
CMCP: A Novel Page Replacement Policy for System Level
Hierarchical Memory Management on Many-cores

Balazs Gerofi†, Akio Shimada‡, Atsushi Hori‡, Takagi Masamichi§, Yutaka Ishikawa†,‡

†Graduate School of Information Science and Technology, The University of Tokyo, JAPAN
‡RIKEN Advanced Institute for Computational Science, Kobe, JAPAN

§Green Platform Research Lab, NEC Corp., Tokyo, JAPAN
bgerofi@il.is.s.u-tokyo.ac.jp, a-shimada@riken.jp, ahori@riken.jp, m-takagi@ab.jp.nec.com, ishikawa@is.s.u-tokyo.ac.jp

ABSTRACT
The increasing prevalence of co-processors such as the IntelR⃝

Xeon PhiTM, has been reshaping the high performance com-
puting (HPC) landscape. The Xeon Phi comes with a large
number of power efficient CPU cores, but at the same time,
it’s a highly memory constraint environment leaving the task
of memory management entirely up to application develop-
ers. To reduce programming complexity, we are focusing on
application transparent, operating system (OS) level hierar-
chical memory management.
In particular, we first show that state of the art page re-

placement policies, such as approximations of the least re-
cently used (LRU) policy, are not good candidates for mas-
sive many-cores due to their inherent cost of remote trans-
lation lookaside buffer (TLB) invalidations, which are in-
evitable for collecting page usage statistics. The price of
concurrent remote TLB invalidations grows rapidly with
the number of CPU cores in many-core systems and out-
pace the benefits of the page replacement algorithm itself.
Building upon our previous proposal, per-core Partially Sep-
arated Page Tables (PSPT), in this paper we propose Core-
Map Count based Priority (CMCP) page replacement pol-
icy, which exploits the auxiliary knowledge of the number
of mapping CPU cores of each page and prioritizes them
accordingly. In turn, it can avoid TLB invalidations for
page usage statistic purposes altogether. Additionally, we
describe and provide an implementation of the experimental
64kB page support of the Intel Xeon Phi and reveal some
intriguing insights regarding its performance. We evaluate
our proposal on various applications and find that CMCP
can outperform state of the art page replacement policies by
up to 38%. We also show that the choice of appropriate page
size depends primarily on the degree of memory constraint
in the system.

Categories and Subject Descriptors
D.4 [Operating Systems]: Storage Management—Virtual
Memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HPDC’14, June 23 - 27, 2014, Vancouver, BC, Canada
Copyright c⃝ 2014 ACM 978-1-4503-2749-7/14/06...$15.00.
http://dx.doi.org/10.1145/2600212.2600231.

Keywords
Page Replacement; Manycore; Xeon Phi

1. INTRODUCTION
Although Moore’s Law continues to drive the number of

transistors per square mm, the recent stop of frequency and
Dennard scaling caused an architectural shift in high-end
computing towards hybrid/heterogeneous configurations. At
present, a heterogeneous configuration consists of a multi-
core processor, which implements a handful of complex cores
that are optimized for fast single-thread performance, and
a manycore unit, which comes with a large number of sim-
pler and slower but much more power-efficient cores that are
optimized for throughput-oriented parallel workloads [26].

The IntelR⃝ Xeon PhiTM product family, also referred to
as Many Integrated Cores (MIC), is Intel’s latest design tar-
geted for processing such highly parallel applications. The
Knights Corner Xeon Phi card, used in this paper, pro-
vides a single chip with sixty x86 cores each processor core
supporting a multithreading depth of four. Currently, the
IntelR⃝ Xeon PhiTM comes on a PCI card, and has its own
on-board memory, connected to the host memory through
PCI DMA operations. The on-board memory is faster than
the one in the host, but it is significantly smaller. Only 8
Gigabytes on the card, as opposed to the tens or hundreds
of GBs residing in the host machine. This limited on-board
memory requires partitioning computational problems into
pieces that can fit into the device’s RAM and orchestrate
data movement along with computation, which at this time
is the programmer’s responsibility. This architecture with
user managed data movement is shown in Figure 1a.

