
Performance and Scalability of Lightweight
Multi-Kernel based Operating Systems

Balazs Gerofi, Rolf Riesen†, Masamichi Takagi, Taisuke Boku‡, Kengo Nakajima§,
Yutaka Ishikawa and Robert W. Wisniewski†

RIKEN Advanced Institute for Computational Science, Japan
†Intel Corporation, USA

‡University of Tsukuba, Japan
§University of Tokyo, Japan

bgerofi@riken.jp, rolf.riesen@intel.com, masamichi.takagi@riken.jp, taisuke@cs.tsukuba.ac.jp,

nakajima@cc.u-tokyo.ac.jp, yutaka.ishikawa@riken.jp, robert.w.wisniewski@intel.com

Abstract—Multi-kernels leverage today’s multi-core chips to
run multiple operating system (OS) kernels, typically a Light
Weight Kernel (LWK) and a Linux kernel, simultaneously. The
LWK provides high performance and scalability, while the Linux
kernel provides compatibility. Multi-kernels show the promise of
being able to meet tomorrow’s extreme-scale computing needs
while providing strong isolation, yielding high performance and
scalability needed by classical HPC applications.

McKernel and mOS started as independent research initiatives
to explore the above potential. Previous work described their
design and architecture advantages. This paper deploys the two
LWKs and presents results from running them on a 2,048-node
system with Intel R© Xeon Phi

TM
processors (KNL) connected

by Intel Omni-Path Fabric. We compare the performance of
McKernel, mOS, and Linux. Although the two multi-kernel
efforts approached the problem from different angles, the results
show a median performance improvement of 9% with some
applications as high as 280% validating the efficacy of the
multi-kernel approach. We provide insight into the performance
improvements and discuss the strengths of the two different
multi-kernel approaches.

I. INTRODUCTION

Hardware complexity of high-end supercomputers has in-

creased substantially over the past decade resulting in ex-

treme degrees of multi-level parallelism, many-core CPUs,

heterogeneous architectures, deepening memory hierarchies,

and the growing importance of power constraints. This trend

is expected to continue. At the same time, while classical high-

performance computing applications are still of great interest,

there has been increased interest in a diverse set of workloads

including big data analytics, machine and deep learning, and

multi-tenancy. This gives rise to the demand for software

techniques such as in-situ analysis, work-flow composition,

and the need for sophisticated monitoring and performance

tools [1].

The increasing hardware complexity demands Operating

Systems (OSes) that can rapidly adapt to new hardware re-

quirements and that can support novel programming paradigms

and runtime systems. Furthermore, POSIX compatibility is not

enough. Increasingly, modern applications, tools, and runtime

systems depend on Linux features including the /proc and

/sys pseudo file systems. The combination of all the above

suggest a different approach to OS structure may be valuable.
Traditional, stand-alone lightweight kernel (LWK) operating

systems specialized for HPC have a proven track record of

delivering the scalability and performance required by classical

HPC applications, as well as providing innovative capabilities

for meeting specific hardware or workload requirements [2]–

[7]. However, they did not provide full support for Linux APIs

and the Linux environment that have emerged as fundamental

constructs that enable an increasingly diverse set of workloads.
Multi-kernels attempt to marry LWK performance and scal-

ability with the needed Linux compatibility. It is not clear

whether doing that harms LWK performance or cripples Linux

compatibility. This paper is a first report to show that LWKs

retain their performance benefits when run as multi-kernels.
We focus on two lightweight multi-kernels, that leverage

today’s many-core processors and run a lightweight kernel

and a Linux kernel simultaneously. The LWK provides high

performance and scalability and Linux provides the needed

compatibility. While these kernels are being developed for

tomorrow’s computing needs, this paper focuses on evaluating

them at scale with HPC applications on one of the largest

systems deployed today.
IHK/McKernel at RIKEN Advanced Institute for Compu-

tational Science and mOS at Intel Corp. started as indepen-

dent research initiatives to explore the multi-kernel potential.

Previous work in [8] describes their design and architecture

advantages. Expanding upon the work presented there, in this

paper we make the following contributions:

• We describe the deployment and evaluate the results of

running lightweight multi-kernels at large scale. Specif-

ically, we ran them on 2,048 nodes of Intel R© Xeon

Phi
TM

Knights Landing (KNL) processors, up to 128k

CPU cores, and compare the performance of McKernel,

mOS, and Linux using a variety of applications and

benchmarks.

• Although the limited availability of dedicated compute

resources at large scale constrained our analysis, we

describe and evaluate the impact of a number of optimiza-

tions, both targeting specific hardware features; e.g., deep

116

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00022

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

memory hierarchies, as well as application specific needs.

We demonstrate that one of the strengths of lightweight

multi-kernels is their ability to quickly be modified to

meet new requirements.

• Despite the fact that the two multi-kernel efforts ap-

proached the problem with different designs and im-

plementations, the results show a median performance

improvement of 9% with some applications as high as

280%, validating the efficacy of the multi-kernel ap-

proach.

The rest of this paper is organized as follows. We begin

by providing an overview of each multi-kernel in Section

attributes II and describe some of their common attributes as

well as their salient differences. We then focus on experimental

evaluation in Section III and provide further discussion of that

evaluation in Section IV. Section V describes related work, and

Section VI draws conclusions.

II. MULTI-KERNELS

Lightweight multi-kernels aim to provide Linux compat-

ibility while retaining the performance and scalability of

LWKs needed for HPC. This section details two approaches:

IHK/McKernel from RIKEN Advanced Institute for Com-

putational Science, and mOS from Intel Corp. After briefly

exploring the multi-kernel design space we introduce each of

the two projects, highlighting some of their commonalities and

differences.

A. Design Space

Multi-kernels generally have three conflicting goals as ex-

emplified in Figure 1. The main driver is to achieve the scal-

ability and performance of LWKs (lower right corner). That

can only be successful if it is combined with a high degree

of Linux compatibility (top corner). This is important because

many tools, libraries, and applications expect it. Users’ and

system administrator’s productivity depend on it as well.

Fig. 1. Multi-kernel design space

Full Linux compatibility requires faithfully replicating sys-

tem call semantics, but also mimicking the complex and ever

changing pseudo file systems; e.g., /proc, /sys, that Linux

uses for control and to provide information. Some of these

semantics, and some POSIX mandates, are counter to what

HPC applications need and make full Linux compatibility

difficult to achieve.

