
On the Scalability, Performance Isolation and Device Driver Transparency of the
IHK/McKernel Hybrid Lightweight Kernel

Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Gou Nakamura†, Tomoki Shirasawa‡ and Yutaka Ishikawa

RIKEN Advanced Institute for Computational Science, JAPAN
†Hitachi Solutions, Ltd., JAPAN

‡Hitachi Solutions East Japan, Ltd., JAPAN
bgerofi@riken.jp, masamichi.takagi@riken.jp, ahori@riken.jp, go.nakamura.yw@hitachi-solutions.com,

tomoki.shirasawa.kk@hitachi-solutions.com, yutaka.ishikawa@riken.jp

Abstract—Extreme degree of parallelism in high-end com-
puting requires low operating system noise so that large scale,
bulk-synchronous parallel applications can be run efficiently.
Noiseless execution has been historically achieved by deploying
lightweight kernels (LWK), which, on the other hand, can
provide only a restricted set of the POSIX API in exchange for
scalability. However, the increasing prevalence of more complex
application constructs, such as in-situ analysis and workflow
composition, dictates the need for the rich programming APIs
of POSIX/Linux. In order to comply with these seemingly
contradictory requirements, hybrid kernels, where Linux and
a lightweight kernel (LWK) are run side-by-side on compute
nodes, have been recently recognized as a promising approach.
Although multiple research projects are now pursuing this
direction, the questions of how node resources are shared
between the two types of kernels, how exactly the two kernels
interact with each other and to what extent they are integrated,
remain subjects of ongoing debate.

In this paper, we describe IHK/McKernel, a hybrid software
stack that seamlessly blends an LWK with Linux by selectively
offloading system services from the lightweight kernel to Linux.
Specifically, we are focusing on transparent reuse of Linux
device drivers and detail the design of our framework that
enables the LWK to naturally leverage the Linux driver code-
base without sacrificing scalability or the POSIX API. Through
rigorous evaluation on a medium size cluster we demonstrate
how McKernel provides consistent, isolated performance for
simulations even in face of competing, in-situ workloads.

Keywords-operating systems; hybrid kernels; lightweight ker-
nels; system call offloading; scalability

I. INTRODUCTION

With the growing complexity of high-end supercomputers,

it has become indisputable that the current system software

stack will face significant challenges as we look forward

to exascale and beyond. The necessity to deal with ex-

treme degree of parallelism, heterogeneous architectures,

multiple levels of memory hierarchy, power constraints,

etc. advocates operating systems that can rapidly adapt to

new hardware requirements, and that can support novel

programming paradigms and runtime systems. On the other

hand, a new class of more dynamic and complex applications

are also on the horizon, with an increasing demand for

application constructs such as in-situ analysis, workflows,

elaborate monitoring and performance tools [1], [2]. This

complexity relies not only on rich features of POSIX, but

also on the Linux APIs (such as the /proc, /sys filesystems,

etc.) in particular.

Traditionally, lightweight operating systems specialized

for HPC followed two approaches to tackle the high degree

of parallelism so that scalable performance for bulk syn-

chronous applications can be delivered. In the full weight

kernel (FWK) approach [3], [4], [5], a full Linux environ-

ment is taken as the basis, and features that inhibit attaining

HPC scalability are removed, i.e., making it lightweight. The

pure lightweight kernel (LWK) approach [6], [7], [8], on the

other hand, starts from scratch and effort is undertaken to

add sufficient functionality so that it provides a familiar API,

typically something close to that of a general purpose OS,

while at the same time it retains the desired scalability and

reliability attributes. Neither of these approaches yields a

fully Linux compatible environment.

An alternative hybrid approach recognized recently by the

system software community is to run Linux simultaneously

with a lightweight kernel on compute nodes and multiple

research projects are now pursuing this direction [9], [10],

[11], [12]. The basic idea is that simulations run on an

HPC tailored lightweight kernel, ensuring the necessary

isolation for noiseless execution of parallel applications,

but Linux is leveraged so that the full POSIX API is

supported. Additionally, the small code base of the LWK

can also facilitate rapid prototyping for new, exotic hardware

features [13], [14], [15]. Nevertheless, the questions of how

to share node resources between the two types of kernels,

where do device drivers execute, how exactly do the two

kernels interact with each other and to what extent are they

integrated, remain subjects of ongoing debate.

Figure 1 illustrates the hybrid/specialized LWK landscape

highlighting kernel level workload isolation, reusability of

Linux device drivers, and necessary Linux kernel modifi-

cations. It is worth emphasizing that modifications to the

Linux kernel are highly undesired since Linux is a rapidly

evolving target and keeping patches up-to-date with the latest

kernel can pose a major challenge. Generally, the left side

of the figure represents tight integration between Linux and

the LWK, while progressing to the right gradually enforces

2016 IEEE International Parallel and Distributed Processing Symposium

1530-2075/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPS.2016.80

1041

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

�
�
�
�
�

��������	
��
��

������ ������ ������

	
���� 	
����

�������

�������������
��������	�
����������������

�
��
���������	�

�������

��������
����������������
�����
���� �

(a) Argo, led by Argonne National Labs.

����
���
����
���������������	�

��������	
��
��

������ ���!�� ������

	
���� 	
����

�������

��
���������
�����
��	�

����
���
��
�������������
�����

��
��

���!���

(b) mOS @ Intel Corporation.

��������������
"	
���
��#�

��������	
��
��

��	�����������
"�����	���#�

� ��
�������������
���������
�������
�"���#�

���$��

������
"
�
����#��
�����

�

���%�� ������

�
�$�� �
����

���$���

"���	���
��	���
����
����
������	���#�

���%���

(c) IHK/McKernel @ RIKEN.

������
���
���	
���
��

��������	
��
��

�
����������
�
����	
���
��

�
�������

������ ���!�� ������

	
���� 	
����

������� ���!���

���������������
�	���	�
���
��
�

(d) Hobbes, led by Sandia National Labs.

Figure 1. Overview of the Hybrid/LWK landscape from the perspectives of required Linux kernel modifications, kernel level workload isolation
and device driver reusability. Bracketed green labels indicate advantages, while bracketed red labels (in italic) indicate disadvantages.

stricter isolation1 The Argo project, shown in Figure 1a,

is investigating the feasibility of Linux containers for large

scale HPC by means of extending the Linux kernel so

that the necessary resource isolation can be attained [16].