Although current programming models execute applica-
tions primarily on the multicore host which in turn offloads
highly parallel sections to the co-processor, in the future, fo-
cus will shift further towards the manycore unit itself. Intel
has already announced details of its next generation Xeon
Phi chip, codenamed Knights Landing, which will come in a
standalone bootable format and will be equipped with mul-
tiple levels of memory hierarchy1[1], called ”near” and ”far”
memory, respectively. Similarly, Nvidia has also argued that
additional levels of memory hierarchies will be necessary for
future massively parallel chips [18]. Keeping this architec-
tural direction in mind, this paper primarily focuses on the
manycore unit itself and investigates how the host memory
can be utilized from the co-processor’s point of view.

1The termmultiple levels of memory hierarchy does not refer
to multiple levels of caches in this paper.

73

(a) Manual data movement between
the host and manycore co-processor
on current heterogeneous architec-
tures. (Offload model.)

(b) OS driven data movement be-
tween the host and manycore co-
processor on current heterogeneous ar-
chitectures. (Proposed model.)

(c) OS driven data movement on fu-
ture standalone many-core CPUs with
multiple levels of memory hierarchy.
(Proposed model.)

Figure 1: Overview of data movement scenarios on current heterogeneous systems and future standalone
manycore CPUs with multiple levels of memory hierarchy.

Because the IntelR⃝ Xeon PhiTM co-processor features a
standard memory management unit (MMU), it is capable
to provide much larger virtual memory than that is phys-
ically available. The operating system can keep track of
the physical memory, manage the mapping from virtual to
physical addresses, and move data between the card and the
host in an application transparent fashion. This proposed
OS level data movement on current heterogeneous architec-
tures and future standalone many-cores is shown in Figure
1b and Figure 1c, respectively.
We emphasize that data movement is inevitable in these

architectures and we investigate the feasibility of a system
level solution. While OS level data movement may sound
analogous to swapping in traditional operating systems, the
scenario of current manycore co-processor based memory
management is considerably different than regular disk based
swapping on a multicore CPU. First, data movement be-
tween the co-processor’s RAM and the host memory, which
takes place through the PCI Express bus, is significantly
faster than accessing a disk in the host. This makes the
relative cost of data movement during page fault handling
much lower than in a disk based setup. Second, the large
number of CPU cores on the co-processor renders the cost
of remote TLB invalidations using regular page tables (i.e.,
shared by all cores) much higher than in a multi-core CPU.
We have already proposed per-core partially separated page

tables (PSPT) to alleviate the TLB problem of frequent ad-
dress remappings [14]. Further investigating co-processor
based hierarchical memory management, we are focusing on
page replacement policies in this paper. We show that state
of the art replacement algorithms, such as approximations
of the least recently used (LRU) policy, are not good can-
didates for massive many-cores due to their inherent cost of
TLB invalidations required for tracking page usage statis-
tics. LRU based algorithms aim at decreasing the number
of page faults by keeping the working set of the application
close to the CPU in the memory hierarchy [6]. To approxi-
mate the working set, however, they rely heavily on the ac-
cess bit of page table entries which needs to be checked and
cleared periodically. Unfortunately, on x86 each time the ac-
cess bit is cleared in a PTE, the TLB for the corresponding
virtual address needs to be invalidated on all affected CPU
cores. We find that despite the fact that LRU successfully
decreases the number of page faults, the price of frequent

TLB invalidations for monitoring page usage eventually out-
weighs the benefit of the page replacement algorithm itself.

To address this issue, we propose a novel page replacement
policy which relies on the auxiliary knowledge of the number
of mapping CPU cores for each address obtained from the
per-core page tables. Intuitively, pages that are mapped by a
large number of CPU cores are likely more important than
those mapped by only a few. Furthermore, swapping out
such pages requires TLB invalidations on a large number
of CPU cores. Therefore, our algorithm prioritizes victim
pages based on the number of mapping CPU cores and in
turn it can avoid remote TLB invalidations for page usage
statistics altogether. Moreover, we also consider the impact
of using different physical page sizes supported by the Xeon
Phi. We summarize our contributions as follows:

• Building upon PSPT, we propose a Core-Map Count
based page replacement Policy (CMCP), which prior-
itizes victim pages based on the number of mapping
CPU cores when pages are moved between the host and
the MIC and compare its performance against various
page replacement policies.