Further complicating the picture is the need to keep track of

Linux kernel developments (lower left corner). Without that,

the LWK will fall behind and newer tools and features will

no longer work, making the multi-kernel obsolete.

All three aspects of this struggle are symbolized as opposing

corners in Figure 1. Straying too close to one corner makes it

difficult to achieve the goals in the other two corners. Think

of rubber bands pulling the design options into the corners. A

pure, hypothetical LWK would sit at the bottom right corner.

It has no Linux compatibility.

Linux, by definition, provides the necessary Linux compati-

bility and is the code the LWKs have to interact with. The point

representing Linux is on the opposing side of a pure LWK.

Rubber bands attached to the top and bottom left corners pull

it there.

Multi-kernels try to find spots in between. Since they are

trying to achieve all three goals represented in the triangle,

the multi-kernels are pulled toward the center of the figure.

Specific requirements for each project, OS design, and LWK

implementation are forces that pull these kernels into unique

positions in the diagram. Both mOS and McKernel emphasize

LWK performance and scalability and are, therefore, closest to

that corner without straying too far from the other two corners

in the triangle.

McKernel is more isolated from the Linux source since it is

implemented as a kernel module. Therefore, it has a stronger

affinity to the left hand corner than mOS which is much more

tightly integrated into the Linux kernel. Because of the latter

aspect, it is easier for mOS to achieve Linux compatibility and

acquire the latest features. McKernel has more of the typical

LWK performance characteristics than the current version of

mOS. Therefore, McKernel is closer to the LWK corner than

mOS.

In addition to the three aspects discussed above, we empha-

size lightweight multi-kernels’ ability to easily adapt to new

hardware features. This is inherent from the LWKs’ small code

base, which provides a fertile ground for experimentation and

rapid prototyping of new ideas. As we will demonstrate it in

Section III, we found this property particularly advantageous

with respect to dealing with the multiple memory types

available on the Xeon Phi
TM

processor.

B. IHK/McKernel

IHK/McKernel is a lightweight multi-kernel that comprises

two main components: A low-level software infrastructure

called Interface for Heterogeneous Kernels (IHK) [9] and

an LWK called McKernel [10]. An architectural overview of

IHK/McKernel is shown in Figure 2.

IHK provides capabilities for partitioning resources in a

many-core environment; e.g., CPU cores and physical mem-

ory, and it enables management of LWKs. IHK can allocate

and release host resources dynamically without rebooting

the host machine. Additionally, IHK is implemented as a

collection of kernel modules without any modifications to the

Linux kernel code, which enables straightforward deployment

on a wide range of Linux distributions. Besides resource and

117

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

�������

�
�
�
�
�
�

�
�
�
�
� 	
��������

���������
��������

���� �������� ����
�� ��

���������
������

�
�

�������
������

�������
������

��������������

	
���� ��

!�����"���

	���������

�������
����

�������
����

��""��� ��""���

�
�
��
��
��
	�

�
�
�
��
�
��
��
��
��
�
��
��
�
�
��
��
��
�
�
��
��

�������	��	��
��
����������

�������
����	��
���������������

�
��	�����	����	��

�����������������

Fig. 2. Overview of the IHK/McKernel architecture and the system call
offloading mechanism.

LWK management, IHK also provides an Inter-Kernel Com-

munication (IKC) layer, upon which system call offloading is

implemented [9].

McKernel is an LWK developed from scratch. It is primarily

designed for HPC and it boots only from IHK. McKernel

retains a binary compatible ABI with Linux. However, it

implements only a small set of performance sensitive system

calls. The rest are offloaded to Linux. Specifically, McKernel

provides its own memory management, it supports multi-

processing and multi-threading, it has a simple scheduler,

and it implements signaling. It also enables inter-process

shared memory mappings and it provides standard interfaces

to hardware performance counters.

For every single process running on McKernel there is a

process spawned on Linux, called the proxy process. The proxy

process’ fundamental role is to facilitate system call offload-

ing. It provides execution context on behalf of the application

so that offloaded calls can be directly invoked in Linux. The

proxy process also enables Linux to maintain various state

information that would have to be otherwise managed by

the LWK. McKernel for instance has no knowledge of file

descriptors; it simply returns the descriptor it receives from the

proxy process when a file is opened. The actual set of open

files; i.e., file descriptor table, file positions, etc., are tracked

by the Linux kernel. We emphasize that IHK/McKernel runs

HPC applications on the LWK to achieve scalable execution

but the full Linux API is available via system call offloading.

C. mOS

mOS follows a considerably different design and implemen-

tation path than IHK/McKernel. While the fundamental philos-

ophy of mOS remains similar; i.e., to implement performance

sensitive kernel services in the LWK code base and to rely on

Linux for the rest, mOS compiles the LWK code directly into

Linux.

Figure 3 shows the idea to run an LWK on the cores that

run the HPC applications, while Linux runs on a few cores to

the left in the drawing. As we will see in Section II-D4, mOS’

structure facilitates tools support better than McKernel’s.

The mOS LWK also provides its own memory management

and scheduling subsystems, but the tighter Linux integration

allows mOS to take advantage of Linux functionalities in a

Fig. 3. Conceptual view of mOS

more straightforward fashion. This decision places mOS close

to the LWK performance corner while allowing it to provide

a high-level of Linux compatibility.

In particular, mOS’ system call offloading mechanism is

substantially different than that of the proxy approach. mOS

retains Linux kernel compatibility at the level of its internal

kernel data structures; e.g., the task_struct, which enables

mOS to move threads directly into Linux. System call offload-

ing is hence implemented by migrating the issuer thread into

Linux, executing the system call and migrating the thread back

to the LWK component.

D. Commonalities and Differences

There are many commonalities and differences between

IHK/McKernel and mOS, some of which has been already

explored in previous work on multi-kernel design considera-

tions [8]. Here we further elaborate on their most important

features, predominantly focusing on the ones with performance

implications.

1) Node Configuration: Both IHK/McKernel and mOS

provide strong partitioning of node resources; i.e., CPU cores

and memory, between Linux and the LWK. In our target

configuration a few CPU cores are reserved for Linux and

the LWK oversees the rest of the system. Strong partitioning

between the two kernels is a key property for preventing OS

jitter from Linux to be propagated to the LWK. Additionally,

the LWK’s ability to exercise full control over its assigned

resources is crucial for providing high performance. As men-

tioned above, HPC applications are executed on the LWK to

attain performance and scalability, but full Linux compatibility

is supported via system call offloading.