While it comes at the price of modifications to Linux,

from a low-level driver point of view their specialized HPC

containers can directly leverage Linux managed devices.

Nonetheless, the biggest concern with Argo’s approach is

the uncertainty whether or not jitter free execution can be

sufficiently achieved.

mOS [9] (Figure 1b), a hybrid kernel approach currently

pursued by Intel, represents a significant departure from

the all Linux based solution of Argo. mOS provides its

own LWK, which runs on a dedicated partition of hardware

resources, but it compiles the LWK codebase into Linux

aiming at exploiting the Linux infrastructure as much as pos-

sible. mOS also keeps the lightweight kernel internals Linux

compatible on the level of various kernel data structures so

that it can migrate LWK threads into Linux for system call

execution [17]. While this approach also enables access to

Linux device drivers, mOS occasionally runs Linux code

on the LWK cores and again, its ability to acquire a fully

jitterless execution environment remains to be seen.

On the right end of the spectrum is the Hobbes stack [12]

(i.e., Sandia’s Kitten lightweight kernel over the Pisces re-

source manager) running the LWK in its completely isolated

resource partition. The principal idea of this configuration is

to enforce full isolation between Linux and the LWK and

thus to avoid interference between the two kernels entirely.

In fact, Hobbes is the only hybrid kernel so far which

has demonstrated (on single node experiments) that it truly

has the potential to guarantee noiseless execution of HPC

simulations in face of in-situ workloads [18]. Unfortunately,

device drivers in Hobbes need to be ported to the LWK for

every single device the kernel needs to handle, and the lack

of high performance network drivers has been the hindering

1Note that we intentionally describe some of the closely related projects
here to further motivate our approach, but a more general overview of
related work will be presented in Section V.

obstacle for performing a larger scale evaluation.

In this paper, we present IHK/McKernel, illustrated in

Figure 1c, which we designed in a way so that it provides

sufficient kernel level isolation and transparent access to

Linux device drivers at the same time. Furthermore, it

requires no modifications to Linux. We run our lightweight

kernel (i.e., McKernel) on its dedicated partition of CPU

cores and physical memory, but via selectively offloading

OS services to Linux we can seamlessly leverage the Linux

device driver codebase. We summarize our contributions as

follows:

• We introduce a hybrid Linux plus LWK kernel or-

ganization that provides transparent access to Linux

device drivers via selectively offloading OS services

without sacrificing LWK scalability or the support for

full POSIX/Linux APIs;

• Specifically, we propose the concept of unified address
space and detail the mechanism of device file mappings

which both are key factors to seamless device driver

reuse;

• As opposed to previous claims [18], we demonstrate

that offloading certain system calls does not obstruct

scalable performance in a hybrid kernel setting;

• And, to the best of our knowledge for the first time, we

provide a rigorous evaluation of a hybrid HPC kernel

at scale.

We find that IHK/McKernel does not only succeed in

containing the OS noise of Linux when running in-situ tasks

(providing up to an order of magnitude less performance

variation of certain MPI collective operations than that on

Linux), but it also outperforms Linux on various applications

even without competing workloads.

The rest of this paper is organized as follows. We begin

with providing background information in Section II. Sec-

tion III discusses design issues of address space sharing and

transparent device driver support. Experimental evaluation

is given in Section IV. Section V surveys related work, and

finally, Section VI concludes the paper.

1042

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

In order to provide the basis for discussion on device

drivers, we first present background information on the

IHK/McKernel hybrid stack. An architectural overview of

the main system components is shown in Figure 2.

At the heart of the stack is a low-level software infras-

tructure called Interface for Heterogeneous Kernels (IHK)

[11]. IHK is a general framework that provides capabilities

for partitioning resources in a many-core environment (e.g.,

CPU cores and physical memory) and it enables manage-

ment of lightweight kernels. Note that IHK can allocate

and release host resources dynamically and no reboot of

the host machine is required when altering configuration.

The latest version of IHK is implemented as a collection

of kernel modules without any modifications to the kernel

code itself, which enables straightforward deployment on

a wide range of Linux distributions. Besides resource and

LWK management, IHK also provides an Inter-Kernel Com-

munication (IKC) layer, upon which system call delegation

is implemented (see Section III for further details).

McKernel is a lightweight kernel written from scratch. It

is designed for HPC and it is booted from IHK. McKernel

retains a binary compatible ABI with Linux, however, it

implements only a small set of performance sensitive system

calls and the rest are delegated to Linux. Specifically,

McKernel has its own memory management, it supports

processes and multi-threading with a simple round-robin co-

operative (tick-less) scheduler, and it implements signaling.

It also allows inter-process memory mappings and it pro-

vides interfaces to hardware performance counters.

���������
�
�
�
�
�

������
�
�
�
�
�

����������������������
�

�������������
�������������

�	��������� ���
�

�������������
�����

���������������	
���

�
�
����
�������

	�������������
�

�������������
�����

���������
����
���

������

���

�����

���

������������� ���

����

���

� � ��
���������������

!� !�

�������
����
����

Figure 2. Overview of the IHK/McKernel architecture and the system
call delegation mechanism.

For each process running on McKernel there is a process

created on the Linux side, which we call the proxy-process.

The proxy process’ central role is to facilitate system call

offloading. Essentially, it provides execution context on

behalf of the application so that offloaded calls can be

directly invoked in Linux. The proxy process also enables

Linux to maintain certain state information that would have

to be otherwise kept track of in the LWK. McKernel for

instance has no notion of file descriptors, but rather it simply

returns the number it receives from the proxy process when a

file is opened. The actual set of open files (i.e., file descriptor

table, file positions, etc..) are managed by the Linux kernel.

We emphasize that IHK/McKernel runs HPC applications

primarily on the LWK to achieve noiseless execution but

the full Linux API is available via system call delegation.

III. DESIGN AND IMPLEMENTATION

This section details two important aspects of the Linux

and McKernel symbiosis. First we introduce the notion

of unified address space between the application and its

corresponding proxy process. We then discuss how device

drivers are made accessible to McKernel.

