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ABSTRACT

Lightweight kernel (LWK) operating systems (OS) in high-end su-
percomputing have a proven track record of excellent scalability.
However, the lack of full Linux compatibility and limited availabil-
ity of device drivers in LWKs have prohibited their wide-spread
deployment. Multi-kernels, where an LWK is run side-by-side with
Linux on many-core CPUs, have been proposed to address these
shortcomings. In a multi-kernel system the LWK implements only
performance critical kernel services and the rest of the OS func-
tionality is offloaded to Linux. Access to device drivers is usually
attained via offloading. Although high-performance interconnects
are commonly driven from user-space, there are networks (e.g.,
Intel’s OmniPath or Cray’s Gemini) that require device driver in-
teraction for a number of performance sensitive operations, which
in turn can be adversely impacted by system call offloading.

In this paper, we propose PicoDriver, a novel device driver archi-
tecture for multi-kernels, where only a small part of the driver (i.e.,
the performance critical piece) is ported to the LWK and access to
the rest remains transparent via Linux. Our solution requires no
modifications to the original Linux driver, yet it enables optimiza-
tion opportunities in the lightweight kernel. We implemented this
system in the IHK/McKernel multi-kernel OS and demonstrate that
on 16,384 Intel Knight’s Landing (KNL) CPU cores (interconnected
by OmniPath network) we can outperform Linux by up to 30% on
various mini-applications.
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1 INTRODUCTION

Lightweight kernel (LWK) [37] operating systems (OS) specifically
designed for high-performance computing (HPC) workloads have
been successfully deployed on a number of large-scale supercomput-
ers. For example, Cougar [8] and Catamount [21], two LWKs that
originate from the SUNMOS [38] and PUMA [41] OSes developed
at Sandia National Laboratories and the University of New Mexico,
were the default compute partition operating systems of the ASCI
Red and Red Storm supercomputers, respectively. IBM’s Compute
Node Kernel (CNK) [17, 28] is another notable lightweight kernel
that has been running on the BlueGene line of supercomputers
with its latest reincarnation on the BG/Q still in production.

Lightweight kernels have a proven track record of excellent scal-
ability, predictable performance, and the potential for providing a
fertile ground for rapid experimentation with novel OS concepts
due to their relatively simple code base [7, 8, 13, 30, 36]. However,
the lack of device driver support in lightweight kernels and the
limited compatibility with the standard POSIX/Linux APIs have
prohibited their wide-spread deployment. Indeed, it has been re-
ported that the main obstacle for carrying out large-scale evaluation
of Kitten [27], the latest of the Sandia line of lightweight kernels,
has been the lack of support for Infiniband networks [30]. At the
same time, neither Catamount nor the IBM CNK provides full com-
patibility for a POSIX compliant glibc, limiting the availability of
standard system calls, such as fork() [17]. Although the lack of full
POSIX/Linux support has been increasingly becoming problematic
with the recent shift to more diverse workloads in supercomput-
ing environments (e.g., Big Data analytics and machine learning,
etc. [3]), the unavailability of device drivers has been undoubtedly
one of the major hindrances for LWKs’ stronger dominance.
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As a matter of fact, porting device drivers from one operating
system to another can be a daunting task. While in essence the
driver does nothing more than providing high level interfaces to the
hardware, the underlying implementation of those functionalities
can be substantially entangled with the internals of the specific OS.
For example, a Linux device driver usually complies with the Linux
device model, which provides facilities for device classes, hotplug-
ging, power management and system shutdown, communication
with user-space, and synchronization, etc. [10]. Linux device drivers
implement file operations with callback functions registered to the
Linux Virtual File System (VFS) layer and they often provide device
specific entries in pseudo file systems such in /proc or /sys. Unless
there is straightforward one-to-one mapping for these abstractions
between the two operating systems, porting device drivers may
demand significant development efforts. Needless to say, most of
these kernel facilities do not exist in typical lightweight kernels.
To some extent that is exactly one of the main merits of an LWK,
i.e., keeping kernel internals simple and focusing on performance.
Unfortunately, this renders porting a complete device driver to an
LWK a major undertaking.

However, with the advent of multi-, and many-core CPUs, multi-
kernel operating systems have been proposed to address the afore-
mentioned shortcomings of LWKs [14, 16, 26, 30, 31, 42]. In a multi-
kernel system, Linux and a lightweight kernel is run side-by-side on
compute nodes with the motivation to provide LWK performance
and scalability, to retain full compatibility with the Linux/POSIX
APIs, and to reuse device drivers from Linux at the same time. The
LWK component usually implements only a subset of OS services,
i.e., the performance sensitive ones, and the Linux provided kernel
facilities are attained via some form of co-operation between the
two kernels. There have been multiple proposed solutions for in-
teraction between the two kernels, for example using system call
offloading or directly migrating execution contexts across kernel
boundaries [16, 26]. While this inter-kernel communication (IKC)
usually comes with additional overhead, the basic idea is that IKC
takes place only in slow path operations and thus the extra overhead
is irrelevant.

With respect to high-performance interconnects, multi-kernels
excessively rely on the fact that most of the performance sensitive
network operations are driven entirely from user-space, also known
as OS bypass [2]. Therefore, involving Linux only at the time of
device initialization or other infrequent administrative operations
is a viable approach. Unfortunately, there are high-performance
networks that do involve system calls (i.e., invocations that need to
be offloaded to Linux) in performance sensitive operations as well.
For example, both Intel’s OmniPath [5] and Cray’s Gemini [1] net-
works need device driver involvement for Remote Direct Memory
Access (RDMA) transfers of large messages. Mellanox Infiniband [2]
memory registration also requires system calls, although memory
registration is not necessarily in the critical path of execution. These
offloaded calls can adversely impact performance (occasionally to
unacceptable levels) of parallel applications executing on top of a
multi-kernel system.