• We describe and give an implementation of the experi-
mental 64kB page size feature of the Xeon Phi (which
currently goes unused in Intel’s Linux stack [17]) and
reveal various insights regarding its performance in the
context of OS level hierarchical memory management.
To the best of our knowledge, this is the first time the
64kB page support of the Xeon Phi is discussed.

• Additionally, while we presented preliminary results
earlier for partially separated page tables on a sim-
ple stencil computation kernel using 4kB pages [14],
we further evaluate PSPT (both with and without the
CMCP policy) running various NAS Parallel Bench-
marks and SCALE, a climate simulation stencil appli-
cation developed at RIKEN AICS, including measure-
ments on the impact of different page sizes.

We demonstrate that partially separated page tables work
well on real applications and provide scalable memory man-
agement with the increasing number of CPU cores in con-
trast to regular page tables, which fail to scale over 24 cores.
We also show that the core-map count based replacement
policy outperforms both FIFO and LRU on all applications
we investigate by up to 38%.

74

Moreover, we confirm that the optimal page size depends
on the degree of memory constraint imposed and demon-
strate that under certain circumstances 64kB pages can yield
superior performance compared to both 4kB and 2M pages.
The rest of this paper is organized as follows, Section 2

provides background and gives on overview of PSPT, Section
3 discusses the design of core-map count based replacement
policy and Section 4 describes the 64kB page support of the
Xeon Phi. Section 5 provides experimental results, Section
6 surveys related work, and finally, Section 7 concludes the
paper.

2. BACKGROUND

2.1 Interface for Heterogeneous Kernels
The Information Technology Center at the University of

Tokyo and RIKEN Advanced Institute of Computational
Science (AICS) have been designing and developing a new
scalable system software stack for future heterogeneous su-
percomputers.

Figure 2: Main components of Interface for Hetero-
geneous Kernels (IHK) and the manycore kernel.

Figure 2 shows the main components of the current soft-
ware stack. The Interface for Heterogeneous Kernels (IHK)
hides hardware-specific functions and provides kernel pro-
gramming interfaces. One of the main design considerations
of IHK is to provide a unified base for rapid prototyping of
operating systems targeting future many-core architectures.
IHK on the host is currently implemented as a Linux

device driver, while the IHK manycore is a library that
needs to be linked against the OS kernel running on the
co-processor. Another component of the IHK worth men-
tioning is the Inter-Kernel Communication (IKC) layer that
performs data transfer and signal notification between the
host and the manycore co-processor.
We have already explored various aspects of a co-processor

based system, such as a scalable communication facility with
direct data transfer between the co-processors [29], and pos-
sible file I/O mechanisms [21]. We are currently developing a
lightweight kernel based OS targeting manycore CPUs over
the IHK, and at the same time, design considerations of an
execution model for future manycore based systems is also
undertaken. The minimalistic kernel is built with keeping
the following principles in mind. First, on board memory
of the co-processor is relatively small, thus, only very nec-
essary services are provided by the kernel. Second, CPU
caches are also smaller, therefore, heavy system calls are
shipped to and executed on the host. Third, the number of
CPU cores on the co-processor board is large so kernel data
structures need to be managed in a scalable manner.

2.2 Execution Model
Projections for future exascale configurations suggest that

the degree of parallelism inside a node could experience over
a hundred fold increase, while the number of nodes in the
system will likely grow by at least a factor of ten. In or-
der to realize scalable communication among processes run-
ning on such systems, we believe that sharing the address
space among multiple CPU cores inside a node, i.e., running
a single, multi-threaded process (think of hybrid MPI and
OpenMP programming), or at most a few, are the only vi-
able approaches as opposed to assigning separate processes
to each core. Thus, our main concern is how to handle a
single address space running on a manycore co-processor.

In our current model (shown in Figure 1b) the application
executes primarily on the manycore unit (similarly to Intel’s
native mode execution [16]), but it has transparent access to
the memory residing in the host machine, as an additional
level in the memory hierarchy. The application virtual ad-
dress space is primarily maintained by the co-processors and
is partially mapped onto the physical memory of the many-
core board. However, the rest of the address space is stored
in the host memory. The operating system kernel running on
the co-processor is responsible for moving data between the
host memory and the co-processor’s RAM and for updating
the virtual address space accordingly. It is worth pointing
out that due to the large number of CPU cores the OS needs
to be able to handle simultaneously occurring page faults in
a scalable manner.