A. Unified Address Space

To motivate the need for unified address space, we begin

with a more detailed description of the system call offloading

mechanism, which is illustrated in Figure 2. During system

call delegation McKernel marshalls the system call number

along with its arguments and sends a message to Linux via

a dedicated IKC channel. The corresponding proxy process

running on Linux is by default waiting for system call

requests through an ioctl() call into IHK’s system call

delegator kernel module. The delegator kernel module’s IKC

interrupt handler wakes up the proxy process, which returns

to userspace and simply invokes the requested system call.

Once it obtains the return value, it instructs the delegator

module to send the result back to McKernel, which subse-

quently passes the value to user-space.

Notice, however, that certain system call arguments may

be merely pointers (e.g., the buffer argument of a read()

system call) and the actual operation takes place on the

contents of the referred memory. Thus, the main problem

is how the proxy process on Linux can resolve virtual

addresses in arguments so that it can access the memory

of the application running on McKernel.

�
�
�
�

����������	��	
����

	���
���

����

�
�
�
�
�
�
�
�
�

��������������

�����	��	

�������	����������
�

�����	�����

�����	��	

�������	���������������������	���
�������

���
�����������
��
���
	�	��������

�	����
��	���

�
���
�
�
�

�
�

��	��
�
�

���������
�	�������������

�	����
��	���

�
�
�����	�����

��
���
	�	��������

�
�

�
�
�
�
�

�
�

�	����
��	���

Figure 3. Conceptual overview of the unified address space between
the application and its corresponding proxy process.

The unified address space model in IHK/McKernel en-

sures that offloaded system calls can seamlessly resolve

arguments even in case of pointers. This mechanism is

depicted in Figure 3 and it is implemented as follows. First,

the proxy process is compiled as a position independent

binary, which enables us to map the code and data segments

1043

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

specific to the proxy process to an address range which is

explicitly excluded from McKernel’s user space. The red box

on the right side of the figure demonstrates the excluded

region. Second, the entire valid virtual address range of

McKernel’s application user-space is covered by a special

mapping in the proxy process for which we use a pseudo

file mapping in Linux. This mapping is indicated by the

green, dashed box on the left side of the figure.

Note, that the proxy process does not need to fill in any

virtual to physical mappings at the time of creating the

pseudo mapping and it remains empty unless an address is

referenced. Every time an unmapped address is accessed,

however, the page fault handler of the pseudo mapping

consults the page tables corresponding to the application

on the LWK and maps it to the exact same physical

page. Such mappings are demonstrated in the figure by

the small boxes on the left labeled as faulted page. This

mechanism ensures that the proxy process, while executing

system calls, has access to the same memory content as the

application. Needless to say, Linux’ page table entries in the

pseudo mapping have to be occasionally synchronized with

McKernel, for instance, when the application calls munmap()

or modifies certain mappings.

B. Device Driver Transparency

Applications running on UNIX like operating systems

normally interact with devices either through I/O system

calls (e.g., read(), write(), ioctl(), etc.) on dedicated

device files or by mapping device memory directly into user-

space.

���������
�

�	�
��
�

�����

�	������
�

������
�������
�

������������������

�	
�����

�����	���

����������������
&�����������������'�

���������

�����	������

�����	���

�����
����������

���
����

��

�	
�����

�

�

	������

�

(�

)�

*�

(+�

,�
�������

�������
��
�

����������

����
���
�����	��

��	�������

����
��
���
���

�����	��

�

-� ������������

.� �������
�
�

/�

�����

����
&������

)

0� ��
��	�����������
��������

1�

((������	��
�� �

Figure 4. Mapping device files in McKernel.

We have already mentioned that McKernel does not

implement I/O calls, but instead, it forwards them to Linux.

Thus, with the help of unified address space applications

running on McKernel can transparently interact with devices

using I/O system calls. What is more challenging in a hybrid

kernel setting, however, is to provide support for memory

mapped device files. We have carefully designed IHK and

McKernel in a way so that devices can be memory mapped

without any modification to existing driver code.

Figure 4 demonstrates the main steps of mapping device

files in McKernel, which can be summarized as follows. 1©
The application invokes the mmap() system call on a device

file and 2© McKernel forwards the request to the delegator

IHK component in Linux. 3© The kernel module memory

maps the device file into the proxy process’ address space

and creates a tracking object that will be used to serve future

page faults. 4© Linux replies to McKernel so that 5© it can

also allocate its own virtual memory range in the address

space of the application. Note that in the proxy process

(on the Linux side) the entire valid user-space of the actual

application is covered by the unified address space’s pseudo

mapping and thus the two mappings result in different virtual

addresses.

The most important observation, however, is that although

the virtual memory ranges in Linux and in McKernel are

different, the proxy process on Linux will never access

its mapping, because the proxy process never runs actual

application code. Rather, the following steps occur. 6© The

application accesses an address in the mapping; and 7©
causes a page fault. 8© McKernel’s page fault handler knows

that the device mapping requires special attention and it

requests the IHK module on Linux to 9© resolve the physical

address based on the tracking object and the offset in the

mapping. 10© Linux replies the request and 11© McKernel fills

in the missing page table entry.

It is worth pointing out that in modern high performance

networks (such as Infiniband [19]) device mappings are

usually established in application initialization phase and the

actual interaction with the device is comprised of mostly

regular load/store instructions carried out entirely in user-

space.

IV. EVALUATION

A. Experimental Environment

All experiments were performed on a middle size cluster

comprised of 64 compute nodes. Each node is equipped with

a two sockets 2.8GHz Intel R© Xeon R© CPU E5-2680 (10

cores per socket) and 64GB of RAM arranged in two NUMA

domains (i.e., ten CPU cores each). Additionally, there are

two types of interconnection networks available on each

compute node, Gigabit Ethernet and Mellanox Technologies

MT27600 Connect-IB FDR 56 Gb/s.

