
Exploiting Hidden Non-uniformity of Uniform

Memory Access on Manycore CPUs

Balazs Gerofi1, Masamichi Takagi2, and Yutaka Ishikawa1

1 Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan

bgerofi@il.is.s.u-tokyo.ac.jp, ishikawa@is.s.u-tokyo.ac.jp
2 RIKEN Advanced Institute for Computational Science, Kobe, Japan

masamichi.takagi@riken.jp

Abstract. As the rate of CPU clock improvement has stalled for the last
decade, increased use of parallelism in the form of multi- and many-core
processors has been chased to improve overall performance. Current high-
end manycore CPUs already accommodate up to hundreds of processing
cores. At the same time, these architectures come with complex on-chip
networks for inter-core communication and multiple memory controllers
for accessing off-chip RAM modules. Intel’s latest Many Integrated Cores
(MIC) chip, also called the Xeon Phi, boasts up to 60 CPU cores (each
with 4-ways SMT) combined with eight memory controllers. Although
the chip provides Uniform Memory Access (UMA), we find that there
are substantial (as high as 60%) differences in access latencies for dif-
ferent memory blocks depending on which CPU core issues the request,
resembling Non-Uniform Memory Access (NUMA) architectures.

Exploiting the aforementioned differences, in this paper, we propose
a memory block latency-aware memory allocator, which assigns memory
addresses to the requesting CPU cores in a fashion that it minimizes
access latencies. We then show that applying our mechanism to the A-
star graph search algorithm can yield performance improvements up to
28%, without any need for modifications to the algorithm itself.

1 Introduction

Although Moore’s Law continues to drive the number of transistors per square
mm, the recent stop of frequency and Dennard scaling caused an architectural
shift in processor design towards multi- and many-core CPUs. Multicore proces-
sors usually implement a handful of complex cores that are optimized for fast
single-thread performance, while manycore units come with a large number of
simpler and slower but much more power-efficient cores that are optimized for
throughput-oriented parallel workloads [1].

There have been manycore chips already built with 48 [2], 64 [3], 72 [4] cores
and even an experimental processor with 1000 cores [5] has been announced. The
Intel R© Xeon PhiTM product family, also referred to as Many Integrated Cores
(MIC), is Intel’s latest manycore CPU providing sixty x86 cores [6].

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 242–253, 2014.
c© Springer International Publishing Switzerland 2014

Exploiting Hidden Non-uniformity of Uniform Memory Access 243

Although manycore CPUs tend to come with complex networks-on-chip (NOC)
and with multiple memory controllers [7], with respect to memory access there
are mainly two approaches. Uniform memory access (UMA) architectures pro-
vide uniform access latencies for the entire physical memory regardless which
CPU core is generating the request, while on the other hand, non-uniform mem-
ory access (NUMA) architectures allow explicit differences in terms of memory
access latencies depending on the physical address and the CPU core that is ac-
cessing it [8]. Despite the fact that the large number of CPU cores and complex
on-chip networks make it increasingly difficult to keep access latencies uniform,
most of the existing manycore processor do follow the UMA approach for the
sake of easy programmability.

The Xeon Phi also provides uniform memory access officially. However, we find
that memory access latencies differ significantly depending on which CPU core
accesses a given physical address. Access latencies to the same memory block can
vary by up to 60% when issuing requests from different CPU cores, resembling
NUMA architectures. Notice, that the above mentioned latency differences are
at the memory level, unlike for caches in NUCA architectures [9].

Applications which access small data structures in a relatively random fashion,
such as those operating on Recursive Data Structures (RDS) may experience
significant performance degradation simply by accessing memory blocks that
are located far from the CPU core that generates the request. RDSs include
linked lists, trees, graphs, etc., where individual nodes are dynamically allocated
from the heap, and nodes are linked together through pointers to form the overall
structure [10]. For example, the A* (A-star) algorithm [11], a widely used graph
search heuristic in artificial intelligence, exhibits exactly such characteristics.

Inspired by the above described observation, in this paper, we propose a mem-
ory allocator that is memory block latency-aware, i.e., it allocates memory to
particular CPU cores in a fashion that it minimizes access latencies. In summary,
we make the following contributions:

- We point out that hidden non-uniformity in otherwise uniform memory ac-
cess architectures can be significant on manycore CPUs.