2.3 Per-core Partially Separated Page Tables
In order to provide the basis for further discussion on

page replacement policies, this Section will first give a brief
overview of our previous proposal, per-core partially sepa-
rated page tables (PSPT) [14].

With the traditional process model all CPU cores in an
address space refer to the same set of page tables and TLB
invalidation is done by means of looping through each CPU
core and sending an Inter-processor Interrupt (IPI). As we
pointed out earlier, the TLB invalidation IPI loop becomes
extremely expensive when frequent page faults occur simul-
taneously on a large number of CPU cores [14].

However, as we will show later in Section 5.2, in many
HPC applications the computation area (the memory area
on which computation takes place) is divided among CPU
cores and only a relatively small part of the memory is uti-
lized for communication. Consequently, CPU cores do not
actually access the entire computation area and when an
address mapping is modified most of the CPU cores are
not affected. However, the information of which cores’ TLB
have to be invalidated is not available due to the centralized
book-keeping of address translations in the address space
wise page tables.

In order to overcome this problem we have already pro-
posed per-core partially separated page tables (PSPT), which
is shown in Figure 3. In PSPT each core has its own last
level page table, i.e., Page Global Directory (PGD). Kernel-
space and regular user-space mappings point to the same
Page Middle Directories (PMD), and thus, use the same
PTEs to define the address space (regular boxes in the top
of Figure 3). However, for the computation area per-core
private page tables are used (denoted by dashed boxes in
Figure 3). There are multiple benefits of such arrangement.
First, each CPU core sets up PTEs exclusively for addresses

75

Figure 3: Per-core Partially Separated Page Tables.

that it actually accesses. Second, when a virtual to physical
mapping is changed, it can be precisely determined which
cores’ TLB might be affected, because only the ones which
have a valid PTE for the particular address may have cached
a translation. Consider the red dashed lines in Figure 3,
PTE invalidation in case of regular page tables require send-
ing an IPI for each core, while PSPT invalidates the TLB
only on Core0 and Core1. Third, synchronization (particu-
larly, holding the proper locks for page table modifications)
is performed only between affected cores, eliminating coarse
grained, address space wise locks that are often utilized in
traditional operating system kernels [9].
It is also worth pointing out, that the private fashion of

PTEs does not imply that mappings are different, namely,
private PTEs for the same virtual address on different cores
define the same virtual to physical translation. When a page
fault occurs, the faulting core first consults other CPU cores’
page tables and copies a PTE if there is any valid mapping
for the given address. Also, when a virtual address is un-
mapped, all CPU cores’ page table, which map the address,
need to be modified accordingly. This requires careful syn-
chronization during page table updates, but the price of such
activity is much less than constant address space wise TLB
invalidations. For further discussion on PSPT refer to [14].
Note that an alternative solution to the careful software

approach could be if the hardware provided the right capa-
bility to invalidate TLBs on multiple CPU cores, such as
special instructions for altering TLB contents on a set of
CPU cores. Thus, although we do provide an OS level so-
lution in this paper, we would encourage hardware vendors
to put a stronger focus on TLB invalidation methods for
many-core CPUs.

3. CORE-MAP COUNT BASED PAGE
REPLACEMENT

State of the art page replacement algorithms, such as ap-
proximations of the LRU policy, aim at minimizing the num-
ber of page faults during execution by means of estimating
the working set of the application and keeping it in RAM
[11]. To estimate the working set, the operating system
monitors memory references, relying on the access bit of
page table entries. Specifically, the OS scans PTEs checking
and clearing the accessed bit in a periodic fashion. In case
of the x86 architecture, however, every time the accessed
bit is cleared, it is also required to invalidate the TLB entry

(on all affected CPU cores) corresponding to the given PTE
in order to ensure that the hardware will set the access bit
when the page is referenced again.

We have already stated above that the many-core co-
processor accessing the host memory setup is significantly
different than the multi-core CPU based host machine ac-
cessing a regular disk configuration. First, the PCI Express
bus is orders of magnitude faster (we measured up to 6GB/s
bandwidth between the host and the MIC) than accessing
a regular disk, which makes the relative price of data trans-
fer during page fault handling less expensive compared to
the disk based scenario. Second, as we pointed out previ-
ously, the large number of CPU cores on the co-processor
renders the price of remote TLB invalidations much higher,
when frequent page faults occur simultaneously in multiple
threads [14].