The software environment we used is as follows. Compute

nodes run Red Hat Enterprise Linux ComputeNode Release

6.5 with Linux kernel version 2.6.32. For McKernel mea-

surements we utilized IHK’s dynamic partitioning feature to

reserve CPU cores and physical memory. In all experiments,

we used the MVAPICH 2.2a MPI distribution with Intel

Compiler version 16.0.0. For measurements that involve in-

situ workloads, we ran Hadoop version 2.7.1 with some of

the builtin benchmarks as well as the pagerank workload

from the HiBench benchmark suite [20]. We emphasize that

there is absolutely no need to modify applications in order to

1044

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

!������

�������

�������

	������

�������

������

�������

�������
�� ��
�

�

�

��
��

�

��

�

��

�	

�

��
��

	�
	�

	

��

	

��

�	
��

��

�

��
��
��
��
	

��

��
��

�
��
�

����
�����

(a) Linux+cgroup

�������

�������

�������

	������

�������

������

�������

�������

�� ��
�

�

�

��
��

�

��

�

��

�	

�

��
��

	�
	�

	

��

	

��

�	
��

��

�

��
��
��
��
	

��

��
��

�
��
�

����
�����

(b) McKernel

�������

�������

�������

	������

�������

������

�������

�������

�� ��
�

�

�

��
��

�

��

�

��

�	

�

��
��

	�
	�

	

��

	

��

�	
��

��

�

��
��
��
��
	

��

��
��

�
��
�

����
�����

(c) Linux+cgroup with Hadoop

�������

�������

�������

	������

�������

������

�������

�������

�� ��
�

�

�

��
��

�

��

�

��

�	

�

��
��

	�
	�

	

��

	

��

�	
��

��

�

��
��
��
��
	

��

��
��

�
��
�

����
�����

(d) Linux+cgroup+isolcpus with
Hadoop

�������

�������

�������

	������

�������

������

�������

�������

�� ��
�

�

�

��
��

�

��

�

��

�	

�

��
��

	�
	�

	

��

	

��

�	
��

��

�

��
��
��
��
	

��

��
��

�
��
�

����
�����

(e) McKernel with Hadoop

Figure 5. FWQ noise measurements for Linux and McKernel with and without competing Hadoop workload.

run them on McKernel and we used the exact same binaries

for measurements running on top of Linux and our stack.

Furthermore, we have done no modifications to the MPI
library either and access to the Infiniband network is assured

by McKernel’s transparent device driver support.

We were curious to assess mainly two aspects of

IHK/McKernel. First, we compare the scalability of various

micro-benchmarks and mini applications depending on the

underlying operating system (Linux versus McKernel), both

in terms of absolute runtime as well as in performance

variation across multiple runs. Second, we seek to character-

ize McKernel’s ability to provide consistent performance of

HPC simulations in face of in-situ, competing workloads.

Co-locating data analytics with HPC has been reportedly

gaining importance [2] and this study focuses on the ability

of the operating system to avoid interference by the analytics

workload and to ensure noiseless execution environment for

HPC simulations. In addition, part of our experiments is

demonstrating to what extent Linux can succeed in isolating

operating system noise depending on various configuration

options. It is worth emphasizing that we do not focus on the

in-situ workload itself and we simply deploy representative

data analytics applications. Investigating, for instance, how

far Hadoop performance is affected by co-located simu-

lations falls outside the scope of this paper. Furthermore,

we do not explicitly deal with communication between the

simulation and in-situ processes and simply assume that a

straightforward shared memory segment would be sufficient.

In order to provide fair comparison, in all experiments

that contrast Linux and McKernel it is ensured that ap-

plications run on the exact same set of CPU cores and

use the same NUMA memory domain for both operating

systems. Specifically, HPC simulations are always bound to

the physical memory and CPU cores of NUMA node one,

running either on Linux or McKernel, while Hadoop runs on

Linux bound to NUMA node zero (unless stated otherwise).

When running IHK/McKernel, this arrangement translates

to running McKernel on top of 9 CPU cores in NUMA

node one and assigning the remaining single core to the

proxy process. It is also worth pointing out that Infiniband

is exclusively used by HPC simulations and Hadoop utilizes

Gigabit Ethernet so that network traffic between the two

types of workloads is completely isolated.

B. Results

1) Single Node OS Noise: The first set of experiments we

performed was to compare OS noise of Linux and McKernel

both with and without in-situ workloads. We used the Fixed

Work Quantum (FWQ) test from the ASC Sequoia Bench-

mark Codes [21]. The FWQ benchmark measures hardware

and software interference by repetitively performing a fixed

amount of work (the work quanta), measuring the time

necessary to complete the task.

We measured multiple 30 seconds intervals and report the

values where OS noise was the most significant, because

we are interested in the worst case scenario. Figure 5

indicates the results. We ran five configurations. In the

measurements without in-situ workloads we simply compare

RedHat Linux and McKernel (shown in Figure 5a and Figure

5b, respectively). While in case of McKernel IHK explicitly

reserves CPU cores and memory for the LWK, for Linux

we used the cgroup facility to ensure the tests run under the

same hardware conditions. As seen, although Linux provides

a fairly low OS noise when idle, McKernel’s values are

virtually constant. This was expected, because McKernel

runs no device drivers, it is tick-less and features only a co-

operative scheduler, which together eliminate any undesired

asynchronous kernel events.

What is more interesting, however, is to assess the effect

of an in-situ, competing workload. We co-locate Hadoop

in this test and compare two Linux configurations with

McKernel. The Linux+cgroup setup indicates that FWQ is

pinned to specific CPU cores, but there is no restriction

on where Hadoop processes execute. On the other hand,

for the Linux+cgroup+isolcpus scenario we use the Linux

kernel’s isolcpus kernel argument to exclude specific CPU

cores from the core Linux scheduler. FWQ is then ex-

plicitly run on those cores. The expected effect of this

configuration is much better performance isolation, because

Linux is prohibited to schedule any processes on the des-

ignated cores (unless it is explicitly instructed to do so

via cgroup or taskset, etc.). As seen, the Linux+cgroup
configuration (Figure 5c) is most effected by the Hadoop