- We propose a memory allocator, which is optimized for allocating small data
structures in a memory block latency-aware fashion and it lays out memory
in a way that access latencies for the requesting CPU cores are minimized.

- We show that applying our allocator can yield up to 28% performance im-
provements for the A-star graph search algorithm solving a 16-tile puzzle,
without any need for modifications to the application itself.

The rest of this paper is organized as follows. We begin with providing a
detailed overview of the Xeon Phi along with measurements on memory block
latencies as seen from different CPU cores in Section 2. Section 3 discusses our
target application, the A-star algorithm and Section 4 describes the proposed
memory allocator. Experimental evaluation is given in Section 5. Section 6 pro-
vides further discussion, Section 7 surveys related work, and finally, Section 8
presents future plans and concludes the paper.

244 B. Gerofi, M. Takagi, and Y. Ishikawa

2 Background and Motivation

In this Section we provide an overview of the Xeon Phi processor focusing in
particular on components that contribute to memory access latency. The archi-
tectural overview of the Intel Xeon Phi processor is shown in Figure 1. The chip
we used in this paper comes on a PCI Express card, with 60 CPU cores, where
each core supports four hyperthreads (i.e., 4-way symmetric multithreading).

Fig. 1. Architectural overview of the Intel Xeon Phi manycore CPU. The
chip consists of 60 CPU cores, each core with 4-way symmetric multithreading and a
512kB private slice of the unified L2 cache. There are 8 GDDR memory controllers and
64 cache tag directories, which are all connected with a bidirectional ring.

Each processor core runs on up to 1.2GHz and besides the relatively low
clock frequency (compared to standard multi-core Xeon chips), cores on the
Xeon Phi have no support for out-of-order execution [6]. All CPU cores have
their own 32kB L1 caches (both data and instruction) and a 512kB private slice
of the unified L2 cache. Both the L1 and L2 caches use the standard MESI
protocol [12] for maintaining the shared state among cores. To address potential
performance limitations resulting from the lack of an O (Owner) state found in
the MOESI protocol [13], the Intel Xeon Phi processor coherence system uses
a distributed tag directory (DTD) of ownership similar to that implemented in
many multiprocessor systems [14].

Exploiting Hidden Non-uniformity of Uniform Memory Access 245

The card is equipped with 8 Gigabytes of GDDR5 memory for which there are
eight GDDR5 memory controllers encompassed in the chip and all components
are connected via a bi-directional ring. Intel does not provide detailed informa-
tion on how memory blocks are assigned to DTDs and memory controllers, but
assumably a hash function based on the address of the line is used [15]. There
is also no support for modifying the mapping.

Fig. 2. Differences in memory access latency on subsequent memory blocks

seen from four CPU cores. Data is ensured to be in RAM by invalidating both L1
and L2 caches before each access and prefetching is disabled.

When a core encounters a cache miss, it requests the line from the correspond-
ing DTD and eventually, from the corresponding memory controller. Considering
the distances between CPU cores, DTDs, and memory controllers, one can ex-
pect that access latencies to the same memory block likely vary across different
CPU cores.

We have developed a simple benchmark tool that measures differences in
memory latencies depending on which CPU core accesses a particular memory
block. Note that data is always ensured to be in RAM by invalidating both L1
and L2 caches before each access as well as disabling the compiler generated
prefetch instructions. Figure 2 reveals our findings for a couple of subsequent
memory blocks as seen from four different CPU cores. The X axis shows the
physical address of the given memory block, while Y axis represents the relative
access latency compared to the fastest access (lower is better). As shown, there
are significant differences among the values. For example, accessing the physical
address 0x125080 from CPU core 45 is approximately 60% slower than from
core 0. Such differences can easily show up in application performance, especially
when taking into account that the Xeon Phi cores can do only in-order execution.

246 B. Gerofi, M. Takagi, and Y. Ishikawa

3 The A* Algorithm

This Section gives an overview of the A* (A-star) algorithm [11] emphasizing
attributes that can be exploited by a memory block latency-aware memory al-
locator for improving overall performance.