Both of these LWKs target high performance computing.

Therefore, data locality and topology awareness are of utmost

importance. Both of the LWKs are NUMA aware, not only

in terms of their internal memory management policies (see

below), but also in the way how they interact with Linux.

mOS follows a NUMA aware mapping from LWK to Linux

cores when thread migration is performed during system call

offloading. Similarly, IKC, the communication framework of

IHK, understands the underlying topology to perform efficient

message delivery between the two kernels.

With respect to MPI applications, mOS allows LWK re-

sources to be divided at the time of application launch. This

division respects NUMA boundaries and binds threads to CPU

118

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

cores accordingly. McKernel provides a similar feature for

dealing with CPU cores, although it does not partition memory

between LWK processes. Generally, McKernel’s philosophy is

to follow a Linux compatible interface – even at the level of

MPI process binding related environment variables – while

mOS attempts to provide an easy to use interface.

2) Scheduling: LWKs usually provide simple scheduling

policies. Both LWKs discussed in this paper employ a round-

robin, non-preemptive, co-operative scheduler, as their primary

purpose is to stay out of the way of applications. McKernel

optionally provides time sharing, but it enables it only on

specific CPU cores. It is also worth emphasizing that mOS

put a significant effort into eliminating undesired kernel tasks

on LWK cores which might stray there from a Linux managed

core. McKernel is better isolated in that regard, since the Linux

kernel cannot interact with the McKernel scheduler. As we will

discuss in Section II-D4, the stricter isolation of McKernel,

however, comes at the price of more significant effort for Linux

compatibility.

3) Memory Management: Memory usage patterns of HPC

applications are typically simpler than that of commercial

applications and many features of general purpose OS kernels

are not needed in HPC. For example, to completely eliminate

the associated cost of page faults and to provide a more

predictable behavior, both McKernel and mOS try their best

to map physically contiguous memory upfront, at the time of

the mmap()system call. An implication of contiguous physical

memory is better cache performance, similar to techniques

such as page coloring. Additionally, both kernels employ large

pages whenever and wherever; e.g., even on the stack, it is

possible, using 1 GB pages if the size of the mapping allows

it. Another optimization both LWKs employ is to aggressively

extend the heap to avoid contention during physical memory

allocation in subsequent brk()calls and to ensure that large

page based mappings can be established.

A strength of LWKs is their small code base that enables

rapid experimentation. Considering the upcoming plethora of

memory technologies and the deepening memory hierarchy,

we believe that dealing with various memory types is a prime

example where LWKs can potentially do better than Linux.

Both mOS and McKernel provide sophisticated features to deal

with the on-package high-bandwidth memory (MCDRAM) of

the Xeon Phi
TM

. Again, while mOS understands the presence

of MCDRAM and provides its exclusive options to control

where program sections are loaded, McKernel implements

the standard NUMA APIs; e.g., the set_mempolicy()system

call, to deal with different memories, but provides specific

extensions. Ultimately, both LWKs enable fine-grain options

to regulate the placement of certain process memory areas;

e.g., the stack, heap or the BSS. Both kernels can also silently

fall back to DDR4 RAM once they run out of MCDRAM. This

is important, because standard NUMA binding policies, in

combination with the way how MCDRAM is exposed in Linux

in terms of NUMA distances, currently prevent an easy way

to achieve this behavior in Linux in Sub-NUMA Clustering

mode with four NUMA quadrants (SNC-4).

For non-file-backed mapping, both LWKs allocate physical

memory at the time of the mapping request; e.g., mmap()or

brk(), when physical memory to back it entirely is available.

McKernel has an additional feature to automatically fall back

to demand paging to allow best effort allocation from the

specific NUMA domain when enough physical memory is not

available. The current version of mOS is more rigid: Only

physically available memory can be allocated.

4) POSIX/Linux Compatibility and Tools Support: For a

multi-kernel we consider achieving full POSIX and Linux

compatibility, as well as support for standard tools, such as

profilers, debuggers, etc., almost as important as providing

scalability and performance. The design differences between

mOS and IHK/McKernel have probably the most pronounced

impact on this aspect. Due to mOS’ tight integration with

Linux, it can provide a Linux like environment with far less

effort. For example, McKernel needs to implement various

/sys and /proc files to reflect the resource partition assigned

to the LWK, while mOS mostly reuses the Linux implemen-

tation. Additionally, in McKernel most tools must run on an

LWK core, while mOS can leave them on the Linux side.

The reason is that services like ptrace()and prctl()are

difficult to implement in the proxy model when crossing kernel

boundaries, as opposed to mOS that can directly reuse Linux’

ptrace()implementation.

5) Tracking Linux Changes: As mentioned above, IHK is

implemented as a collection of Linux kernel modules, which

makes tracking Linux kernel changes relatively easy, but has

the drawback that McKernel does not become active until

after Linux has booted. As a consequence, while mOS can

grab large contiguous physical memory blocks early during

the boot sequence, McKernel has to request them from Linux

later, potentially after Linux has already placed unmovable

data structures into it. On the other hand, upgrading mOS to

a newer Linux kernel is a bigger effort than porting the IHK

module. However, mOS ports have lasted only a couple of

days each time it has been moved to a newer Linux kernel. The

effort to keep both mOS and McKernel current with the latest

Linux kernel is comparable to the work required to maintain

a Linux device driver.

6) Application Specific Features: We mentioned that an

LWK’s ability to quickly adapt to new HW features is

extremely beneficial. Similar arguments can be made for

application specific needs. As the code base of an LWK is

small1 one can rapidly experiment with features targeting

specific application needs. Complex interactions between ap-

plications, runtimes, and the OS kernel are not easy to predict

or measure. They also require access to large machines for

experimentation. Some of these features; e.g., the aggressive

extension of the heap, can also potentially break certain POSIX

requirements and may not be safe for all applications. These

features are optional and can be disabled selectively at job

launch time in McKernel and mOS.

1At the time of writing this paper, mOS modifies or adds 88 files in the
Linux kernel and consists of about 20k lines of code. The same number for
IHK/McKernel is approximately 70k lines of code.