As we will demonstrate through quantitative measure-
ments in Section 5, LRU can successfully decrease the num-
ber of page faults (compared to the basic FIFO policy), but
the price of frequent TLB invalidations for obtaining page
usage statistics outweighs the benefits of the algorithm it-
self, rendering the performance of LRU lower than FIFO. We
emphasize that the problem with LRU on manycore CPUs
is not the original policy how victim pages are chosen. It
is the overhead of collecting information so that the policy
can be realized.

Figure 4: Core-Map Count based Priority Replace-
ment. The ratio of prioritized pages is defined by p,
where 0 <= p <= 1.

In order to overcome the aforementioned issue, we propose
a novel page replacement policy that exploits the auxiliary
knowledge of the number of mapping CPU cores of each
memory page, which we gather from the per-core partially
separated page tables. Note that such information cannot
be obtained from regular page tables due to their centralized
book keeping of address mappings. As an example, in Figure
3 one can see that the page corresponding to the red circled
PTE is mapped by two CPU cores. Intuitively, pages that
are mapped by a large number of CPU cores (and thus have
been accessed by them) are likely more important than per-
core local data. Furthermore, remapping a page that has
been referenced by a large number threads requires TLB
invalidations on all the mapping CPU cores, while pages
that are per-core private (or mapped by only a few cores)
imply less time spent on TLB invalidation.

The high level design of the algorithm, which we call Core
Map Count based Priority replacement (CMCP), is shown

76

in Figure 4. Physical pages are separated into two groups,
regular pages (left side of the Figure) are maintained on a
simple FIFO list, while the priority pages (shown on the
right) are held on a priority queue according to the number
of mapping CPU cores for each page. The parameter p of
the algorithm defines the ratio of prioritized pages. With p
converging to 0, the algorithm falls back to the simple FIFO
replacement, while p approaching 1, all pages are ordered by
the number of mapping CPU cores. The motivation behind
introducing p is to allow an optimization method to discover
the appropriate ratio which yields the best performance. In
Section 5, we will provide measurements on the effect of
varying the ratio.
When a new PTE is set up by a CPU core, it first consults

PSPT to retrieve the number of mapping cores for the par-
ticular page, and it tries to place the page into the prioritized
group. If the ratio of prioritized pages already exceeds p and
the number of mapping cores of the new page is larger than
that for the lowest priority page in the prioritized group,
then the lowest priority page is moved to FIFO and the new
page is placed into the priority group. Otherwise, the new
page goes to the regular FIFO list. Gradually, pages with the
largest number of mapping CPU cores end up in the priority
group. In order to enable moving pages to the other direc-
tion (i.e., from the prioritized group to the FIFO group), we
employ a simple aging method, where all prioritized pages
slowly fall back to FIFO. Such mechanism is required so that
prioritized pages which are not used any more can also be
swapped out, and thus preventing the priority group from
being monopolized by such pages.
As for eviction, the algorithm either takes the first page

of the regular FIFO list, or if the regular list is empty, the
lowest priority page from the prioritized group is removed.
The most important thing to notice is that there are no

extra remote TLB invalidations involved in the decision pro-
cess. Although one could intentionally construct memory ac-
cess patterns for which this heuristic wouldn’t work well, as
we will show in Section 5, CMCP consistently outperforms
both FIFO and LRU on all applications we have evaluated.
It is also worth mentioning, that although we use LRU as
the basis of comparison, other algorithms such as the least
frequently used (LFU) policy or the clock algorithm also rely
on the access bit of the PTEs [6], and thus would suffer from
the same issues of extra TLB invalidations.

4. XEON PHI 64KB PAGE SUPPORT
This Section describes the 64kB page support of the Xeon

Phi. The MIC features 4kB, 64kB, and 2MB page sizes,
although the 64kB support currently goes unused in the Intel
modified Linux kernel [17].
The 64kB page extension was originally added to create

an intermediate step between 4kB and 2MB pages, so that
reducing TLB misses and preserving high granularity can
be attained at the same time. Figure 5 illustrates the page
table format. Support can be enabled for 64kB pages via a
hint bit addition in page table entries for which the hardware
mechanism relies upon the operating system manipulating
the page tables and address maps correctly. As indicated
by PageFramek in Figure 5, to set a 64kB mapping, the
operating system must initialize 16 regular 4kB page table
entries (PTE), which are a series of subsequent 4kB pages
of a contiguous 64kB memory region. Furthermore, the first
entry of the 16 entries must correspond to a 64kB aligned

virtual address, which in turn must map to a 64kB aligned
physical frame. The OS then sets a special bit of the PTE to
indicate that CPU cores should cache the PTE using a 64kB
entry rather than a series of separate 4kB entries, denoted
by the flag 64 on the header of the PTEs in Figure 5.