As we already argued, porting the entire device driver to the LWK
for each network device is impractical. In a multi-kernel system,
however, one might take advantage of the fact that Linux with all
of its device drivers is also present. Instead of porting the entire
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driver, we asked ourselves the following questions: Can we port
only the performance critical part of the device driver to the LWK
and keep utilizing Linux for the rest of the driver functionalities?
Will such a driver architecture present any opportunities to further
improve the fast-path code of the device driver by better matching
it to LWK internals? Can we keep the Linux driver unmodified? In
this paper, we embark on an exploration to answer exactly these
questions. Specifically, we make the following contributions:

e We propose PicoDriver, a novel device driver framework that
enables porting exclusively the performance critical part of
a device driver to an LWK in a multi-kernel system while
transparently retaining the rest of the driver functionality
via Linux.

e We provide and implementation of the Intel OmniPath Pico-
Driver in the IHK/McKernel lightweight multi-kernel oper-
ating system [13-15].

e We demonstrate that our system requires no modifications
to the original Linux driver, yet, it enables optimization op-
portunities in the LWK.

e We evaluate the proposed mechanism on 256 Intel Knight’s
Landing compute nodes (i.e., 16,384 KNL CPU cores) and
show that McKernel can outperform Linux by up to 30% on
various HPC mini-applications.

To put the porting effort in perspective, the Intel OmniPath Linux
driver amounts to about 50K source lines of code (SLOC). From
this codebase, the PicoDriver framework enabled us to port less
than 3K SLOC to McKernel, which demands a significantly lower
development effort than if we were to port the entire driver. We
also emphasize that identically to the original IHK/McKernel, the
PicoDriver architecture runs unmodified Linux binaries without
any need for recompilation or specific communication libraries.

The rest of this paper is organized as follows. We begin with
background information on multi-kernels and the OmniPath device
driver 2. We describe the design and implementation of PicoDriver
in Section 3. Evaluation is provided in Section 4. Section 5 discusses
related work, and finally, Section 6 concludes the paper.

2 BACKGROUND AND MOTIVATION

This section lays the groundwork for the proposed driver architec-
ture by providing background information on the ITHK/McKernel
lightweight multi-kernel OS [13-15] and the organization of Intel’s
OmniPath network stack [5].

2.1 IHK/McKernel

An architectural overview of the main system components in IHK/-
McKernel is depicted in Figure 1. A low-level software infrastruc-
ture, called Interface for Heterogeneous Kernels (IHK) [39], provides
capabilities for partitioning resources in a many-core environment
(e.g., CPU cores and physical memory) and it enables management
of lightweight kernels. IHK is capable of allocating and releasing
host resources dynamically and no reboot of the host machine is
required when altering configuration. The latest version of IHK
is implemented as a collection of Linux kernel modules without
any modifications to the Linux kernel itself. This enables relatively
straightforward deployment of the multi-kernel stack on a wide
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range of Linux distributions. Besides resource and LWK manage-
ment, IHK also facilitates an Inter-kernel Communication (IKC)
layer, which is used for implementing system call delegation.

Proxy process [alilig I oetd]
§ HPC Application

Lipdx Delegator

0OS jitter contained in Linux, LWK is isolated

HFIdl device e module McKe o
(unmll:fried) &l LalSE PicoDriver call
' Memory

Figure 1: Overview of the IHK/McKernel architecture with
the HFI1 PicoDriver.

McKernel is a lightweight co-kernel developed on top of IHK.
It is designed explicitly for high-performance computing work-
loads, but it retains a Linux compatible application binary interface
(ABI) so that it can execute unmodified Linux binaries. There is
no need for recompiling applications or for any McKernel specific
libraries. McKernel implements only a small set of performance
sensitive system calls and the rest of the OS services are delegated
to Linux. Specifically, McKernel provides its own memory manage-
ment, it supports processes and multi-threading, it has a simple
round-robin co-operative (tick-less) scheduler, and it implements
standard POSIX signaling. It also implements inter-process memory
mappings and it offers interfaces for accessing hardware perfor-
mance counters.

For each OS process executed on McKernel there exists a process
in Linux, which we call the proxy-process. The proxy process’ main
role is to assist system call offloading. Essentially, it provides the
execution context on behalf of the application so that offloaded sys-
tem calls can be invoked in Linux. For more information on system
call offloading, refer to [14]. The proxy process also provides means
for Linux to maintain various state information that would have to
be otherwise kept track of in the co-kernel. McKernel for instance
has no notion of file descriptors, but it simply returns the number it
receives from the proxy process during the execution of an open ()
system call. The actual set of open files (i.e., file descriptor table,
file positions, etc.) are managed by the Linux kernel. Relying on
the proxy process, McKernel provides transparent access to Linux
device drivers not only in the form of offloaded system calls (e.g.,
through write() or ioctl()), but also via direct device mappings.
A detailed description of the device mapping mechanism is provided
in [15].

Recently we have demonstrated that lightweight multi-kernels
can indeed outperform Linux on various HPC mini-applications
when evaluated on up to 2,000 Intel Xeon Phi nodes interconnected
by Intel’s OmniPath network [13]. At the same time, we also learnt
that under certain circumstances the system call offloading model
can introduce notable performance degradation on network oper-
ations. This is particularly true in case of the OmniPath network
(which we will describe in Section 2.2), as it requires device driver
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interaction for a number of communication operations that are in
the critical path of execution. In Section 4, we will provide detailed
analysis on the impact of the offloading mechanism.

2.2 Omni-Path Fabric Architecture

The software support for Intel’s OmniPath fabric is comprised of
two main components in Linux based systems [5]. At the user level,
the Performance Scaled Messaging (PSM) library provides low-level
APIs for applications and for communication libraries, such as MPI
implementations. The PSM library in turn interacts with the Intel
Host Fabric Interface (HFI) driver in the Linux kernel via system
calls invoked on the HFI device file. An architectural overview of
the OmniPath driver stack is provided in Figure 2.

2.2.1 Intel Performance Scaled Messaging Library. The Perfor-
mance Scaled Messaging library is a low-level user space com-
munications interface to the Intel Omni-Path high-performance
communication architecture. PSM offers an endpoint based com-
munication model where an application can establish a connection
to another node and drive data transfer operations on top of the
matched queues (MQ) facility of the library. PSM provides two trans-
fer modes both for send and receive operations. Send can be done
via programmed I/O (PIO) or send DMA (SDMA). PIO optimizes
latency and message rate for small messages and is entirely driven
from user-space. SDMA optimizes bandwidth for large messages,
utilizing 16 SDMA engines for CPU offload. SDMA operations re-
quire interaction with the device driver via the writev() system
call on the device file. The default configured message size threshold
above which SDMA is used is 64KB in the PSM library.