Listing 1.1. Pseudo code of the A* algorithm

1 function A∗(s ta rt , goa l)
2 c l o s e d s e t := the empty set // The set of nodes a l ready eva luated .
3 openset := { s t a r t } // The set of t en ta t i v e nodes to be eva luated .
4 s t a r t . came from := NULL
5
6 s t a r t . g s co r e := 0 // Cost from s t a r t along bes t known path .
7
8 // Estimated t o t a l co s t from s t a r t to goa l .
9 s t a r t . f s c o r e := s t a r t . g s c o r e + h eu r i s t i c c o s t e s t im a t e (s ta r t , goa l)

10
11 while openset i s not empty
12 cur rent := the node in openset having the lowes t f s c o r e value
13 i f cur rent = goal
14 return re con s t ruc t pa th (goa l)
15
16 remove cu rr ent from openset
17 add curr ent to c l o s e d s e t
18 for each neighbor in neighbor nodes (cu rr en t)
19 // Find neighbor in c l o s ed s e t
20 i f neighbor in c l o s e d s e t
21 cont inue
22
23 t e n t a t i v e g s c o r e := curr en t . g s co r e +
24 di s t be tween (current , neighbor)
25
26 i f neighbor not in openset or

27 t e n t a t i v e g s c o r e < neighbor . g sc o r e
28 neighbor . came from := cur rent
29 neighbor . g sc o r e := t e n t a t i v e g s c o r e
30
31 neighbor . f s c o r e := neighbor . g sc o r e +
32 h e u r i s t i c c o s t e s t im a t e (neighbor , goa l)
33
34 i f neighbor not in openset
35 add neighbor to openset
36
37 return f a i l u r e
38
39 function r e con s t ruc t pa th (curr ent node)
40 i f curr ent node . came from
41 p := recons t ruc t pat h (cu rrent node . came from)
42 return (p + current node)
43 e lse

44 return curr ent node

A* is an informed best-first graph search algorithm which aims at finding the
lowest cost path from a given start to a goal node. During the search, both the
cost from the start node to current node and the estimated cost from the current
node to a goal state are minimized [16]. The pseudo code of the A* algorithm is
shown in Listing 1.1. The A* algorithm uses two sets of nodes for housekeeping,
the so-called open-set holds nodes to which the search can continue in subsequent
steps, while the closed-set stores nodes that have been already evaluated.

Depending on the problem being solved, these sets can grow considerably large
while at the same time lookup operations from these sets are required in each
iteration of the algorithm (see line 20 and 26 of the pseudo code). In order to
attain good lookup performance hash tables are normally utilized, however, as a
result memory accesses come with very low data locality, i.e., following a nearly
random access pattern. Moreover, problem state (i.e., a node of the graph) can
be often represented with relatively small data structures, fitting easily into the

Exploiting Hidden Non-uniformity of Uniform Memory Access 247

size of one cache line. As we will show later through quantitative evaluation, the
above mentioned characteristics of the A* algorithm suit well the assumptions
we described earlier in Section 1.

With respect to utilizing multiple CPU cores, since we are focusing on the
effect of hidden non-uniformity of memory accesses, we simply use different goal
states on different CPU cores. This keeps the parallel code simple, because open
and closed sets are separated per core, and it also eliminates the possibility of
false sharing. Note that there are several studies on how to parallelize efficiently
the A* algorithm when searching a shared global state [17], [18], [19] and further
investigating this issue is outside the scope of this paper.

4 Memory Block Latency-Aware Memory Allocator

We now describe the design and implementation of the memory block latency-
aware memory allocator.

As mentioned earlier we developed a simple tool that measures access latencies
to a particular memory block from different CPU cores. We used this tool to build
a latency data base, in which for each memory block (i.e., the physical memory
address of the block) access latencies for all CPU cores are stored. The basic
idea is that when memory is requested by the application the runtime system
pre-allocates a large chunk of memory and queries the physical addresses of the
corresponding pages from the acquired mapping. For the purpose of obtaining
the physical translation of an arbitrary virtual address, we introduced a new
system call (see below for details on the kernel we used). Once the physical
addresses are known, the latency data base is consulted to determine which
memory blocks have low latency access from CPU cores used by the application
and the runtime places the addresses onto the corresponding per-core allocator
lists. Although we are explicitly targeting small memory requests in this paper, it
is worth mentioning that larger allocations can be still satisfied simply by falling
back to the regular glibc memory allocator. For further discussion on larger
allocation sizes as well as on the memory efficiency of the proposed system refer
to Section 6.