119

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

Normalized to Linux

R
e

la
ti
v
e

 m
e

d
ia

n
 p

e
rf

o
rm

a
c
e

c
o

m
p

a
re

d
 t

o
 L

in
u

x
mOS

McKernel

1
.9

9

6
.4

7
7

.0
1

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1 2 4 8
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8 1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

MiniFEMILCLAMMPSHPCGGeoFEMCCS QCDAMG2013

Fig. 4. Comparing mOS and McKernel against the Linux baseline

III. EVALUATION

A. Experimental Environment

All of our experiments were performed on Oakforest-PACS

(OFP), a Fujitsu built, 25 peta-flops supercomputer installed

recently at JCAHPC organized by The University of Tsukuba

and The University of Tokyo [11]. OFP is comprised of eight-

thousand compute nodes that are interconnected by Intel’s

Omni Path network. Each node is equipped with an Intel R©

Xeon Phi
TM

7250 Knights Landing (KNL) processor, which

consists of 68 CPU cores, accommodating 4 hardware threads

per core. The processor provides 16 GB of integrated, high-

bandwidth MCDRAM and it also is accompanied by 96 GB

of DDR4 RAM. For all experiments, we configured the KNL

processor in SNC-4 flat mode; i.e., MCDRAM and DDR4

RAM are addressable at different physical memory locations

and both are split into four NUMA domains. On each compute

node, the operating system sees 272 logical CPUs organized

around eight NUMA domains.

The software environment we used is as follows. Com-

pute nodes run XPPSL 1.4.1 with Linux kernel version

3.10.0-327.22.2. XPPSL is a CentOS based distribution

with a number of Intel provided kernel level enhancements

specifically targeting the KNL processor. We used Intel MPI

2018 Beta Build 20170209 that offers a few unreleased im-

provements for parallel job spawning.

For all experiments, we dedicated 64 CPU cores to the

application and reserved 4 CPU cores for OS activities. This

is a common scenario for OFP users where daemons and other

system services run on the first four cores. Many applications

need a power of two number of nodes, or do not run faster on

66 or 68 cores. Additional experiments have shown that mOS

using 64 or 66 cores beats Linux on 68 cores. This is often

due to CPU 0 running services and introducing noise.

We emphasize that for the Linux runs we used the Fu-

jitsu’s HPC optimized production environment, e.g., appli-

cation cores were configured with the nohz_full Linux

kernel argument to minimize operating system jitter. For

the McKernel measurements we deployed IHK and McK-

ernel, commit hash 7b3872ed and c32b1ada, respec-

tively. We utilized IHK’s resource partitioning feature to

reserve CPU cores and physical memory dynamically. As

for mOS, we deployed a port of the mOS LWK (ver-

sion 3.10.0-hfi141-tmusta-mos-rc2-gb57bbbd) which

is based on the Linux kernel mentioned above.

B. Workloads and Methodology

We chose a number of workloads from the CORAL bench-

mark suite as well as applications used for evaluation during

the procurement of the OFP machine. These workloads are

based on availability, in-house expertise to configure and run

them, user demands, and suitability for the type of system

these OS projects are targeting. We went to great lengths to

provide good settings for Linux to ensure a fair comparison.

Neither mOS nor McKernel have ever run before at this

scale. We expected problems when jumping that many orders

of magnitude in node and core count, and experienced our

fair share. Nevertheless, we were able to successfully col-

lect data for eight application benchmarks: AMG 2013 [12],

CCS-QCD [13], GeoFEM [14], HPCG [15], LAMMPS [16],

Lulesh 2.0 [17], MILC [18], and MiniFE [19]. For detailed

information on the benchmarks, their configuration and the

exact runtime arguments we used visit the following URL:

http://www.sys.aics.riken.jp/Members/bgerofi/ipdps18/addendum.html

All applications, except MiniFE ran weakly scaled. All

but CCS-QCD were sized to fit entirely into MCDRAM. We

chose different configurations and usage scenarios to help us

understand the behavior of these OSes and test them under

varying conditions.

As for CCS-QCD, the two LWKs were able to load a portion

of the workload into MCDRAM and then seamlessly spill the

rest into DDR4 RAM. Linux is only capable of doing this in

quadrant mode, but not in SNC-4 mode. Under Linux we ran

CCS-QCD out of DDR4 RAM only.

120

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

M
fl
o
p
s
/s

/n
o
d
e

%
 o

f
L
in

u
x
 m

e
d
ia

n

Number of nodes

CCS_QCD; Clover_fermion; 4 ranks/node; 32 threads/rank

McKernel mOS Linux
 85%
 90%
 95%
100%
105%
110%
115%
120%
125%
130%
135%
140%

1 2 4 8 16 32 64 128
256

512
1024

2048

(a) CCS-QCD scaling as a percentage compared to Linux

M
fl
o
p
s

H
ig

h
e
r

is
 b

e
tt
e
r

Number of nodes

miniFE; 660x660x660; 64 ranks/node; 4 threads/rank

McKernel mOS Linux

0.0 x 10
0

2.0 x 10
6

4.0 x 10
6

6.0 x 10
6

8.0 x 10
6

1.0 x 10
7

1.2 x 10
7

2 4 8 16 32 64 128
256

512
1024

(b) MiniFE scaling experiments

Fig. 5. CCS-QCD and MiniFE scaling results

Although many KNL clusters are configured to run in

quadrant mode because it allows exploitation of the higher

bandwidth of MCDRAM with less tuning effort, SNC-4 mode

offers the highest possible hardware performance.

C. Scalability and Performance

Figure 4 summarizes most of the results we gathered in a

single plot comparing mOS and McKernel results against the

Linux baseline. We left out Lulesh 2.0 since it uses different

node counts than the rest of the benchmarks. We show detailed

Lulesh 2.0 results in Figure 6a.

For each application in Figure 4 we show the result as

reported by the benchmark for 1 through 2,048 nodes. We ran

most applications five times and show the median. For clarity,

we clip the y-axis below 0.75 and above 1.75. Measurements

for MILC, and MiniFE that are beyond that range, are marked

with the measured median values. The scaling graphs also

show error bars indicating the maximum and minimum values

we measured.

Since we used 64 physical cores per node, the node counts

in Figure 4 represent physical CPU core counts from 64 to

131,072. Most applications ran with 32 or 64 MPI ranks per

node. Due to limited space, we cannot present all application

results in detail. We highlight CCS-QCD, MiniFE, LAMMPS,

and Lulesh 2.0 as interesting examples representing all of our

applications.