As for the receive operations, there is eager-receive and direct
data placement. For eager-receive, data is received in library internal
buffers first and copied to application buffers later. No handshake
in advance is needed for eager-receive. Additionally, there is di-
rect data placement to application buffers, where a handshake in
advance is required. Under the hood, the library utilizes ioctl()
system calls to register user-space buffers with the kernel driver.
As one might expect, we will be focusing on SDMA send and the
registration of user buffers for reception as these operations re-
quire system call involvement, which in turn trigger the offloading
mechanism in the IHK/McKernel multi-kernel environment.

2.2.2  Intel OmniPath Host Fabric Interface Driver for Linux. The
OmniPath device driver for Linux is called the Host Fabric Inter-
face (HFI) driver. As device drivers generally do, the HFI driver
exposes fabric functionalities through file operations and by mem-
ory mapping part of the PCI device into userspace. Specifically, the
device driver provides an implementation for the following POSIX
system calls: open(), writev(), ioctl(), poll(), mmap(), lseek()
and close().

We have already mentioned that we are primarily interested in
the SDMA send operation, i.e., the implementation of the writev ()
call and the registration of expected receive, which is performed
in ioctl(). However, it is worth pointing out that the driver im-
plements a whole lot of other functionality besides these. This
is important because - as we will see below - our intention is to
directly reuse these via system call offloading, without any modifi-
cations to the Linux driver code. To better motivate the feasibility
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Figure 2: OmniPath software stack architecture in Linux.

of PicoDriver, we briefly describe the steps that are taken in the
SDMA send and the reception buffer registration operations.

The writev() call for initiating an SDMA transfer passes an ar-
ray of I/O vectors to the kernel. The first of these describes metadata
about the operation and the rest provides information regarding
the buffers that are about to be transferred. The driver internally
verifies the buffers and calls get_user_pages() on the specified
virtual ranges to obtain the physical pages that back the buffers.
This also ensures that the pages are pinned in memory and cannot
be swapped out in the meantime. The driver then reserves an SDMA
engine and iterates the physical pages translating the physical ad-
dresses into SDMA transfer requests. These request structures are
submitted to the SDMA engine’s ring buffer along with the creation
of metadata structures that represent the transfers. Completion
notification for an SDMA transfer is performed in an interrupt
handler that is executed when the corresponding IRQ is raised by
the hardware. The IRQ handler uses callback functions to perform
notification as well as cleanup of the associated metadata.

The registration of expected receive buffers is performed in
ioctl(). By large, the execution steps of this operation are similar
to that of the SDMA transfer, except that the physical addresses
are translated into so called RcvArray entries which in turn are
programmed to the hardware (i.e., written to specific offsets in
the device mapping). User-space identifies the reception by TID
identification numbers which can be also used to unprogramm
the associated entries, i.e., to unregister user buffers. Note that the
ioctl() call implements over a dozen different functionalities in
the HFI driver, but only three from those are related to reception
buffer registration.

In summary, both of the aforementioned operations translate
user provided virtual address ranges to a hardware specific repre-
sentation which in turn are submitted to the network interface card
(NIC).
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3 DESIGN AND IMPLEMENTATION

This section describes the design and implementation of PicoDriver.
While we primarily focus on OmniPath, design decisions have been
made with generality in mind. We emphasize that the changes
introduced should be applicable for supporting other drivers as
well, which in fact is part of our future plans.

For now, our primary goal is to create a framework that enables
porting only a small piece of the HFI device driver (i.e., the per-
formance sensitive routines discussed in the previous section) in a
fashion that we can keep utilizing the original Linux driver for the
rest of its functionality. Figure 1 shows the overall structure of Pi-
coDriver. As seen, McKernel contains a small HFI PicoDriver while
Linux hosts the original driver provided by Intel. McKernel, for
instance, has no facilities such as the Linux device model, the VFS
layer or /proc and /sys pseudo file systems. McKernel also doesn’t
provide mechanisms for bottom half processing (e.g., tasklets or
workqueues [10]), often used in device drivers. However, it is not
our intention to provide these mechanisms, but instead we strive
to implement an LWK optimized version of the fast-path code. As
we mentioned earlier, the HFI1 driver amounts to about 50K source
lines of code (SLOC), but from this codebase, less than 3K SLOC
is related to the routines that is in our interest, which demands a
significantly lower development effort than if we were to port the
entire driver. As shown, this architecture resembles OS bypass (i.e.,
bypassing Linux in this case) for the fast data-path of the driver,
while leaving the control-path untouched in the unmodified Linux
driver.

The most basic requirement for co-operating with the Linux
device driver from McKernel is the ability to access Linux internal
data structures. For this reason, before we further discuss the design
of PicoDriver, we describe the changes to McKernel’s virtual address
space layout that were necessary to enable mutual access to kernel
internals between Linux and the LWK.

3.1 Virtual Address Space Layout

McKernel is a completely independent kernel from Linux, i.e., it
runs its own ELF image and it maintains its own set of virtual to
physical mappings. The original McKernel virtual address space
layout was designed with the plain objective of supporting a Linux
compatible ABI. There are multiple, logically distinct ranges in the
kernel virtual address space that typically appear in operating sys-
tems. The three main ones are the kernel image (i.e., the TEXT, BSS
and DATA in case of ELF images), the direct mapping of physical
memory and a dynamically managed range that is used for device
mappings (called the vmalloc() range in Linux). Indeed, since the
virtual address space is enormous in 64 bit addressing mode!, it is
common practice in OS kernels to map the entire physical memory
upfront. Linux for example has a 64TB dedicated area just for this
purpose on x86_64 platforms and this is where kmalloc() alloca-
tions are served from. Initially, we mapped the McKernel ELF image
to the same address where the Linux image resides and had the
dynamic range overlap with the one in Linux.
With PicoDriver, we faced the following challenges:

e TEXT, BSS and DATA segments of the two kernel images
should not overlap.