The architecture of the memory block latency-aware allocator is shown in
Figure 3. The colored addresses on the left of the Figure represent memory
blocks which can be accessed with low latency by the CPU core designated by
the same color. The per-core lists hold these addresses (denoted by the black
squares) for each application core and memory allocation requests are directly
satisfied from these lists.

With regards to implementation details, the RIKEN Advanced Institute of
Computational Science and the Information Technology Center at the Univer-
sity of Tokyo have been designing and developing a new scalable system software
stack for a new heterogeneous supercomputer. Part of this project is an operat-
ing system kernel targeting manycore processors [20]. Our OS kernel is binary
compatible with Linux and supports all system calls so that applications using
pthreads can be executed without modifications.

248 B. Gerofi, M. Takagi, and Y. Ishikawa

Fig. 3. Memory block latency-aware per-core allocator lists. The colored rect-
angles on the left indicate low latency memory blocks when accessed from a CPU core
denoted by the same color.

We have implemented the proposed allocator on top of our custom OS kernel
in the form of a library interposed between the application and glibc. We note
that as a proof of concept our prototype implementation distributes memory
blocks during initialization (i.e., memory pre-allocation) phase of the application,
but utilizing dedicated allocator threads the technique can be easily adapted to
an actual runtime solution. As for the memory block latency data base, it is
simply a collection of files which we store on local SSDs for fast access. It is also
worth mentioning that our custom kernel does not migrate application threads
among CPU cores, i.e., threads are pinned to the same core throughout the whole
execution of an application. This is with particular importance, since memory
addresses returned by the allocator yield low latency access only for the core
which performs the allocation and moving a thread to another core would defeat
the very purpose of the policy. Besides the custom system call for obtaining
physical address for a user mapping, we also provide a special call that returns
the APIC CPU core ID so that threads can easily determine where they execute.

5 Evaluation

5.1 Experimental Setup

Throughout our experiments the host machine was an Intel R© Xeon R© CPU E5-
2670. For the manycore processor we used the Knights Corner Xeon Phi 5110P
card, which is connected to the host machine via the PCI Express bus. As men-
tioned earlier, it provides 8GB of RAM and a single chip with 60 x86 cores run-
ning on up to 1.2GHz, each processor core supporting a multithreading depth
of four. The chip includes coherent L1 and L2 caches and the inter-processor
network is a bidirectional ring [6].

Exploiting Hidden Non-uniformity of Uniform Memory Access 249

5.2 Results

We used the A* algorithm solving the 16 tile puzzle problem to evaluate our
proposal, but it is worth noting that our approach could be generally applied to
a wide range of Recursive Data Structures (RDSs). RDS includes familiar objects
such as linked lists, trees, graphs, etc., where individual nodes are dynamically
allocated from the heap, and nodes are linked together through pointers to form
the overall structure [10].

(a) Relative performance to regular allo-
cator.

(b) Average number of memory read ac-
cesses that miss the internal cache per
A* iteration. (On CPU core 0.)

Fig. 4. Performance of memory block latency-aware allocator compared to

regular pre-allocation on the A* algorithm solving a 16 tile puzzle.

Specifically, we used a publicly available A* code [21] as reference implemen-
tation. The state space of the 16 tile puzzle is large enough so that the search
graph does not fit into the L2 cache of the Xeon Phi, and thus making the lookup
operations generate actual memory accesses.

We used two configurations of the application. First, we ran with regular
memory pre-allocator, i.e., memory is simply divided among the threads. We
then modified the allocation routine to call into our library and use the memory
block latency-aware allocation. We measured the number of graph nodes the
algorithm explores in unit time and report the normalized improvement of the
memory block aware allocator compared to the regular solution. Results are
indicated by Figure 4a, where each measurement was repeated five times and
the chart shows the average values.