workload experiencing up to 16X slowdown compared to

the expected value. Linux+cgroup+isolcpus (Figure 5d) does

improve the situation by a good margin, but it still shows

significant variation. On the other hand, as shown in Figure

1045

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

��

�����

�����

�����

�����

������

������

������
�� �� �� ��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
��
��

�
��
��

�
��
��
��

��
��
��

��
��
��

��
��

��
��
��
��
��

��
	

��
�

��

�

�

�������������������
�

������ ����	��
�

"��

���

#��

���

��

���

�� �� �� ��� ��� ��� ���� �	�� 	���

(a) MPI_Scatter

�

�

�

�

�

�

�

�

�

�

��

�

�� �� �� �

�

��
�

�
�

��
��

��

�

��
��

��
��

��
��

��
��

��
��

�

��

�
��
��

�

�
��

�
��
��
��

��

�
��

��
��
��

��
��

��
��
��
��
��

��
	

��
�

��

�

�

�������������������
�

������ �������
�

����
����
����
����
��

����
����

�� �� �� ��� ��� ��� ���� �	�� 	���

(b) MPI_Gather

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�� �� �

�

��
�

�
�

��
��

��

�

��
��

��
��

��
��

��
��

��
��

�

��

�

��
��

�

�
��

�

��
��
��

��

�
��

��
��
��

��
��

��
��
��
��
��

��
	

��
�

��

�

�

�������������������
�

������ �������
�

����
����
����
����
����
����
����

�� 	� �
� ���
�� ��	� ��
� ����

(c) MPI_Reduce

��

���

����

����

����

�����

�
���

�����

�����

�����

�� �� ��
�

�

�

��
�

�

��

�
��

��

�

��
��

�
��

��
��

��
��

��
��

�

�

��

�

��
��

�

�

��
��

�
��
��

��

�
��

��
��

��
��
��
��
��

��
	

��
�

��

�

�

�������������������
�

������ �������
�

��
��
���
���
���
���
���

�� �� �
� ���
�� ���� ��
� ����

(d) MPI_Allreduce

��

�����

������

������

�����

�����

� �� �� ��
�

�

�

��
�

�

��

�
��

��

�

��
��

�
��

��
��

��
��

��
��

�
�

��

�
��
��

�
�

��
��

�
��
��

��

�
��

��
��

��
��
��
��
��

��
	

��
�

��

�

�

�������������������
�

������ �������
�

��

���

���

��

���

�� �� �� �
� ���
�� ���� ��
� ����

(e) MPI_Allgather

��

�����

������

������

�����

�����

������

������

������

� �� �� ��
�

�

�

��
�

�

��

�
��

��

�

��
��

�
��

��
��

��
��

��
��

�
�

��

�
��
��

�
�

��
��

�
��
��

��

�
��

��
��

��
��
��
��
��

��
	

��
�

��

�

�

�������������������
�

������ �������
�

��

���

����

����

����

�� �� �� �
� ���
�� ������
�����

(f) MPI_Alltoall

Figure 6. OSU MPI benchmark results for various collective operations. Measurements compare Linux with McKernel using 64 compute nodes.

5e, McKernel experiences no disturbance at all. Again, this

was highly expected since IHK/McKernel separates the two

workloads at the OS kernel level.
2) MPI Collective Communication: The next set of mea-

surements focus on communication scalability and the im-

pact of in-situ workloads on communication performance.

To assess message passing scalability when running on top

of McKernel we measured various collective operations and

compared their performance to Linux. We emphasize again

that our main motivation for providing these measurements

is to demonstrate IHK/McKernel’s ability to enable trans-

parent access to the Infiniband network in a hybrid kernel

setting without any modifications to device drivers or to the

MPI library.
Specifically, we used the OSU benchmark suite from

the MVAPICH 2.2a distribution [22] and measured the

performance of collective operations using 64 nodes. Figure

6 indicates messaging latency as the function of message

size. We run each experiment 15 times and report the

average value with the error bars representing performance

variation. Generally, McKernel yields similar performance to

Linux with occasional differences. For instance, except for

a couple of cases we observe slightly better performance for

MPI_Scatter and MPI_Gather running on McKernel, shown

in Figure 6a and Figure 6b, respectively. On the other hand,

as Figure 6c reveals, MPI_Reduce yields somewhat better

values when running on Linux especially for small mes-

sages. Measurements for MPI_Allreduce, MPI_Allgather

and MPI_Alltoall are indicated by Figures 6d, 6e and 6f,

respectively. As earlier, both OS yield similar performance

results for most message sizes, for some messages McKernel

slightly outperforming Linux. Nevertheless, the most impor-

tant observation across all measurements is the visibly lower

performance variation of McKernel, which indicates smaller

OS jitter and thus a more consistent execution.

Furthermore, the difference between performance varia-

tions over Linux and McKernel becomes much more pro-

nounced when introducing in-situ workloads. Hadoop was

configured to involve all 64 nodes in computation and we

used the same Linux configurations for isolating applications

as described previously.

Because we did not observe significant changes in average

performance compared to the baseline experiments, we focus

plainly on variation. Figure 7 depicts the results, where

the Y axis indicates the maximum variation in percentage

compared to the average value. As seen, in average across

all measurements, McKernel provides substantially lower

variation than Linux, yielding approximately 2− 6% versus

the Linux values that go up to 29%. Nevertheless, there

are cases where McKernel gets close or even becomes

slightly worse than the Linux+cgroup+isolcpus setup, es-

pecially for large messages in case of MPI_Reduce and

MPI_Allreduce, see Figure 7c and Figure 7e, respectively.

We have investigated the root cause for this phenomena and

found that for large message sizes the MPI implementation

often utilizes internal buffers which need to be registered

for Infiniband’s RDMA engine. Because the registration

1046

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

���

���

���

���

���

����

����
�� �� �� ��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
	�
��

�
��
��

�
��
��
��

�

��
��

�
��
��

��
��

��
��

��
��
��
��
��

	

��
��
	�

	
��

�

����	����
�����������

�
�������������

�
���������������
��������

���������

(a) MPI_Scatter

���

���

���

���

���

����

����

����

�� �� �� ��
�

	�
�

��
�

��
��

�

��

�
��

��
��

��
��

��
��

��
��

��
��

�
	�
��

�
��
��

�
��
��
��

�

��
��

�
��
��

��
��

�
	�

�

��
��
��
��
��

	

��
��
	�

	
��

�

����	����
�����������

�
�������������

�
���������������
��������

���������

(b) MPI_Gather

���

��

����

�
��

����

�
��

	���

�� �� ��
�

	�
�

��
�

��
��

�

��

�
��

��
��

��
��

��
��

��
��

��
��

�

	�
��

�

��
��

�

��
��
��

�

��
��

�
��
��

��
��

�
	�

�

��
��
��
��
��

	

��
��
	�

	
��

�

����	����
�����������

�
�������������

�
���������������
��������

���������

(c) MPI_Reduce

���

���

���

���

���

����

����

����

����

����

�� �� �� ��
�

	�
�

��
�

��
��

�

��

�
��

��
��

��
��

��
��

��
��

��
��

�
	�
��

�
��
��

�
��
��
��

�

��
��

�
��
��

��
��

�
	�

�

��
��
��
��
��

	