10n current x86_64 hardware, the actually addressable space is only 48 bits.
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Figure 3: Virtual address space layout in Linux, the original McKernel and the one modified for PicoDriver (under x86_64).

e Dynamically allocated Linux data structures must be visible
in McKernel (and vice versa) so that pointers can be deref-
erenced, i.e., they must follow the same virtual to physical
mappings.

e Linux must be able to see McKernel’s TEXT (so that it can
access callback functions).

To address each of these requirements we introduced the fol-
lowing modifications. First, we moved the McKernel ELF image (in
McKernel’s address space) from its original location to the top of
the Linux module space. This ensures that the TEXT/BSS/DATA
segments of McKernel do not overlap with the ones in Linux. Sec-
ond, we shifted the direct mapping of physical memory to the same
address range in McKernel as in Linux, basically ensuring that any
allocation from Linux’ kmalloc() will be valid also in McKernel,
and vica versa. Finally, we established a mapping of McKernel’s ELF
image also in the Linux kernel (initialized at the time of booting the
LWK), which enables us to access McKernel functions in Linux. For
address range reservation we rely on Linux’ vmap_area that is used
for managing module mappings. Figure 3 shows the virtual address
space layout in Linux, in the original McKernel, as well as in the
version prepared for PicoDriver. It also presents and overview of the
modifications themselves. Note that although the virtual addresses
displayed at the left side of the figure are accurate, the size of each
range on the figure is not proportional to the actual virtual area
and they simply serve the purpose of demonstration.

Overall, these changes provide a high degree of address space
unification between the two kernels, making McKernel behave al-
most as a regular Linux kernel module. Nevertheless, it is important
to see that none of these modifications degrade the LWK’s full con-
trol over its assigned resources. McKernel assigned CPU cores are
still invisible in Linux (i.e., offlined) and Linux has absolutely no
control over McKernel’s memory mappings or any other internal
kernel mechanisms for that matter. To some extent, this address
space unification resembles the proxy process’ role in unifying
user-space mappings, only that it is applied to the kernel virtual
address space.

3.2 DWAREF based Structure Extraction

Having gained access to Linux kernel memory mappings enabled us
to dereference pointers to arbitrary Linux data structures including
those that belong to the HFI driver. Note that the internal HFI data
structures are initialized by Linux in offloaded system calls to the
driver (i.e., at the time of calling open() on the device file) and are
also used in other slow path calls (e.g., mmap () or poll()) that we do
not intend to port to the LWK. Therefore, to be able to co-operate
with original driver code we need to make sure that we access the
correct fields at correct offsets. In summary, to interpret accesses
correctly, code in McKernel needs to be aware of the structure
layouts. It is worth mentioning that in most cases we only need a
small subset of the fields in HFI data structures, since most of them
are utilized by functionality that is exclusively executed in Linux
and not in the LWK.

Our first approach was to manually copy the Linux headers
and simply replace sub-structures we don’t mimic such as Linux’
kobject with a manually crafted character array. Essentially, port-
ing data structures to the LWK manually. Although this approach
works, it requires finding out how big each field is, which is not
only laborious but also error prone since such items are likely to
change across different versions of the driver. Some could even
change depending on build options, which are not always obvious,
and such errors would lead to runtime failures that are hard to
diagnose.

Instead of trying to manually keep up to date with these changes,
we opted for a different approach. Information about data structures,
including the field positions, are in fact stored in the DWARF debug-
ging information headers [11] of the module binary shipped by Intel.
We inspect the binary and produce a header file containing only
fields we are concerned with, automatically determining the type of
each field as well as its location in the structure. We have developed
a tool for this purpose, which we named dwarf-extract-struct 2. The

Zhttp://cgit.notk.org/asmadeus/dwarf-extract-struct.git/
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tool systematically walks the DWARF headers until it finds the re-
quested structure to extract (as DW_TAG_structure_type), and for
each requested field it finds the appropriate DW_TAG_member from
which we can obtain its offset (via DW_AT_data_member_location)
and its type (through DW_AT_type). The DWARF header also con-
veniently stores the number of elements for arrays, or dereferences
for pointer types.

struct sdma_state {
union {
char whole_struct[64];
struct {
char padding0[40];
enum sdma_states current_state;
i
struct {
char paddingl[48];
unsigned int go_s99_running;
}i
struct {
char padding2([52];
enum sdma_states previous_state;
i
i
bi

Listing 1: Automatically generated header for the HFI
sdma_state structure.

The generated header is a C struct containing an unnamed
union, with a character array of the size of the entire structure (so
that the final size matches) and individual members each preceded
with its independent padding. An example of such generated header
for the HFI sdma_state structure is shown in Listing 1. Since the
beginning of the development of PicoDriver, we have already up-
dated twice to Intel’s new releases. With the DWARF based header
generation the porting effort has been on the order of hours.

3.3 Synchronization, Callbacks and Memory
Management

Since interaction with the network device may happen simulta-
neously from Linux, e.g., through offloaded system calls and noti-
fication IRQs, and from McKernel via the HFI PicoDriver, correct
synchronization between the two kernels is utmost important. Luck-
ily, most of the synchronization points we had to deal with during
the porting process utilizes spin-locks. As Linux and McKernel
shares memory in a cache coherent fashion the only thing we had
to ensure was that the spin lock implementation in the two kernels
are compatible. This was not a major challenge as McKernel al-
ready adopted the Linux spin-lock implementation for the x86_64
architecture. We also note that synchronization using the Linux
mutex facility would be also feasible as internally the mutex imple-
mentation relies on spin-locks, however, we would likely simply
spin in McKernel as opposed to sleep at the thread level because
Linux would not be able to send wake up notifications across kernel
boundaries. Finally, although we did not need it in this study, we
have not solved the problem of RCU locks, which we left for future
work.

As we mentioned above, the HFI driver gets notified of SDMA
transfer completions by hardware interrupts. Since device inter-
rupts are not handled by McKernel, Linux CPUs process all notifi-
cations. The driver code utilizes callback functions that are associ-
ated with each chunk of a transfer during SDMA request creation.
Because data structures used in McKernel initiated requests are
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dynamically allocated in the LWK, we had to duplicate the callback
and replace the deallocation routine with the one from McKernel.
This new callback function exists in McKernel TEXT and thus Linux
needs to be able to access function pointers in McKernel’s ELF im-
age. Section 3.1 explained how this mapping is implemented.