As seen, performance improvement scales from 17% to 28% and varies de-
pending on the number of CPU cores utilized in the application. Initially we
expected there would be a gradual increase in performance improvement with
the growing number of cores, assuming that the on-chip traffic is better bal-
anced among the CPU cores and the memory controllers, an observation which
had been also pointed out for NUMA architectures previously [22]. Surprisingly,
however, there seem to be no direct relation between the performance improve-
ment and the number of cores involved in the execution. As the Figure shows,

250 B. Gerofi, M. Takagi, and Y. Ishikawa

utilizing 12 and 20 cores yields the lowest improvement. Besides the random
nature of the regular allocator in terms of memory block latencies, we believe
the distributed tag directory based cache coherence may also contribute to this
effect. Intel doesn’t provide any details about the characteristics of the on-chip
network and thus it is hard to assess whether traffic congestion occurs due to
communication between cores and the tag directories or the memory controllers.
Nevertheless, we do observe the highest improvement for 56 CPU cores.

We also measured the number of read accesses that missed the internal data
cache on CPU core 0, where the same goal state was used across all runs to
ensure fair comparison. Results are shown in Figure 4b. As the number of cache
misses is approximately the same regardless the underlying memory allocator,
we believe that the observed performance improvement results indeed from the
lower latency memory accesses.

6 Discussion

This Section provides a short discussion on some of the limitations of our pro-
posed approach. First, since we exploit memory access latency differences at the
memory block level, allocations larger than a memory block size (i.e., 64bytes
on x86 64bit) cannot be laid out in a continuous fashion on to low latency mem-
ory blocks. At present, we simply return a regular allocation, however, splitting
structures in a clever way could also help to overcome this limitation [23]. Sec-
ond, the smaller the number of cores utilized by the application, the lower the
ratio of low latency memory blocks becomes corresponding to the participat-
ing cores. Consequently, our allocator provides the best memory usage efficiency
when the entire chip is utilized.

Third, we also need to note that our technique favors applications, where the
per-core data sets are distinct. Communication between the cores of course is
inevitable, and if necessary data from one core’s low latency line could be copied
over to another one’s, such as it would be required for the EM3D application
[10]. Forth, one might argue that spreading memory allocations over low latency
memory blocks will increase the price of TLB misses. In our experiments we used
large pages for memory mappings and both in case of regular and low latency
allocators, the per-core memory used could be covered by the L2 TLB entries.

Despite the above mentioned restrictions, we emphasize that our intention is
to demonstrate that it is possible to take advantage of hidden memory latency
differences in current many-core CPUs.

7 Related Work

As we mentioned earlier, the hidden non-uniformity of the UMA property offi-
cially provided by the Xeon Phi closely resembles non-uniform memory access
(NUMA) architectures.

A large body of management policies for memory and thread placement in
NUMA architectures have been previously proposed. Bolosky et al investigated

Exploiting Hidden Non-uniformity of Uniform Memory Access 251

page replacement policies so that data are placed close to the process that is
using them [24]. LaRowe et al. built an analytic model of the memory system
performance of a local/remote NUMA architecture and investigated heuristics
when pages should be moved or remotely referenced [25]. Verghese et al. studied
the performance improvements provided by OS supported dynamic page migra-
tion and replication in NUMA environments where remote access latencies were
significantly higher than those to local memory [26]. Avdic et al. demonstrated
the correlation of memory access latency with difference between cores and mem-
ory controllers through parallel sorting on the Intel SCC [27]. Although the goal
of the above mentioned studies is similar in nature to ours, i.e., to optimize for
access locality, they explicitly deal with NUMA system where the granularity
of access inequality is at least page size. On the contrary, we exploit hidden
non-uniformities at the memory block level.

Some recent studies approach memory management issues from the aspect of
resource contention. Knauerhase et al. argued that the OS can use data obtained
from dynamic runtime observation of task behavior to ameliorate performance
variability and more effectively exploit multicore processor resources, such as
the memory hierarchy [28]. Another recent work points out that performance
degradation in current NUMA systems doesn’t mainly derive from the cost of
remote accesses. Instead, congestion on memory controllers and interconnects
caused by memory traffic from data-intensive applications hurts performance
much more [22]. As the Xeon Phi’s on-chip network connects a large number
of various components, network congestion during communication among CPU
cores, cache tag directories and memory controllers likely constitute to perfor-
mance degradation of memory intensive applications. We believe that part of the
merit of assigning low latency memory blocks to CPU cores is the alleviation of
on-chip traffic congestion.