��
��
	�

	
��

�

����	����
�����������

�
�������������

�
���������������
��������

���������

(d) MPI_Allgather

���

��

����

�
��

����

�
��

	���

	
��

�� �� ��
�

	�
�

��
�

��
��

�

��

�
��

��
��

��
��

��
��

��
��

��
��

�

	�
��

�

��
��

�

��
��
��

�

��
��

�
��
��

��
��

�
	�

�

��
��
��
��
��

	

��
��
	�

	
��

�

����	����
�����������

�
�������������

�
���������������
��������

���������

(e) MPI_Allreduce

���

���

���

���

���

����

����

����

����

�� �� �� ��
�

	�
�

��
�

��
��

�

��

�
��

��
��

��
��

��
��

��
��

��
��

�
	�
��

�
��
��

�
��
��
��

�

��
��

�
��
��

��
��

�
	�

�

��
��
��
��
��

	

��
��
	�

	
��

�

����	����
�����������

�
�������������

�
���������������
��������

���������

(f) MPI_Alltoall

Figure 7. Performance variation of OSU MPI benchmarks collective operations co-located with competing Hadoop workload. Measurements
compare various Linux configurations with McKernel using 64 compute nodes.

operation is performed through a write() system call, it

gets offloaded even in case of McKernel. This is currently

an issue in our implementation, but making MPI aware of the

hybrid setting could easily solve the problem. Additionally, it

is also worth noting that certain hardware components (e.g.,

the last level cache) are shared, which we cannot control in

software. Another surprising result is the occasionally higher

variation of the Linux+cgroup+isolcpus setup compared to

Linux+cgroup (see Figure 7b), which suggests that even

using isolcpus, OS noise on Linux can be significant.

3) Mini Applications: In the next set of experiments

we turn our attention to application level performance. We

deployed the miniFE and HPC-CG miniapplications from

Sandia’s Mantevo suite [23] plus used Modylas and FFVC

from RIKEN’s Fiber miniapplications package [24]. These

applications cover a relatively wide set of domains ranging

from finite element computation (miniFE) through a more

focused sparse iterative solver (HPC-CG) via a molecular

dynamics simulation (Modylas) to a fluid dynamics code

(FFVC). All applications utilize MPI+OpenMP and we set

the number of threads per node to 8 (the largest number

which is power of two and still fits into one NUMA

domain on our platform). Note that miniFE and Modylas are

strong scaling, while HPC-CG and FFVC are weak scaling

applications.

The first measurements compare plain execution of ap-

plications, depicted by Figure 8. Again, we report average

execution time with error bars indicating variation. Much

to our surprise, McKernel slightly outperforms Linux for

most of the workloads yielding between 1 − 8% improve-

ment. Furthermore, one can also notice lower performance

variation, which is especially true for HPC-CG, shown in

Figure 8b. Performance counters revealed that McKernel

yields in average 1% and 3% less TLB and LLC misses,

respectively, which we suspect is the result of contiguous

physical memory behind anonymous mappings. Addition-

ally, it is our policy to have McKernel reinitialized between

subsequent executions so that each time the applications can

start from a clean and consistent kernel state.

The last set of experiments evaluates the IHK/McKernel

stack’s ability to prevent interference between HPC simula-

tions and co-located in-situ workloads. As mentioned earlier,

we ran HPC on NUMA domain one and various Hadoop

workloads on NUMA node zero. Figure 9 indicates the

results. In general, we found that HPC-CG and FFVC, see

Figure 9b and Figure 9d, respectively, were the most severely

affected by OS noise in particular when running under the

Linux+cgroup configuration. While Linux+cgroup+isolcpus
visibly decreases performance variation it fails to attain

the same level of workload isolation as McKernel. Thus,

the most important observation is that McKernel provides

substantially lower performance variation across all applica-

tions compared to the Linux runs. Specifically, the highest

variation across all workloads was 3.1X and 16% for the

Linux+cgroup, the Linux+cgroup+isolcpus configurations,

respectively, while McKernel yielded only 3% difference in

1047

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

��

���

���

���

���

���

���

���

���

�� �� �� 	��
�� ���

��
��
��

�
��
�
��
	

��

�
�

���
���
���
��
�

��
������������ �����
���

��

$�

��

��

��

��

��� ���

(a) miniFE

��	
�

��	��

���

��	��

��	��

��	
�

��	��

�� ��

� ���
��

��
��
��

�
��
�
��
	

��

�
�

���
���
���
��
�

��������������� ���������

�������

(b) HPC-CG

��

���

	���

	���

����

����

�� 	
�
��
��

��
��
��

�
��
�
��
	

��

�
�

���
���
���
��
�

���������������

���������

(c) Modylas

��

��

��

�	�

�
�

���

���

���

�	�

�
�

���

�� 	
�
��
��

��
��
��

�
��
�
��
	

��

�
�

���
���
���
��
�

��������������� ���������

�������

(d) FFVC

Figure 8. Various MiniApp performance comparing Linux and McKernel. Note that for clarity, the right side figures’ Y axis are clipped.

the worst case. It is also worth noting that although 64 nodes

is still a relatively small scale compared to current high-end

systems, moving to larger scales would further exacerbate

the issue of interference.

V. RELATED WORK

Lightweight Kernels: Lightweight kernels specifically de-

signed for HPC workloads date back over 20 years now.

Catamount [6] from Sandia National Laboratories was one

of the notable systems which has been developed from

scratch and successfully deployed on a large scale su-

percomputer. The IBM BlueGene line of supercomputers

have also been running an HPC targeted lightweight kernel

called CNK [7]. Nevertheless, CNK borrows a significant

amount of code from Linux (e.g., glibc, NPTL) so that

it can comply with elaborate Unix features, which have

been increasingly demanded by the growing complexity of

nowadays’ HPC applications. The most current in Sandia

National Lab’s lightweight compute node kernels line of

effort is Kitten [8], which distinguishes itself from their

prior LWKs by providing a more complete Linux-compatible

user environment. It also features a virtual machine monitor

capability via Palacios [25] that allows full-featured guest

OSs. However, with the ever growing appetite for full

Unix/POSIX feature compatibility from the application side,

it has become increasingly difficult to support all these

features without compromising the primary goal of LWK

performance.

