milliseconds as the output commit

period and 25 clients are involved in the experiment. Figure

2b shows the distribution of packets for a half second time

interval with and without fault tolerance enabled. Note that

by looking at the video, the fault tolerant execution has no

distinguishable effect compared to regular execution. The key

observation in Figure 2b is the 50 milliseconds grouping of

outgoing packets, which is the result of the write aggregation

layer forcing one output commit stall in every 50 ms. Figure 2c

depicts the length of the output commit stall periods. Samples

from a 10 minutes long time interval are provided, 10 values

for each minute. A single column details the distribution of

the major activities during context checkpoint, which are:

synchronization with the tracker thread, dirty page tracking,

incrementally dumping network sockets and saving registers

and signal handlers.

TABLE I: Worst case (longest) output commit stall, Live555.
Action Proportion Length

Synchronizing with tracker thread 1.2% 0.08 ms
Dumping dirty pages 46.2% 3.14 ms
Dumping socket changes 48.3% 3.28 ms
Dumping execution context 4.2% 0.28 ms

Total 6.8 ms

The worst case (longest) output commit stall is given in

Table I. Although the output commit stall lasts for almost 7
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Fig. 3: Failover time of Live555, output commit stall and failover time of ircd.

milliseconds in the worst case, the average length remains less

than 5 milliseconds. Since it is executed once approximately in

every 50 milliseconds, effectively the application spends less

than 10% of its execution time on context checkpointing.

As for the duration of the actual failover Figure 3a depicts

the time interval elapsed between the last packet of the primary

and the first packet of the backup machine. As it demonstrates

the backup recovers in less than 100 milliseconds, rendering

the fault completely transparent for the clients.

C. Internet Relay Chat daemon

Our second application is the de-facto Internet Relay Chat

(IRC) daemon, ircd [19]. IRC is a real-time Internet text

messaging protocol which is mainly used for group commu-

nication and is the basis of several other protocols, including

Microsoft’s popular MSN Messenger network. Clients of the

IRC network associate state to their connection, such as

privileges on channels. When the server machine fails, clients

are disconnected and their state is lost.

TABLE II: Worst case (longest) output commit stall, ircd.
Action Proportion Length

Synchronizing with tracker thread 1.2% 0.11 ms
Dumping dirty pages 27.3% 2.64 ms
Dumping socket changes 62.3% 6.04 ms
Dumping execution context 9% 0.87 ms

Total 9.7 ms

We evaluate our replication mechanism on ircd without

changing its source code. The output commit period is set to

100 milliseconds and there are 1024 clients involved. Most of

the clients are IRC robots that resemble human communication

on multiple channels, which in turn we observe with a regular

IRC client. We run the same set of experiments in order

to assess the length of the output commit stall, the number

of dirty pages transferred by the tracker thread as well as

during the output commit and the failover time based on logs

collected by tcpdump.

The duration of output commit stalls is depicted in Figure

3b, sampled the same way it was for Live555. Table II reveals

the worst case scenario, in which the output commit stall takes

9.7 milliseconds. However, in average it lasts for less than 8

milliseconds, which means that the application spends around

8% of its execution time on context checkpointing, because

there is one output commit scheduled approximately in every

100 milliseconds.

The failover time is shown in Figure 3c. The time difference

between the last packet from the primary machine and the first

from the backup is approximately 100 milliseconds, which

renders the recovery fully transparent for the clients.

VI. RELATED WORK

Several projects have explored the idea of TCP level re-

covery, where the failure remains hidden from the clients.

They can be categorized into two main groups, assuming

completely deterministic applications or building upon the

piecewise deterministic assumption.

Fetzer et al. proposed a library extension that replicates

a server application in a semi-active manner [9]. When the

primary server fails the client opens a new connection to

the backup server and continues communication. Besides

that the solution needs client side library modification, non-

determinism is simply assumed to be solved by a leader-

follower protocol, which in turn requires the PWD assumption

to be satisfied.

Zagorodnov et al. describes a system, FT-TCP, in which

all client-server TCP communication as well as socket read

calls are logged and transferred to a backup machine [10].

In case of a failure the backup machine replays all network

activity and it takes over the role of the server. Extensions

of this work [11], [5] investigate exploiting PWD by means

of wrapping the TCP stack and logging not only packets and

socket read calls, but also other system calls that may form

sources of non-determinism. The improved FT-TCP comes in

two flavors, hot and cold backups. In case of cold backup when

a failure occurs the backup machine first replays the steps and
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than takes over the communication. Hot backup performs the

same steps on both machines. It is reportedly necessary to

modify most applications in order to identify and synchronize

all non-determinism [5].

Systems, where the TCP communication at the network

layer is replicated to a secondary server have been also

proposed. ST-TCP [7] provides a backup server which taps

the TCP traffic at the Ethernet level and executes the exact

same steps on the backup machine with the ones on the

primary. Replies from the backup server are simply dropped

during failure-free execution. Reception of the same data is

synchronized through an additional communication channel

between the primary and backup machines. Melliar-Smith

et al. proposes a similar approach with having the backup

machine’s network interface in promiscuous mode [12]. Data

reception is synchronized between the machines and replies

are compared. In both cases mentioned above, the server

processes are assumed to be completely deterministic.

The idea of checkpointing each externally visible event

has been explored for recovering general-purpose applications,

built on reliable main memory and high-speed transactions

[14]. This work however cannot be applied directly for hard-

ware failures.

With recent advances in virtualization technologies, trans-

parent failover at the VM level has been also proposed [20].

While it succeeds in dealing with non-determinism entirely,

the imposed overhead is much bigger than at the process level,

due to the large amount of state that needs to be synchronized

between the primary and the backup machines.

VII. CONCLUSION AND FUTURE WORK

We proposed and evaluated a novel replication method

that provides fault-tolerant execution for non-deterministic

Internet services without any modifications to their source

code. Our solution exploits the availability of spare CPU cores,

an expected benefit of the upcoming multi- and many-core

hardware environments.

The proposed mechanism utilizes a separate CPU core for

transferring changes of the application asynchronously to a

backup node without affecting the performance of the server

process itself. It ensures that before generating any outside

visible event the execution context is carefully checkpointed

so that recovery is always possible when a hardware failure

occurs on the primary machine.

Evaluated on two real-world applications, we showed that

the output commit stall can be reduced as far as 8% of

the overall execution, rendering the failure-free operation

statistically indistinguishable from the the applications’ orig-

inal execution. Furthermore, we presented measurements to

demonstrate that recovery is on the 100 milliseconds scale.

In the future we intend to investigate replicating process

groups, such as a web-server and its CGI scripts. We also

intend to evaluate our mechanism on applications which

exhibit higher interactivity, such as multiplayer online games.
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