8 Conclusion and Future Work

Many-core CPUs come with an increasing number of components, such as CPU
cores, memory controllers, cache tag directories, etc., and the on-chip networks
connecting these components are becoming more and more complex. Neverthe-
less, uniform memory access is still the most frequently provided memory model
due to its ease of programmability.

In this paper, we have pointed out that many-core CPUs, such as Intel’s Xeon
Phi, can exhibit substantial hidden non-uniformity in memory access latencies
among CPU cores accessing the same memory block. To the best of our knowl-
edge, this is the first time such differences have been shown for a UMA archi-
tecture. We have proposed a latency-aware memory allocator and demonstrated
its superior performance on the A* search algorithm. Most importantly, we en-
courage chip manufacturers not to hide such differences or at least to provide
the system with the ability to reconfigure mappings so that NUMA properties
could be explicitly leveraged at the software level.

252 B. Gerofi, M. Takagi, and Y. Ishikawa

In the future, we intend to look at further possible usage scenarios accelerating
applications relying on recursive data structures, such as the EM3D or Barnes-
Hut’s N-body problem [10] and Monte-Carlo based tree search algorithms.

Acknowledgment. This work has been partially supported by the CREST
project of the Japan Science and Technology Agency (JST) and by the National
Project of MEXT called Feasibility Study on Advanced and Efficient Latency
Core Architecture.

References

1. Saha, B., Zhou, X., Chen, H., Gao, Y., Yan, S., Rajagopalan, M., Fang, J., Zhang,
P., Ronen, R., Mendelson, A.: Programming model for a heterogeneous x86 plat-
form. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and implementation, PLDI 2009, pp. 431–440. ACM, New York
(2009)

2. Intel Corporation: Single-Chip Cloud Computer (2010),
https://www-ssl.intel.com/content/www/us/en/

research/intel-labs-single-chip-cloud-computer.html

3. Adapteva: Epiphany-IV 64-core 28nm Microprocessor, E64G401 (2014),
http://www.adapteva.com/epiphanyiv

4. Tilera: TILE-Gx8072 Processor Product Brief (2014),
http://www.tilera.com/sites/default/files/

images/products/TILE-Gx8072 PB041-03 WEB.pdf

5. The University of Glasgow: Scientists squeeze more than 1,000 cores on to computer
chip (2010),
http://www.gla.ac.uk/news/archiveofnews/

2010/december/headline 183814 en.html

6. Intel Corporation: Intel Xeon Phi Coprocessor System Software Developers Guide
(2013),
https://www-ssl.intel.com/content/www/us/en/processors/

xeon/xeon-phi-coprocessor-system-software-developers-guide.html

7. Nychis, G.P., Fallin, C., Moscibroda, T., Mutlu, O., Seshan, S.: On-chip Networks
from a Networking Perspective: Congestion and Scalability in Many-core Intercon-
nects. In: SIGCOMM 2012, pp. 407–418. ACM, New York (2012)

8. Lameter, C.: NUMA (Non-Uniform Memory Access): An Overview. ACM
Queue 11(7), 40 (2013)

9. Kim, C., Burger, D., Keckler, S.: Nonuniform cache architectures for wire-delay
dominated on-chip caches. IEEE Micro 23(6), 99–107 (2003)

10. Luk, C.K., Mowry, T.C.: Compiler-based prefetching for recursive data structures.
In: ASPLOS VII, pp. 222–233. ACM, New York (1996)

11. Hart, P., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernet-
ics 4(2), 100–107 (1968)

12. Ivanov, L., Nunna, R.: Modeling and Verification of Cache Coherence Protocols. In:
The 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001,
vol. 5, pp. 129–132 (2001)

https://www-ssl.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
https://www-ssl.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
http://www.adapteva.com/epiphanyiv
http://www.tilera.com/sites/default/files/images/products/TILE-Gx8072_PB041-03_WEB.pdf
http://www.tilera.com/sites/default/files/images/products/TILE-Gx8072_PB041-03_WEB.pdf
http://www.gla.ac.uk/news/archiveofnews/2010/december/headline_183814_en.html
http://www.gla.ac.uk/news/archiveofnews/2010/december/headline_183814_en.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.html