On the other end of the lightweight kernel spectrum

are kernels which originate from Linux, but have been

heavily modified to meet HPC requirements ensuring low

noise, scalability and predictable application performance.

Cray’s Extreme Scale Linux [4] and ZeptoOS [5] follow this

approach. They often employ techniques, such as eliminating

daemon processes, simplifying the scheduler or replacing

the memory management system. There are mainly two

problems with the Linux approach. First, the heavy mod-

ifications occasionally break Linux compatibility, which is

highly undesired. Second, because HPC tends to follow rapid

hardware changes that need to be reflected in kernel code,

Linux often falls behind with the necessary updates which

results in an endless need for maintaining Linux patches.

Hybrid Kernels for HPC: FusedOS [26] was the first

proposal to combine Linux with an LWK. It’s primary objec-

tive was addressing core heterogeneity between system and

application cores and at the same time providing a standard

operating environment. Contrary to McKernel, FusedOS

runs the LWK at user level. In the FusedOS prototype, the

kernel code on the application core is simply a stub that

offloads all system calls to a corresponding user-level proxy

process called CL. The proxy process itself is similar to

that in IHK/McKernel, but in FusedOS the entire LWK is

implemented within the CL process on Linux. The FusedOS

work was the first to demonstrate that Linux noise can be

isolated to the Linux cores and avoid interference with the

1048

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

��

��

��

��

���

���

���

���

���

�� ��
�� ��� ���

��
��
��

�
��
�
��
	

��

�
�

���
���
���
��
�

��������������� �������������������������� ��	
��
��

��

��
�

��

��
�

��

����

��

��� ���

(a) miniFE

�	�

�
�

	�

�

�	�

�
�

�	�

�
�

	�

�

�	�

��
� ��� ��� ���

��
��
��

�
��
�
��
	

��

�
�

���
���
���
��
�

��������������� �������������������������� ��	
��
��

�����	�

(b) HPC-CG

	�

	�

�		�

�
	�

�		�

�
	�

�� ��� ��� ���

��
��
��

�
��
�
��
	

��

�
�

���
���
���
��
�

��������������� �������������������������� ��	
��
��

���

�
�

���

�	�

���

���

���

���

���

��

(c) Modylas

�	�

���

���

���

���

	�

��

��

��

��

�	�

�� ��� ��� ���

��
��
��

�
��
�
��
	

��

�
�

���
���
���
��
�

��������������� �������������������������� ��	
��
��

�����	�

(d) FFVC

Figure 9. The effect of competing Hadoop workload on various MiniApp performance. Note that for clarity, the right side figures’ Y axis are clipped.

HPC application running on the LWK cores. This property

has been also one of the main driver for the McKernel model.

From more recent hybrid kernels, one of the most similar

efforts to our work is Intel’s mOS project [9], [17]. The most

important difference between McKernel and mOS is the way

how LWK and Linux are integrated. mOS takes a path of

much stronger integration with the intention of minimizing

LWK development and to directly take advantage of the

Linux infrastructure. Nevertheless, this approach comes at

the cost of Linux modifications and an increased complexity

of eliminating OS noise.

Hobbes [12] is one of the DOE’s ongoing Operating

System and Runtime (OS/R) framework for extreme-scale

systems. The central theme of the Hobbes design is to ex-

plicitly support application composition, which is emerging

as a key approach for applications to address scalability

and power concerns anticipated with coming extreme-scale

architectures. Hobbes also makes use of virtualization tech-

nologies to provide the flexibility to support requirements

of application components for different node-level operating

systems and runtimes. At the bottom of the software stack,

Hobbes relies on Kitten [8] as its LWK component, on top of

which Palacios [25] is in charge to serve as a virtual machine

monitor. As opposed to IHK/McKernel, Hobbes separates

Linux and Kitten at the PCI device level, which imposes

difficulties both for providing a full POSIX API and the

necessary driver support in the LWK.

Argo [10] is another DOE OS/R project targeted at appli-

cations with complex work flows. Argo envisions using OS

and runtime specialization (via enhanced Linux containers)

inside compute nodes. In Argo’s architecture, each node

may contain a heterogeneous set of compute resources,

a hierarchy of memory types with different performance

(bandwidth, latency) and power characteristics. Given such

a node architecture, Argo expects to use a ServiceOS like

Linux to boot the node and run management services. It then

expects to run different container instances that cater to the

specific needs of applications.

Operating System Noise: OS noise has been shown to

be a key limiter of application scalability in high-end sys-

tems. For example, Beckman et. al investigated the effect

of OS jitter on collective operations and concluded that

performance is often correlated to the largest interruption

to the application [27]. Ferreira et. al used a kernel-based

noise injection mechanism to characterize the effect of OS

noise on application performance [28], while Hoefler et. al

used a simulation to study the same subject [29]. Although

these studies help to understand OS noise in a standalone

setting, we are focusing on hybrid kernels and in particular,

on the effect of in-situ workloads. A very recent study has

investigated similar issues in the context of the Hobbes

project [18], due to the lack of device drivers in the Kitten

LWK, however, the authors could only provide single node

measurements when using their lightweight kernel.

1049

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION AND FUTURE WORK

Hybrid kernel architectures have received a great deal of

attention recently due to their potential for addressing many

of the challenges system software faces as we move towards

exascale and beyond. However, many questions regarding

how multiple kernels interplay remain open.

This paper has presented IHK/McKernel, a hybrid

Linux+LWK OS stack that provides LWK capabilities for

noiseless execution of HPC simulations, retains the full

POSIX/Linux APIs and enables transparent access to Linux

device drivers. At the same time, it requires no modifications

to the Linux kernel. McKernel outperforms Linux on a range

of applications and it can successfully avoid interference

between HPC simulations and competing in-situ workloads.

In the future, we will further investigate eliminating the

RDMA registration issue and we also intend to evaluate

IHK/McKernel on much larger scale.

ACKNOWLEDGMENT

This work has been partially funded by MEXT’s program

for the Development and Improvement of Next Generation

Ultra High-Speed Computer Systems.

We acknowledge Toshihiro Hanawa and Kengo Nakajima

from the University of Tokyo for letting us use the KNSC

cluster and for their technical support and assistance.