McKernel uses per-core data structures to provide a scalable
memory allocator. When kfree() is called, the deallocated buffer is
inserted to the per-core free memory list. Consequently, the mem-
ory allocator needs to be aware of the CPU core that is making
the call. Because Linux CPUs are not managed by the LWK, an
McKernel kfree() called on a Linux CPU would by default fail. We
extended the memory management code of McKernel so that it
recognizes when a deallocation routine is called on a Linux CPU
and takes appropriate steps to handle it correctly. With the above
modifications, SDMA completions can be safely processed on Linux
CPUs. It is also worth pointing out that our synchronization meth-
ods retain the ability to share a single NIC across multiple LWKs
and/or applications.

3.4 Optimization Opportunities

What makes the PicoDriver architecture rather powerful is that
it provides opportunities for optimizing fast-path device driver
operations to LWK internals. As we mentioned above, the origi-
nal Linux HFI driver obtains information about user buffers using
the get_user_pages() Linux kernel function, which returns the
corresponding page structures that back the user supplied virtual
range. The SDMA request submission routine in turn iterates these
pages and translates the physical addresses to SDMA requests. The
HFI network device accepts SDMA requests up to 10kB in size,
assuming that the given physical memory range is contiguous.
However, because page boundaries must to be checked carefully,
at the time of writing this paper, the Linux HFI driver utilizes only
up to PAGE_SIZE (i.e., 4kB on x86_64) long SDMA requests. This
implies that not only is the driver unaware of contiguous physi-
cal memory ranges that cross page boundaries, but it even fails to
recognize large page based mappings.

The principal policy of McKernel’s memory management is to
support ANONYMOUS memory mappings with contiguous (as much as
possible) physical memory utilizing large page based translations.
This implies that in the common case SDMA requests can be 10kB
in size. Indeed, we have modified the HFI PicoDriver to efficiently
handle large pages as well as contiguous physical memory that
crosses page boundaries. Additionally, McKernel ensures that all
ANONYMOUS mappings are pinned, i.e., they can be unmapped exclu-
sively by user requested operations. This further simplifies SDMA
transfer initialization because we merely need to iterate page ta-
bles instead of collecting references to page structures. In Section
4 we demonstrate how these modifications benefit data transfer
performance.

4 EVALUATION

4.1 Experimental Environment

All application level evaluation were performed on Oakforest-PACS
(OFP), a Fujitsu built, 25 peta-flops supercomputer installed at JC-
AHPC, managed by The University of Tsukuba and The University
of Tokyo [20]. OFP is comprised of eight-thousand compute nodes
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that are interconnected by Intel’s Omni Path network. Each node
is equipped with an Intel® Xeon Phi™ 7250 Knights Landing (KNL)
processor, which consists of 68 CPU cores, accommodating 4 hard-
ware threads per core. The processor provides 16 GB of integrated,
high-bandwidth MCDRAM and it also is accompanied by 96 GB of
DDR4 RAM. For our experiments, we configured the KNL processor
in SNC-4 flat mode; i.e., MCDRAM and DDR4 RAM are addressable
at different physical memory locations and both are split into four
NUMA domains. From the operating system’s perspective there
are 272 logical CPUs organized around eight NUMA domains. Ad-
ditionally, micro-benchmark level results were obtained using our
dedicated development compute nodes, where we could instru-
ment the HFI network driver for profiling information. These nodes
are almost identical to OFP’s compute nodes except that they are
equipped with the 64 cores version of Xeon Phi™ CPU 7210.

The software environment was as follows. Compute nodes run
XPPSL 1.5.1 with Linux kernel version 3.10.0-327.36.3. XPPSL is
a CentOS based distribution with a number of Intel supplied kernel
level improvements specifically targeting the KNL processor. We
used Intel MPI Version 2018 Update 1 Build 20171011 (id: 17941) in
this study.

For all experiments, we dedicated 64 CPU cores to the applica-
tion and reserved 4 CPU cores for OS activities. This is a common
scenario for OFP users where daemons and other system services
run on the first four cores. Our experience so far indicates that
many applications need a power of two number of CPUs, or do not
run faster on 66 or 68 cores.

We emphasize that for the Linux measurements we used Fu-
jitsu’s HPC optimized production environment, e.g., application
cores were configured with the nohz_full Linux kernel argument
to minimize operating system jitter. For the McKernel HFI mea-
surements we deployed IHK and McKernel, commit hash 3bdes and
da77a, respectively. We utilized IHK’s resource partitioning feature
to reserve CPU cores and physical memory dynamically.

4.2 Benchmarks and Mini-applications

For the communication performance measurements we used Intel
MPT’s IMB-MPI1 micro-benchmark [19]. As for application level
results, we used the following mini-applications from the CORAL
benchmark suite [9]. We also provide information regarding their
runtime configuration.

o LAMMPS is a classical molecular dynamics code, and an
acronym for Large-scale Atomic/Molecular Massively Paral-
lel Simulator [34]. We used weak-scaling for LAMMPS and
ran 64 MPI ranks per node, where each rank contained two
OpenMP threads.

e Nekbone is a thermal hydraulic proxy app that is based on
the open source spectral element code, Nek5000, which is
designed for large eddy simulation (LES) and direct numeri-
cal simulation (DNS) of turbulence in complex domains [25].
We used weak-scaling for Nekbone and ran 32 MPI ranks
per node, where each rank contained four OpenMP threads.
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e UMT2013 is an LLNL ASC proxy application that performs
three-dimensional, non-linear, radiation transport calcula-
tions using deterministic (Sn) methods [24]. We used weak-
scaling for UMT2013 and ran 32 MPI ranks per node, where
each rank contained four OpenMP threads.

e HACC is the Hardware Accelerated Cosmology Code frame-
work that uses N-body techniques to simulate the formation
of structure in collisionless fluids under the influence of grav-
ity in an expanding universe [22]. We used weak-scaling for
HACC and ran 32 MPI ranks per node, where each rank
contained four OpenMP threads.

e QBOX is a first-principles molecular dynamics code used to
compute the properties of materials directly from the under-
lying physics equations. Density Functional Theory is used
to provide a quantum-mechanical description of chemically-
active electrons and nonlocal norm-conserving pseudopo-
tentials are used to represent ions and core electrons [23].
We used weak-scaling for QBOX and ran 32 MPI ranks per
node, where each rank contained four OpenMP threads.