Exploiting Hidden Non-uniformity of Uniform Memory Access 253

13. Hackenberg, D., Molka, D., Nagel, W.E.: Comparing Cache Architectures and Co-
herency Protocols on x86-64 Multicore SMP Systems. In: Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42,
pp. 413–422. ACM, New York (2009)

14. Hennessy, J.L., Patterson, D.A.: Computer Architecture - A Quantitative Ap-
proach, 5th edn. Morgan Kaufmann (2012)

15. Ramos, S., Hoefler, T.: Modeling Communication in Cache-coherent SMP Systems:
A Case-study with Xeon Phi. In: HPDC 2013, pp. 97–108. ACM, New York (2013)

16. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall Press, Upper Saddle River (2009)

17. Dutt, S., Mahapatra, N.: Parallel A* algorithms and their performance on hyper-
cube multiprocessors. In: Proceedings of Seventh International Parallel Processing
Symposium, pp. 797–803 (April 1993)

18. Burns, E., Lemons, S., Zhou, R., Ruml, W.: Best-first Heuristic Search for Multi-
core Machines. In: Proceedings of the 21st International Jont Conference on Ar-
tifical Intelligence, IJCAI 2009, pp. 449–455. Morgan Kaufmann Publishers, San
Francisco (2009)

19. Rios, L.H.O., Chaimowicz, L.: A Survey and Classification of A* Based Best-First
Heuristic Search Algorithms. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel,
F. (eds.) SBIA 2010. LNCS, vol. 6404, pp. 253–262. Springer, Heidelberg (2010)

20. Gerofi, B., Shimada, A., Hori, A., Ishikawa, Y.: Partially Separated Page Tables
for Efficient Operating System Assisted Hierarchical Memory Management on Het-
erogeneous Architectures. In: CCGrid 2013 (May 2013)

21. Heyes-Jones, J.: A* Algorithm Tutorial (2013),
http://heyes-jones.com/astar.php

22. Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R., Lepers, B., Quema,
V., Roth, M.: Traffic Management: A Holistic Approach to Memory Placement on
NUMA Systems. In: ASPLOS 2013, pp. 381–394. ACM, New York (2013)

23. Chilimbi, T.M., Davidson, B., Larus, J.R.: Cache-conscious Structure Definition.
In: PLDI 1999, pp. 13–24. ACM, New York (1999)

24. Bolosky, W., Fitzgerald, R., Scott, M.: Simple but Effective Techniques for NUMA
Memory Management. In: SOSP 1989, pp. 19–31. ACM, New York (1989)

25. LaRowe, J. R.P., Ellis, C.S., Holliday, M.A.: Evaluation of NUMA Memory Man-
agement Through Modeling and Measurements. IEEE Trans. Parallel Distrib.
Syst. 3(6), 686–701 (1992)

26. Verghese, B., Devine, S., Gupta, A., Rosenblum, M.: Operating system sup-
port for improving data locality on cc-numa compute servers. In: ASPLOS VII,
pp. 279–289. ACM, New York (1996)

27. Avdic, K., Melot, N., Keller, J., Kessler, C.: Parallel sorting on Intel Single-Chip
Cloud Computer. In: Proceedings of the 2nd Workshop on Applications for Multi
and Many Core Processors (2011)

28. Knauerhase, R., Brett, P., Hohlt, B., Li, T., Hahn, S.: Using os observations to
improve performance in multicore systems. IEEE Micro 28(3), 54–66 (2008)

http://heyes-jones.com/astar.php

	Exploiting Hidden Non-uniformity of Uniform Memory Access on Manycore CPUs
	1Introduction
	2Background and Motivation
	3The A* Algorithm
	4Memory Block Latency-Aware Memory Allocator
	5Evaluation
	5.1Experimental Setup
	5.2Results

	6 Discussion
	7Related Work
	8Conclusion and Future Work
	References