REFERENCES

[1] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling In-situ Execution of Coupled Scientific Work-
flow on Multi-core Platform,” in Proceedings of IPDPS’12, May
2012, pp. 1352–1363.

[2] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J.
Desnoyers, and Y. Solihin, “Active Flash: Towards Energy-efficient,
In-situ Data Analytics on Extreme-scale Machines,” in Proceedings
of FAST’13. Berkeley, CA, USA: USENIX Association, 2013, pp.
119–132.

[3] S. Oral, F. Wang, D. A. Dillow, R. Miller, G. M. Shipman,
D. Maxwell, D. Henseler, J. Becklehimer, and J. Larkin, “Reducing
Application Runtime Variability on Jaguar XT5,” in Proceedings of
CUG’10, 2010.

[4] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging
the Cray Linux Environment Core Specialization Feature to Realize
MPI Asynchronous Progress on Cray XE Systems,” in Proceedings
of CUG’12, 2012.

[5] K. Yoshii, K. Iskra, H. Naik, P. Beckmanm, and P. C. Broekema,
“Characterizing the Performance of Big Memory on Blue Gene
Linux,” in Proceedings of ICPPW’09. IEEE Computer Society,
2009, pp. 65–72.

[6] S. M. Kelly and R. Brightwell, “Software architecture of the light
weight kernel, Catamount,” in Proceedings of CUG’05, 2005, pp.
16–19.

[7] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski, “Expe-
riences with a Lightweight Supercomputer Kernel: Lessons Learned
from Blue Gene’s CNK,” in Proceedings of SC ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[8] “Kitten: A Lightweight Operating System for Ultrascale Supercom-
puters (Accessed: Sep, 2015),” https://software.sandia.gov/trac/kitten.

[9] R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen,
“mOS: An Architecture for Extreme-scale Operating Systems,” in
Proceedings of ROSS ’14. New York, NY, USA: ACM, 2014, pp.
2:1–2:8.

[10] “Argo: An Exascale Operating System (Accessed: Sep, 2015),” http:
//www.mcs.anl.gov/project/argo-exascale-operating-system.

[11] T. Shimosawa, B. Gerofi, M. Takagi, G. Nakamura, T. Shirasawa,
Y. Saeki, M. Shimizu, A. Hori, and Y. Ishikawa, “Interface for
Heterogeneous Kernels: A Framework to Enable Hybrid OS Designs
targeting High Performance Computing on Manycore Architectures,”
in Proceedings of HiPC ’14, Dec 2014, pp. 1–10.

[12] R. Brightwell, R. Oldfield, A. B. Maccabe, and D. E. Bernholdt,
“Hobbes: Composition and Virtualization As the Foundations of an
Extreme-scale OS/R,” in Proceedings of ROSS’13. New York, NY,
USA: ACM, 2013, pp. 2:1–2:8.

[13] B. Gerofi, A. Shimada, A. Hori, and Y. Ishikawa, “Partially Separated
Page Tables for Efficient Operating System Assisted Hierarchical
Memory Management on Heterogeneous Architectures,” in Proceed-
ings of CCGRID’13, May 2013, pp. 360–368.

[14] Y. Soma, B. Gerofi, and Y. Ishikawa, “Revisiting Virtual Memory for
High Performance Computing on Manycore Architectures: A Hybrid
Segmentation Kernel Approach,” in Proceedings of ROSS ’14. New
York, NY, USA: ACM, 2014, pp. 3:1–3:8.

[15] B. Gerofi, A. Shimada, A. Hori, T. Masamichi, and Y. Ishikawa,
“CMCP: A Novel Page Replacement Policy for System Level Hi-
erarchical Memory Management on Many-cores,” in Proceedings of
HPDC’14. New York, NY, USA: ACM, 2014, pp. 73–84.

[16] J. A. Zounmevo, S. Perarnau, K. Iskra, K. Yoshii, R. Gioiosa, B. C. V.
Essen, M. B. Gokhale, and E. A. Leon, “A Container-Based Approach
to OS Specialization for Exascale Computing,” in Proceedings of
WoC’15, March 2015.

[17] B. Gerofi, M. Takagi, Y. Ishikawa, R. Riesen, E. Powers, and R. W.
Wisniewski, “Exploring the Design Space of Combining Linux with
Lightweight Kernels for Extreme Scale Computing,” in Proceedings
of ROSS’15. ACM, 2015, pp. 5:1–5:8.

[18] J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti, “Achieving
Performance Isolation with Lightweight Co-Kernels,” in Proceedings
of HPDC’15. New York, NY, USA: ACM, 2015, pp. 149–160.

[19] “InfiniBand Trade Association. InfiniBand Architecture Specification,
Release 1.2.”

[20] “HiBench Suite: The bigdata micro benchmark suite.” https://github.
com/intel-hadoop/HiBench.

[21] “Fixed Time Quantum and Fixed Work Quantum Tests (Accessed:
Sep, 2015),” https://asc.llnl.gov/sequoia/benchmarks.

[22] “MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE (Ac-
cessed: Sep, 2015),” http://mvapich.cse.ohio-state.edu/.

[23] “Mantevo Suite (Accessed: Sep, 2015),” https://mantevo.org/default.
php.

[24] “Fiber MiniApp Suite (Accessed: Sep, 2015),” http://fiber-miniapp.
github.io/.

[25] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell, “Palacios
and Kitten: New high performance operating systems for scalable
virtualized and native supercomputing,” in Proceedings of IPDPS’10,
April 2010, pp. 1–12.

[26] Y. Park, E. Van Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg,
K. D. Ryu, and R. Wisniewski, “FusedOS: Fusing LWK Performance
with FWK Functionality in a Heterogeneous Environment,” in Pro-
ceedings of SBAC-PAD’12, Oct 2012, pp. 211–218.

[27] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The Influence of
Operating Systems on the Performance of Collective Operations at
Extreme Scale,” in Proceedings of Cluster’16, Sept 2006, pp. 1–12.

[28] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing Ap-
plication Sensitivity to OS Interference Using Kernel-level Noise
Injection,” in Proceedings of SC’08. Piscataway, NJ, USA: IEEE
Press, 2008, pp. 19:1–19:12.

[29] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the In-
fluence of System Noise on Large-Scale Applications by Simulation,”
in Proceedings of SC’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–11.

1050

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:18:44 UTC from IEEE Xplore. Restrictions apply.