For applications that fit into MCDRAM entirely we ran them
exclusively out of MCDRAM, and for those which did not (e.g.,
UMT2013), we prioritize MCDRAM, but fall back to DRAM when
necessary. For MPI profiling we utilized Intel MPI's I_MPI_STATS
environment variable.

4.3 Results

The first experiment we performed was a simple MPI ping-pong
test to assess communication bandwidth in Linux, in McKernel and
in McKernel with the HFI PicoDriver.
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Figure 4: MPI Ping-pong bandwidth measurement.

Figure 4 shows the results of this experiment. As seen, the origi-
nal McKernel version visibly suffers from syscall offloading over-
head for large messages where data transfers involves system calls
into the device driver, achieving only about 90% of the Linux perfor-
mance. On the contrary, McKernel with the HFI PicoDriver outper-
forms Linux by up to 15% on 4MB buffer size. We have instrumented
the HFI device driver and verified that the Linux driver submits only
up to PAGE_SIZE (i.e., 4kB) long SDMA requests to the NIC. As we
discussed before, McKernel attempts to back ANONYMOUS memory
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Figure 7: Performance results for QBOX.

mappings with physically contiguous memory whenever it is possi-
ble which significantly increases the probability of being able to use
bigger SDMA requests. We have also verified that McKernel with
the HFI driver consistently utilizes the maximum SDMA request
size (i.e., 10kB per request) when the physical memory behind the
mapping is contiguous. We believe that this is the main reason that
constitutes to the observed performance improvement.

Let us turn our attention now to application level evaluation.
We will be reporting numbers for Linux, the original McKernel and
McKernel with the HFI PicoDriver. Note that the original McKernel
and the HFI enabled version are two separate branches of develop-
ment that had slightly diverged at the time of running our measure-
ments. As we will see below, this had an impact on to the degree
to which we could collect results. We also note that all application
results are the average of multiple (at least three) runs, unless stated
otherwise. Applications report figure of merit on a per-application
basis. For clarity, instead of reporting absolute numbers we indicate
relative performance to Linux. Linux values are included as well,
displayed at 100%.

Before evaluating applications for which we did anticipate im-
provements, we also wanted to verify that the inclusion of the
device driver does not impact applications adversely for which per-
formance was already satisfactory. Therefore, we ran a number of
tests to confirm this.

Figure 5 shows results for LAMMPS and Nekbone. LAMMPS per-
formed similarly to Linux when running on the original McKernel,
while for Nekbone we observed a small improvement for McKernel
from the beginning on. Note that we do not have results for LAMMPS
and Nekbone on the original McKernel version when running on
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Table 1: Communication profile of UMT2013, HACC and QBOX on 8 compute nodes.

0s/ Linux McKernel McKernel + HFI

App- Call (MPL) Time | % MPI | % Rt | Call (MPL ) Time | % MPI | % Rt | Call (MPL ) Time | % MPI | % Rt

UMT2013 | Barrier 1114.17 | 58.73 | 11.28 | Wait 17731.30 | 49.29 | 40.35 | Barrier 920.26 | 43.97 | 9.16
Allreduce 297.14 15.66 | 3.01 | Barrier 9223.53 | 25.64 | 20.99 | Init 766.33 | 36.61 | 7.62
Wait 235.54 | 12.42 | 2.38 | Start 394492 | 10.97 | 8.98 | Wait 186.83 8.93 | 1.86
Init 140.65 7.41 1.42 | Waitall 3856.68 10.72 | 8.78 | Allreduce 160.46 7.67 | 1.60
Requestffree 47.26 249 | 0.48 | Init 581.17 1.62 1.32 | Waitall 42.98 2.05 ] 043

HACC Cart_create 15845.9 | 54.42 | 13.06 | Wait 40408.21 | 67.73 | 26.45 | Cart_create 4790.85 | 50.89 | 4.66
Wait 9905.76 | 34.02 | 8.16 | Waitall 6789.21 11.38 | 4.44 | Wait 2372.18 | 25.20 | 2.31
Allreduce 1414.18 4.86 | 1.17 | Cart_create 5742.05 9.62 | 3.76 | Init_thread 867.438 9.21| 0.84
Waitall 997.67 343 | 0.82 | Recv 4757.27 7.97 | 3.11 | Waitall 750.571 7.97 | 0.73
Barrier 482.83 1.66 | 0.40 | Init_thread 576.65 0.97 | 0.38 | Allreduce 343.13 3.64 | 0.33

QBOX Bcast 479.2 29.4 | 20.7 | Bcast 1436.7 42.3 | 35.1 | Init 965.2 47.8 | 35.1
Init 324.8 19.9 | 14.1 | Init 568.9 16.7 13.9 | Bcast 268.9 13.3 9.7
Alltoallv 279.8 17.1| 12.1 | Recv 533.4 15.7 | 13.0 | Alltoallv 222.5 11.0 | 8.1
Allreduce 159.1 9.7 6.9 | Alltoallv 221.1 6.5 5.4 | Allreduce 121.2 6.0 4.4
Recv 139.1 8.5 6.0 | Scan 145.1 4.2 3.5 | Comm_create 95.6 47| 34

256 and 32 nodes, respectively. This was due to an unresolved bug
that has been fixed in the HFI driver branch but not yet backported
to the master. Nevertheless, with the HFI driver version we could
obtain results using nodes all the way up to 256. As the figure
shows, McKernel with the HFI PicoDriver performs similarly to the
original version, often slightly outperforming it on both of these
workloads, which confirms our hypothesis that the new driver ar-
chitecture will not introduce performance degradation to workloads
that otherwise are not affected by the extra overhead of system call
offloading.