For CCS-QCD we chose a large problem size that does not

fit into MCDRAM. Both McKernel and mOS allow allocation

of physical MCDRAM pages until that resource runs out. After

that, further allocations are satisfied with DDR4 RAM mem-

ory. The switch-over is transparent and seamless. Achieving

this in Linux is more difficult. In quadrant mode, the numactl

-p option can be used by specifying MCDRAM as the

preferred NUMA domain. In SNC-4 mode, four such domains

exist, but the current Linux implementation allows only one

to be listed. We chose to use DDR4 RAM only for CCS-QCD

when running on Linux to highlight the LWK’s capabilities

for dealing with complex memory hierarchies. The excellent

results in Figure 5a, up to 39% and 28% improvement on

McKernel and mOS, respectively, are partially attributable

to the automatic use of MCDRAM by the LWK even in

situations when not all data fits into MCDRAM. While we

did not include it in the plot, we did experiment with running

CCS-QCD exclusively out of DRAM on McKernel as well,

for which we observed approximately 5% slowdown when

running on 2,048 nodes. For further information on why the

McKernel results are better than mOS see Section IV.

MiniFE stands out as the application that ran almost seven

times faster on the LWK than on Linux on 1,024 nodes.

As Figure 5b illustrates, that apparent performance gain is

actually due to Linux performance dropping precariously.

Further large-scale experiments will be needed to determine

the exact reasons for this, although we know that MiniFE

is sensitive to the performance of MPI collective operations;

e.g., MPI_Allreduce(), which typically benefit from jitter-

less operating system kernels.

A similar drop-off at a high node count occurred with

Lulesh 2.0. Note that this is not a single outlier. The 1,728-

node Linux result in Figure 6a is the median of five experi-

ments. The Lulesh 2.0 experiments are also interesting due to

the unexpectedly large difference between the Linux and mOS

results. We detail in Section IV some of the reasons behind

this mystery.

Although the LWKs usually performed better than Linux,

sometimes significantly so, there are also examples where the

gains were minimal or Linux was actually better. LAMMPS

is one example as shown in Figure 6b. Again, Section IV will

provide more information for this application.

D. Linux Compatibility

One strong justification for the use of multi-kernels is

POSIX and Linux compatibility. It is therefore important to

assess how these two projects fare in that regard.

Unfortunately, measuring compatibility is not simple. At

first glance, the Linux Test Project (LTP) suite of tests [20]

would seem a good starting point. Concentrating only on

system calls, McKernel passes all but 32 of them. For mOS

the numbers are more bleak: 111 tests out of 3,328 fail.

McKernel has been using LTP as a regression test since the

early days of its development. Of the 32 tests that still fail,

121

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

z
o
n
e
s
/s

H
ig

h
e
r

is
 b

e
tt
e
r

Number of nodes

lulesh2.0; s50; 64 ranks/node; 2 threads/rank

McKernel mOS Linux

0.0 x 10
0

5.0 x 10
6

1.0 x 10
7

1.5 x 10
7

2.0 x 10
7

2.5 x 10
7

3.0 x 10
7

3.5 x 10
7

4.0 x 10
7

1 8 27 64 125
216

343
512

729
1000

1331
1728

(a) Lulesh 2.0 scaling experiments

T
im

e
s
te

p
s
/s

H
ig

h
e
r

is
 b

e
tt
e
r

Number of nodes

lammps; lj.weak.4x2x2x7900; 64 ranks/node; 2 threads/rank

McKernel mOS Linux

 120

 130

 140

 150

 160

 170

 180

 190

1 2 4 8 16 32 64 128
256

512
1024

2048

(b) LAMMPS scaling experiments

Fig. 6. Lulesh 2.0 and LAMMPS scaling results

some are not supported intentionally, mainly because of the

nature of HPC workloads, others are simply missing imple-

mentation. Eleven of the 32 failing experiments attempt to test

various combinations of the move_pages()system call, which

is work in progress. Another representative experiment tests

the error behavior of an unusual clone()flag combination,

which actual applications never seem to use.

Many of the LTP tests rely on fork()to set up the exper-

iment. In mOS, fork()is not fully implemented yet which

results in many failures before the tests of the targeted system

calls even begin. As with McKernel, there are experiments

that test esoteric behavior and fail in mOS. For example,

ptrace()is working in mOS. However, four of the five

ptrace()experiments fail.

In Section IV we describe an HPC-optimized implementa-

tion of brk(). Because mOS does not return memory to the

system when the heap shrinks, tests that expect a page fault

fail. Such a test looks for Linux behavior that HPC applications

do not need or expect.

IV. DISCUSSION

This section provides further information on some of the

application results presented in Section III. Specifically, we

discuss Lulesh 2.0, CCS-QCD and LAMMPS in detail.

The significant performance improvement of Lulesh 2.0

shown in Figure 6a comes from the overhead of the

brk()system call. Both LWKs have HPC-optimized imple-

mentations for brk(). In mOS this feature can be toggled by

a runtime option, in McKernel it is currently implemented in

a separate branch, but IHK allows booting different kernel

images per application. Table I shows figures for the case

where memory is taken only from DDR4 RAM. Note that the

figures do not directly correspond to the results we obtained

when we evaluated Lulesh 2.0 with the brk()optimizations

enabled, because it runs out of MCDRAM. This is because

we encountered a bug in the feature toggling code when

performing the comparison.

Nevertheless, Table I shows that about 6% of the perfor-

mance gain we observed in Lulesh 2.0 stems from mOS

features unrelated to heap management, while an additional

TABLE I
LULESH PERFORMANCE IN DDR4 RAM WITH AND WITHOUT

brk()OPTIMIZATIONS

Linux 8,959 zones/s 100.0%
mOS, heap management disabled 9,551 zones/s 106.6%
mOS, regular heap management 10,841 zones/s 121.0%

15% can be attributed to the handling of brk()in mOS. We

ran some additional experiments with a smaller workload, -s

30 instead of -s 50 in Figure 6a, to analyze the behavior

of brk(). There were 7,526 queries – calling sbrk()with a

value of 0 – 3,028 expansion requests, and 1,499 requests for

contraction for a total of about 12,000 calls to brk()in the

few seconds the program runs with the small workload. At

its largest, the heap grew to 87 MB, but looking only at the

growth requests, the cumulative amount of memory requested

was 22 GB. Under Linux this results in a lot of page faults,

and it is happening on 64 MPI ranks on each node.

The brk()optimizations in mOS are as follows. The heap is

aligned to a 2 MB address boundary. When it grows, it expands

in 2 MB increments. Shrink requests are ignored because we

found that many high-end HPC applications allocate memory

at the beginning and retain it until the end of the run. Physical

memory pages are allocated at the time brk()is called. That

means subsequent accesses to the heap do not cause page faults

in the LWKs. Finally, upon a growth request and allocation of

a new 2 MB page, only the first 4 kB are zeroed. mOS clears

the first 4 kB because of a bug in AMG 2013, or one of the

libraries it uses, that erroneously expects heap memory to be

cleared upon return from brk().

Clearing memory for malloc()is not a POSIX requirement;

calloc()should be used for that. Nevertheless, Linux initially

maps the zero page and performs a page fault and clear on first

write access to that page. Further hampering Linux is that it

can only allocate large pages when the heap boundary happens

to be properly aligned and the request is large enough.

These LWK optimizations – McKernel employs similar

strategies – explain the large performance improvement for

Lulesh 2.0. The LWKs avoid page faults and make automatic

122

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

and consistent use of large pages. These types of optimizations

also show why it is difficult for Linux to become an optimized

OS for high-end HPC. Growing the heap 2 MB at a time, not

relinquishing memory when it shrinks, and allocating physical

pages at the time of mapping are not suitable strategies

for applications that make many small requests and have to

compete for node resources with a lot of other unrelated tasks.

We are turning our attention to the CCS-QCD workload

shown in Figure 5a. Surprisingly, McKernel performed visibly

better than Linux and mOS. Although we could not verify

the reason, we found clues that may shed light on what was

happening. This application was configured to use a large

amount memory that didn’t fit into MCDRAM entirely, and

as mentioned in Section II, McKernel can fall back to de-

mand paging when there is not enough physically contiguous

memory to cover a virtual memory range.

Based on kernel logs taken during the experiments we found

that some of the ranks, but not all, reported falling back to

demand paging on certain memory ranges. Our hypothesis

is that with demand paging enabled, ranks inside the node

could better utilize MCDRAM as opposed to dividing memory

resources upfront, which is what mOS does by default. Unfor-

tunately, due to excessive demand for the machine we ran our

measurements on, we were unable to do further investigation

before writing this paper.

The last application we discuss in more detail is LAMMPS.

As shown in Figure 6b, neither mOS nor McKernel performed

better than Linux at scale, despite the fact that single node

results were promising. To find out why, we profiled both the

application and the kernel. It turns out that the Intel Omni-

Path network involves system calls for certain operations and

LAMMPS utilizes communication routines that rely on those.

This introduces extra latency and drop in network bandwidth

when running on McKernel, because system calls on device

files are offloaded to Linux. However, we consider this as

temporary shortcoming of OmniPath’s current generation as

most high-performance networks are usually driven entirely

from user-space. We are still investigating the reasons for

mOS, but we note that both McKernel and mOS are still in

the early stages of their life-cycles and in active development.

Finally, we provide insight into two additional optimiza-

tions McKernel offers via command line options to to the

proxy process. The first option, --mpol-shm-premap, en-

ables pre-mapping shared memory sections used by the MPI

implementation for intra-node communication. This helps

avoiding contention in the page fault handler. The second

optimization we applied for a number of benchmarks is

--disable-sched-yield, which injects a shared library

into the application to hijack glibc’s sched_yield()system

call and simply ignores it. This helps to eliminate user/kernel

mode switches, if the call is in the performance sensitive

execution path of an algorithm. Although we had no chance to

obtain performance breakdown regarding the impact of these

calls at scale, with the combination of these two we observed

9% and 2% improvements on 16 nodes for AMG 2013 and

MiniFE, respectively.

V. RELATED WORK

McKernel and mOS are considered multi-kernels. Before

we compare them to other multi-kernel projects, we have a

look at lightweight kernels which preceded them.

A. Lightweight Kernels

Lightweight kernels [21] designed for HPC workloads date

back to the early 1990s. The authors of [22] provide reasons

for their use, design principles, and a history of early LWKs

developed at Sandia National laboratories. One example in the

series is Catamount [5], which has been successfully deployed

on a large scale supercomputer. IBM’s BlueGene line of

supercomputers have also been running an HPC specific LWK

called the Compute Node Kernel (CNK) [6]. While Catamount

has been developed from scratch, CNK borrows a significant

amount of code from Linux; e.g., glibc and NPTL, so that

it can better comply with standard Unix features. The most

recent of Sandia National Laboratories’ LWKs is Kitten [7],

which distinguishes itself from their prior LWKs by provid-

ing a more complete Linux-compatible environment. It also

provides virtual machine monitor capability via Palacios [23]

that allows unmodified guest OSes to run on top of Kitten.

Despite all these efforts, with the ever growing demand for

full Linux/POSIX feature compatibility from the application

side, it has become increasingly difficult to provide support

for all Linux features without compromising the fundamental

goal of retaining scalability and performance.

Instead of building an LWK from the ground up, another

approach is to start from Linux and modify it to meet HPC

requirements. The modifications are done to ensure low noise,

scalability and predictable application performance. Cray’s

Extreme Scale Linux [2], [3] and ZeptoOS [4] follow this path.

The usual approach is to eliminate daemon processes, simplify

the scheduler, and replace the memory management system.

There are two main issues with the Linux based approach.

First, the excessive modifications occasionally break Linux

compatibility, which is undesirable. Second, because HPC

usually follows, or sometimes dictates, rapid hardware changes

that need to be reflected in the kernel code, the modified

Linux kernels tend to diverge from the main Linux tree which

results in an endless need to maintain kernel patches. In

contrast, both mOS and IHK/McKernel strive to attain full

Linux compatibility without sacrificing LWK performance.

B. Operating Systems for Multi-core CPUs

The primary design concern of the K42 [24] research project

was scalability. Similar to how mOS and IHK/McKernel

selectively implement a set of performance sensitive system

calls, K42 enabled applications to bypass the Linux APIs and

call the native K42 interfaces directly. However, it involved a

significant entanglement with Linux which made it cumber-

some to keep up with the latest Linux modifications. While

mOS and McKernel also rely on Linux, one of their primary

design criteria was to minimize the effort required to keep

up-to-date with the rapidly moving Linux kernel.

123

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

Multi-kernels in commercial computing have also been

proposed. Tessellation [25] and Multikernel [26] are driven

by the observation that modern computers already resemble a

networked system and so the OS should also be modeled as

a distributed system. The Tessellation project [25] proposed

Space-Time Partitions, an approach that partitions resources

by dividing CPU cores into groups called cells. Each cell

is responsible for some system services or for a particular

application. Because applications and system services can be

assigned to distinct cells, Tessellation’s structure is similar

to both mOS and IHK/McKernel, where HPC workloads are

bound to LWK cores while system daemons reside on CPU

cores managed by Linux.