On the other hand, there are a number of applications that truly
motivated this work. UMT2013, HACC and QBOX have been heav-
ily affected by the overhead of the HFI device driver involvement
in the original McKernel architecture. It is worth pointing out that
because we run up to 64 ranks per node, simultaneous interaction
with the device driver via system call offloading is not only affected
by the cost of offloading itself, but also by the fact that there are
substantially lower number of Linux CPUs than the number of MPI
ranks (i.e., four Linux CPUs vs. 32 or 64 MPI ranks). This further am-
plifies the cost of these calls because it introduces high contention
on a few Linux CPUs for driver processing. At the same time, it also
motivates the need to move fast-path driver code into the LWK.

Figure 6 and Figure 7 demonstrate the performance results we
obtained for these applications. As seen, both UMT2013 and HACC
performed on par with Linux when using a single compute node.
However, both applications perform significantly lower than Linux
when running multi-node executions. In fact, UMT2013 achieves
less than 20% of the Linux performance when run on more than
4 compute nodes. Although not to the same degree, HACC also is
slower, attaining only 71% in average of the Linux performance. On
the other hand, with the HFI PicoDriver enabled in McKernel, we
see substantial improvements across all configurations. McKernel
with HFI consistently outperforms Linux on these workloads by up
to 20%.
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As for QBOX, due to the input configurations we had available,
we were only able to run the application on at least 4 compute nodes.
Notice that the X axis of Figure 7 starts from 4. Interestingly, QBOX
did not perform significantly lower even on the original McKernel
than Linux for all node counts. We have not investigated the route
cause of this phenomena, nevertheless, McKernel with HFI provides
substantial speedups achieving up to 30% improvement over Linux.

To gain a better understanding of what is behind the improve-
ments, we took a communication profile on 8 nodes for Linux,
McKernel and McKernel with HFI for these three applications. Note
that due to the limited availability of dedicated compute nodes in
SNC-4 mode on OFP, the profiling information we provide were
obtained in Quadrant mode. Although SNC-4 mode performed
slightly better than Quadrant in all cases, we observed almost iden-
tical relative performance among the different OS configurations
in Quadrant mode as in SNC-4.

Table 1 summarizes our findings. It shows the top five most dom-
inant MPI calls for each benchmark on all OS configurations. The
Time column reports cumulative time spent in the call summed
over all ranks. The columns %MPI and %Rt report the ratio of the
call from the time spent in MPI and from the overall runtime, re-
spectively. There are a number of important observations in the
table. For example, both for UMT2013 and for HACC, there is al-
most an order of magnitude more time spent in the top MPI calls
compared between the original and the HFI enabled McKernel ver-
sions. To emphasize this observation, we have highlighted (as bold)
the time spend in MPI_Wait () in the table as this routine is where
communication progression for asynchronous data transfer is typi-
cally made. On the other hand, when compared to Linux, McKernel
with the HFI PicoDriver spends visible less time in this operation
(both in terms of absolute time as well as relative to the overall
runtime), suggesting higher performance data transmission and
more balanced execution among MPI ranks.

Another interesting observation is the time spent in MPI_Init(),
which we highlighted (in italic) for QBOX. As seen, McKernel with
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HFI spends substantially more time in this call than the other
OS configurations. Note that by default device initialization in
MPI_Init() is offloaded in McKernel, which explains why it takes
more time than in Linux. However, in McKernel with HFI an addi-
tional cost comes from the McKernel side initialization of kernel
level mappings of device driver internals, etc. At the same time,
McKernel with the HFI driver spends visibly less time in actual
communication routines (e.g., MPI_Bcast () or MPI_Alltoallv())
compared to Linux. This disparity between the performance of
critical and non-critical calls reflects well on the general idea of
PicoDriver, i.e., to optimize for fast-path operations at the cost of
other infrequent administrative invocations.

To further validate our claims, we also profiled McKernel with
and without the HFI PicoDriver at the kernel level, for which we
used our own in-house kernel profiler. This is currently only avail-
able for McKernel and unfortunately we can not provide identical
measurements for Linux. Instead, we present a detailed breakdown
of the time spent in system calls for the statistically most significant
invocations compared between the two McKernel configurations.

For brevity, we provide measurements only for UMT2013 and
QBOX. Figures 8 and 9 show the results. For each benchmark, the
corresponding pie chart presents the times proportionally spent
in the top seven system calls. To put these charts in context, the
amount of time spent in kernel space when running McKernel
with HFI is 7% and 25% of the original McKernel system time for
UMT2013 and QBOX, respectively. The charts list the name of
the calls at the left side of the figure. For UMT2013 (shown in
Figure 8a) ioctl() and writev() dominates the time spent in the
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original McKernel, which reflects the offloaded SDMA send and
the expected receive registration operations. Indeed, these two
calls constitute over 70% of the time spent in kernel space. To the
contrary, when the HFI PicoDriver is enabled, the relative cost of
these calls is reduced below 30% in average. For QBOX, shown in
Figure 9, we observe similar tendency with respect to the ioctl()
and writev() calls, however, the kernel level profiler also revealed
that munmap () dominates the system level cost, which leaves us
with the opportunity to further optimize memory management in
the future.

5 RELATED WORK

Without striving for completeness, this section discusses related
studies in the domain of operating systems for HPC, as well as
proposals related to device driver architectures.

5.1 Operating Systems in HPC

Lightweight kernels (LWKs) [37] tailored for HPC workloads date
back to the early 1990s. These kernels ensure low operating system
noise, excellent scalability and predictable application performance
for large scale HPC simulations. One of the first LWKSs that has
been deployed in a production environment was Catamount [21],
developed at Sandia National laboratories. IBM’s BlueGene line
of supercomputers have also been running an HPC specific LWK
called the Compute Node Kernel (CNK) [17]. While Catamount
has been written entirely from scratch, CNK borrows a substantial
amount of code from Linux so that it can better support standard
UNIX features. The most recent of Sandia National Laboratories’
LWHKSs is Kitten [32], which also distinguishes itself from their prior
LWKs by providing a more complete Linux-compatible environ-
ment. There are also LWKs that start from a full Linux system and
modifications are introduced to meet HPC requirements. Cray’s
Extreme Scale Linux [29, 35] and ZeptoOS [43] follow this path.
The general approach here is to eliminate daemon processes, sim-
plify the scheduler, and replace the memory management system.
Linux’ complex code base, however, can make it difficult to evict
all undesired effects. In addition, it is also cumbersome to maintain
Linux modifications with the rapidly evolving Linux source code.