Multikernel [26] runs a small kernel on each CPU core

and OS services are built as a set of cooperating processes.

Each process is running on one of the multi-kernels and com-

municates using message passing. Similarly, IHK/McKernel

relies on a message passing facility that allows communication

between the two types of kernels, and consequently between

the application and its Linux proxy process.

Zellweger et. al have recently proposed decoupling CPU

cores, kernels and operating systems [27]. Their system en-

ables applications to be migrated to a separate OS node while

the kernel is updated on the original CPU core. In mOS,

process representation in the LWK retains compatibility with

Linux kernel data structures so that it can directly migrate

threads for system call offloading. This mechanism is similar

to the idea of decoupling application state from the operating

system, although in mOS the primary purpose is to execute

certain system calls in a different kernel context where a richer

set of Linux features is available.

C. Multi-kernels in HPC

The idea of multi-kernels in the HPC context has also been

studied for a number of years. FusedOS [28] was the first

system to combine Linux with an LWK. FusedOS’ primary

objective was to address core heterogeneity between system

and application cores and at the same time to provide a stan-

dard operating environment. Contrary to mOS and McKernel,

FusedOS runs the LWK at user level. The kernel code on

application CPU cores is simply a stub that offloads all system

calls to a corresponding user-level proxy process called CL.

The proxy process itself is similar to that in IHK/McKernel,

but in FusedOS the entire LWK is implemented within this CL

process that runs on Linux. Consequently, FusedOS provides

the same functionality with the Blue Gene CNK from which

CL was derived. The FusedOS work was the first to demon-

strate that Linux noise can be isolated to the Linux cores to

avoid interference with the HPC application running on the

LWK CPUs. This property has been one of the main drivers

for both mOS and McKernel.

Hobbes [29] was one of the projects in DOE’s Operating

System and Runtime (OS/R) framework for extreme-scale

systems. The central theme of the Hobbes design is to support

application composition, which is emerging as a key approach

to address scalability and power concerns anticipated in fu-

ture extreme-scale architectures. Hobbes utilizes virtualization

technologies to provide the flexibility to support requirements

of application components for different node-level operating

systems and runtimes. The Kitten [7] LWK forms the base

layer of Hobbes and Palacios [23], running on top of Kitten,

serves as a virtual machine monitor.

Argo [30] is another DOE OS/R project targeted at appli-

cations with complex work-flows. While Argo originally also

targeted a multi-kernel based software architecture, it recently

turned toward primarily relying on container technologies.

Currently, it investigates how to enhance the Linux kernel’s

container framework so that it can meet HPC requirements.

Recent efforts have also demonstrated multi-kernel’s ability

of performance isolation [31], [32], an increasingly important

aspect of system software as we move toward multi-tenant

deployments. However, the above studies were performed on

considerably small scale.

VI. CONCLUSION AND FUTURE WORK

Lightweight multi-kernel operating systems in HPC lever-

age today’s many-core processors to run multiple OS kernels,

typically a lightweight kernel and a Linux kernel, simulta-

neously. The LWK provides high performance and scalability

while Linux provides the required compatibility for supporting

tools and the full POSIX/Linux APIs.

To the best of our knowledge, this is the first study that

has successfully demonstrated the viability of the multi-kernel

approach at scale. By deploying and evaluating two multi-

kernels on up to two thousand Intel R© Xeon Phi
TM

Knights

Landing (KNL) nodes, we observed a median performance

improvement of 9% with some applications as high as 280%.

We have provided insight into the performance gains and

compared the strengths of the two different multi-kernels

approaches. One of our key findings is that besides the LWKs

ability to provide scalability and performance, the multi-kernel

approach enabled us to rapidly experiment with specific fea-

tures targeting new hardware and application needs. With the

increasing complexity of high-end hardware and the growing

diversity of workloads, we believe this property will be highly

beneficial in the future.

mOS and IHK/McKernel are also in an unusual position

from a deployment point of view. Since both are targeted for

production environments, there is plenty of future work ahead.

The developers of both IHK/McKernel and mOS are working

on improving kernel stability and are further exploring features

that will benefit applications on extreme-scale systems.

ACKNOWLEDGMENTS

IHK/McKernel is partially funded by MEXT’s program for

the Development and Improvement for the Next Generation

Ultra High-Speed Computer System, under its Subsidies for

Operating the Specific Advanced Large Research Facilities.

We thank The University of Tokyo and The University of

Tsukuba for letting us access the Oakforest PACS machine

and for their help with getting the experiments done.

124

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

We acknowledge Tomoki Shirasawa, Gou Nakamura and

Ken Sato from Hitachi for their McKernel development efforts.

Tom Musta and David van Dresser visited Japan to run the

first set of experiments. Tom and Andrew Tauferner conducted

post-mortem experiments that are included in this paper.

Thomas Spelce was invaluable in preparing the applications

and our experiments, while Mike Blocksome was a great help

with MPI related issues. Other members of the mOS team not

listed so far contributed time and assisted in the runs and made

mOS possible in the first place: John Attinella, Sharath Bhat,

Jai Dayal, and Lance Shuler.

REFERENCES

[1] BDEC Committee, “The BDEC “Pathways to convergence” report,”
http://www.exascale.org/bdec/, Mar. 2017.

[2] S. Oral, F. Wang, D. A. Dillow, R. Miller, G. M. Shipman, D. Maxwell,
D. Henseler, J. Becklehimer, and J. Larkin, “Reducing application
runtime variability on Jaguar XT5,” in Proceedings of CUG’10, 2010.

[3] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging
the Cray Linux Environment core specialization feature to realize MPI
asynchronous progress on Cray XE systems,” in Proceedings of Cray
User Group, ser. CUG, 2012.

[4] K. Yoshii, K. Iskra, H. Naik, P. Beckmanm, and P. C. Broekema,
“Characterizing the performance of big memory on Blue Gene Linux,”
in Proceedings of the 2009 Intl. Conference on Parallel Processing
Workshops, ser. ICPPW. IEEE Computer Society, 2009, pp. 65–72.

[5] S. M. Kelly and R. Brightwell, “Software architecture of the light weight
kernel, Catamount,” in Cray User Group, 2005, pp. 16–19.

[6] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski, “Experi-
ences with a lightweight supercomputer kernel: Lessons learned from
Blue Gene’s CNK,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC, 2010.

[7] K. T. Pedretti, M. Levenhagen, K. Ferreira, R. Brightwell, S. Kelly,
P. Bridges, and T. Hudson, “LDRD final report: A lightweight operating
system for multi-core capability class supercomputers,” Sandia National
Laboratories, Technical report SAND2010-6232, Sep. 2010.

[8] B. Gerofi, M. Takagi, Y. Ishikawa, R. Riesen, E. Powers, and R. W.
Wisniewski, “Exploring the design space of combining Linux with
lightweight kernels for extreme scale computing,” in Proceedings of
ROSS’15. ACM, 2015.

[9] T. Shimosawa, B. Gerofi, M. Takagi, G. Nakamura, T. Shirasawa,
Y. Saeki, M. Shimizu, A. Hori, and Y. Ishikawa, “Interface for Hetero-
geneous Kernels: A framework to enable hybrid OS designs targeting
high performance computing on manycore architectures,” in 21th Intl.
Conference on High Performance Computing, ser. HiPC, Dec. 2014.

[10] B. Gerofi, A. Shimada, A. Hori, and Y. Ishikawa, “Partially separated
page tables for efficient operating system assisted hierarchical memory
management on heterogeneous architectures,” in 13th Intl. Symposium
on Cluster, Cloud and Grid Computing (CCGrid), May 2013.

[11] Joint Center for Advanced HPC (JCAHPC), “Basic specification of
Oakforest-PACS,” http://jcahpc.jp/files/OFP-basic.pdf, Mar. 2017.

[12] V. E. Henson and U. M. Yang, “BoomerAMG: A parallel algebraic
multigrid solver and preconditioner,” Appl. Num. Math., vol. 41, pp.
155–177, 2002.

[13] K.-I. Ishikawa, Y. Kuramashi, A. Ukawa, and T. Boku, “CCS QCD
application,” https://github.com/fiber-miniapp/ccs-qcd, Mar. 2017.

[14] K. Nakajima, “Parallel iterative solvers of GeoFEM with selective
blocking preconditioning for nonlinear contact problems on the Earth
Simulator,” in Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing, ser. SC. New York, NY, USA: ACM, 2003.

[15] J. Dongarra, M. A. Heroux, and P. Luszczek, “HPCG benchmark: A new
metric for ranking high performance computing systems,” University of
Tennessee, Electrical Engineering and Computer Science Department,
Tech. Rep. UT-EECS-15-736, Nov. 2015.

[16] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” San Diego, CA, USA, pp. 1–19, Mar. 1995.

[17] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 updates and
changes,” Lawrence Livermore National Laboratory, Tech. Rep. LLNL-
TR-641973, August 2013.

[18] NERSC, “MILC,” http://www.nersc.gov/research-and-development/
apex/apex-benchmarks/milc/, Oct. 2017.

[19] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[20] S. Modak, B. Singh, and M. Yamato, “Putting LTP to test - validating
the Linux kernel and test cases,” in Proceedings of the 2009 Montreal
Linux Symposium, Montreal, Canada, Jul. 2009.

[21] R. Riesen, A. B. Maccabe, B. Gerofi, D. N. Lombard, J. J. Lange,
K. Pedretti, K. Ferreira, M. Lang, P. Keppel, R. W. Wisniewski,
R. Brightwell, T. Inglett, Y. Park, and Y. Ishikawa, “What is a lightweight
kernel?” in Proceedings of the 5th International Workshop on Runtime
and Operating Systems for Supercomputers, ser. ROSS. New York,
NY, USA: ACM, 2015.

[22] R. Riesen, R. Brightwell, P. G. Bridges, T. Hudson, A. B. Maccabe, P. M.
Widener, and K. Ferreira, “Designing and implementing lightweight ker-
nels for capability computing,” Concurrency and Computation: Practice
and Experience, vol. 21, no. 6, pp. 793–817, Apr. 2009.

[23] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell, “Palacios
and Kitten: New high performance operating systems for scalable vir-
tualized and native supercomputing,” in IEEE International Symposium
on Parallel Distributed Processing (IPDPS), Apr. 2010.

[24] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xenidis,
D. Da Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen,
A. Waterland, and V. Uhlig, “K42: Building a complete operating
system,” SIGOPS Oper. Syst. Rev., vol. 40, no. 4, pp. 133–145, Apr.
2006.

[25] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and J. Kubiatowicz,
“Tessellation: Space-time partitioning in a manycore client OS,” in Pro-
ceedings of the First USENIX Conference on Hot Topics in Parallelism,
ser. HotPar, 2009.

[26] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new
OS architecture for scalable multicore systems,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, ser.
SOSP, 2009, pp. 29–44.

[27] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe, “Decoupling
cores, kernels, and operating systems,” in 11th USENIX Symposium on
Operating Systems Design and Implementation, ser. OSDI, Broomfield,
CO, Oct. 2014, pp. 17–31.

[28] Y. Park, E. Van Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg,
K. D. Ryu, and R. Wisniewski, “FusedOS: Fusing LWK performance
with FWK functionality in a heterogeneous environment,” in Computer
Architecture and High Performance Computing (SBAC-PAD), 2012 IEEE
24th International Symposium on, Oct. 2012, pp. 211–218.

[29] R. Brightwell, R. Oldfield, A. B. Maccabe, and D. E. Bernholdt,
“Hobbes: Composition and virtualization as the foundations of an
extreme-scale OS/R,” in Proceedings of the 3rd International Workshop
on Runtime and Operating Systems for Supercomputers, ser. ROSS,
2013.

[30] P. Beckman, M. Snir, P. Balaji, F. Cappello, R. Gupta, K. Iskra, S. Per-
arnau, R. Thakur, and K. Yoshii, “Argo: An exascale operating system,”
http://www.mcs.anl.gov/project/argo-exascale-operating-system, Mar.
2017.

[31] J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti, “Achieving
performance isolation with lightweight co-kernels,” in Proceedings of
the 24th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’15. New York, NY, USA: ACM,
2015, pp. 149–160.

[32] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and
Y. Ishikawa, “On the scalability, performance isolation and device driver
transparency of the IHK/McKernel hybrid lightweight kernel,” in 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2016, pp. 1041–1050.

125

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:39:47 UTC from IEEE Xplore. Restrictions apply.