Recently, with the advent of many-core CPUs, a new multi-
kernel based approach has been proposed [15, 26, 30, 42]. The basic
idea of multi-kernels is to run Linux and an LWK side-by-side on
different cores of the CPU and to provide OS services in collabora-
tion between the two kernels. FusedOS [31] was the first proposal
to combine Linux with an LWK. It’s primary motivation was to
address CPU core heterogeneity between system and application
cores. Contrary to McKernel, FusedOS runs the LWK at user level.
In the FusedOS prototype, the kernel code on the application core
is simply a stub that offloads all system calls to a corresponding
user-level proxy process called CL. The proxy process itself is sim-
ilar to that in IHK/McKernel, but in FusedOS the entire LWK is
implemented within the CL process. The FusedOS work was the
first to demonstrate that Linux noise can be isolated to the Linux
cores and avoid interference with the HPC application running on
the LWK cores. This property has been also one of the main driver
for the McKernel model.
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From more recent multi-kernel projects, one of the most similar
efforts to ours is Intel’s mOS [16, 42]. The most notable difference
between McKernel and mOS is the way how LWK and Linux are
integrated. mOS takes a path of much stronger integration with
the motivation of easing LWK development and to directly take
advantage of the Linux kernel infrastructure. Nevertheless, this
approach comes at the cost of Linux modifications and an increased
complexity of eliminating OS interference. On the other hand, it
allows potentially calling into Linux device drivers on LWK cores.

Hobbes [6] was another of the DOE’s Operating System and
Runtime (OS/R) framework for extreme-scale systems. The central
theme of the Hobbes design is to better support application compo-
sition. Hobbes also utilizes virtualization technologies to provide
the flexibility to support requirements of application components
for different node-level OSes. At the bottom of the software stack,
Hobbes relies on Kitten [32] as its LWK component, on top of which
Palacios [27] serves as a virtual machine monitor. As opposed to
IHK/McKernel, Hobbes separates Linux and Kitten at the PCI device
level, which poses difficulties both for supporting full POSIX API
and the necessary device drivers in the LWK.

Argo [4] is an exa-scale OS project targeted at applications with
complex work-flows. The Argo vision is using OS and runtime
specialization (through enhanced Linux containers) on compute
nodes. Argo expects to use a ServiceOS like Linux to boot the
node and run management services. It then runs different container
instances that cater to the specific needs of applications.

5.2 Novel Device Driver Architectures

Device driver architectures for operating systems have been studied
extensively in the literature. One of the proposed architectures that
resembles PicoDriver is Nooks [40], although Nooks’ primary moti-
vation is to provide an architecture for reliability. Device drivers
in Nooks execute in the kernel address space, but within different
protection domains. Thus, a device driver may dereference point-
ers supplied by the kernel without copying the data or translating
addresses, but virtual memory protection and lowered privilege
levels are used for isolating and recovering faulty code. Similarly
to Nooks, PicoDriver also runs the fast-path code in another virtual
memory protection domain, i.e., in McKernel’s kernel space.

Microdrivers [12] is another driver proposal that has a split archi-
tecture similar to PicoDriver. Microdrivers split driver functionality
between a small kernel-mode component and a larger user-mode
component, which reduce the amount of driver code running in
the kernel and thus, reduces the likelihood that a faulty driver code
would corrupt other sensitive kernel data. Again, the motivation of
Microdrivers is reliability and thus it is different from PicoDriver,
however, Microdrivers’ code generator module deals with similar
issues to that of PicoDriver’s DWARF structure extractor.

Another interesting device driver architecture explicitly target-
ing multi-core environments was proposed in [18], where the basic
idea is to split the driver stack into multiple components and run
them on different CPU cores of a multi-core system. This philos-
ophy resembles PicoDriver’s architecture as it also distinguishes
CPU cores for slow-path and fast-path components of the device
driver.
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With respect to device drivers in recent lightweight kernels,
Lange et. al. discussed how the Kitten operating system provides
various kernel level interfaces that mimic the Linux device driver in-
frastructure [27]. Although these interfaces help for porting entire
device drivers to LWKSs, they require significantly more develop-
ment effort than porting only the fast-path piece of a driver. The
same study also demonstrates how virtualization may be utilized
to exploiting existing device drivers by using passthrough I/O to
virtual machines.

Finally, Arrakis proposed exposing data-plane operations directly
to applications relying on hardware virtualization features of the
NIC [33]. Their approach provides a similar split architecture to Pico-
Driver, although their target environment is not high-performance
computing.

6 CONCLUSION AND FUTURE WORK

This paper has presented PicoDriver, a novel device driver archi-
tecture for lightweight multi-kernel operating systems in high-
performance computing environments. PicoDriver eases device dri-
ver development for LWKSs by allowing fast-path code to be ported
to an LWK in a straightforward fashion. PicoDriver requires no mod-
ification to the original Linux driver, yet, it enables optimization
opportunities in the LWK. We have discussed the design of Pico-
Driver and the challenges we faced during the implementation of
Intel OmniPath network driver in the IHK/McKernel multi-kernel
operating system. In essence, PicoDriver extends the lightweight
multi-kernel philosophy of optimizing fast-path operations at the
expense of infrequent administrative calls to the device driver do-
main. On a number of mini-applications we have demonstrated
that McKernel with PicoDriver can outperform Linux by up to 30%
when deployed on up to 256 Intel Xeon Phi KNL compute nodes,
interconnected by Intel’s OmniPath network.

Our immediate future work is to address the memory manage-
ment shortcomings of McKernel that have been revealed by profil-
ing during the experiments of this study. In the near future, we have
also plans to perform a much larger scale evaluation of McKernel
using the PicoDriver framework. Finally, we intend to further ex-
tend this work by porting memory registration routines from the
Mellanox Infiniband driver.
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