Figure 5: Xeon Phi 64kB page table entry format.

On a TLB miss, the hardware performs the page table
walk as usual, and the INVLPG instruction also works as
expected. On the contrary, page attributes set by the hard-
ware work in a rather unusual way. For instance, upon the
first write instruction in a 64kB mapping the CPU sets the
dirty bit of the corresponding 4kB entry (instead of setting it
in the first mapping of the subsequent 16 mappings as one
might expect). This is indicated by the dirty bit set only
for PageFramek+1. The accessed bit works similarly. In
consequence, the operating system needs to iterate the 4kB
mappings when retrieving statistical information on a 64kB
page. One of the advantages of this approach is that there
are no restrictions for mixing the page sizes (4kB, 64kB,
2MB) within a single address block (2MB). With respect to
OS level hierarchical memory management, 64kB pages also
come with multiple benefits. On one hand, they offer lower
TLB miss rate compared to 4kB pages, while on the other
hand, they allow finer grained memory management than
using 2MB large pages. We will provide quantitative results
on using 64kB pages below.

5. EVALUATION

5.1 Experimental Setup and Workloads
Throughout our experiments the host machine was an

IntelR⃝ XeonR⃝ CPU E5-2670, with 64 Gigabytes of RAM.
For the manycore co-processor we used the Knights Corner
Xeon Phi 5110P card, which is connected to the host ma-
chine via the PCI Express bus. It provides 8GB of RAM
and a single chip with 60 1.053GHz x86 cores, each proces-
sor core supporting a multithreading depth of four. The chip
includes coherent L1 and L2 caches and the inter-processor
network is a bidirectional ring [15].

We use the OpenMP [24] version of three representative
algorithms from the NAS Parallel Benchmarks [2]. Namely,
CG (Conjugate Gradient), LU (Lower-Upper symmetric Gauss-
Seidel) and BT (Block Tridiagonal). We chose not to include
the other benchmarks from the NAS Parallel set for the
following reasons. EP (Embarrassingly Parallel) uses very

77

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

+# $)# %'# &%# '!# '+# ()#

!
"
#$
"
%
&"
'&
(
)
*
+
,&
-
)
(
(
+
.
&/
0
&1
&

"
'&
2"
#+
,&

34-/+#&"'&5!6&2"#+,&&

()#-./01#

'+#-./01#

'!#-./01#

&%#-./01#

%'#-./01#

$)#-./01#

+#-./01#

&#-./01#

%#-./01#

$#-./0#

(a) cg.B

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

+# $)# %'# &%# '!# '+# ()#

!
"
#$
"
%
&"
'&
(
)
*
+
,&
-
)
(
(
+
.
&/
0
&1
&

"
'&
2"
#+
,&

34-/+#&"'&5!6&2"#+,&&

+#-./01#

*#-./01#

)#-./01#

(#-./01#

'#-./01#

&#-./01#

%#-./01#

$#-./0#

(b) lu.B

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

+# $)# %'# &%# '!# '+# ()#

!
"
#$
"
%
&"
'&
(
)
*
+
,&
-
)
(
(
+
.
&/
0
&1
&

"
'&
2"
#+
,&

34-/+#&"'&5!6&2"#+,&&

,#-./01#

+#-./01#

*#-./01#

)#-./01#

(#-./01#

'#-./01#

&#-./01#

%#-./01#

$#-./0#

(c) bt.B

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

+# $)# %'# &%# '!# '+# ()#

!
"
#$
"
%
&"
'&
(
)
*
+
,&
-
)
(
(
+
.
&/
0
&1
&

"
'&
2"
#+
,&

34-/+#&"'&5!6&2"#+,&&

(#-./01#

'#-./01#

&#-./01#

%#-./01#

$#-./0#

(d) SCALE (sml)

Figure 6: Distribution of pages according to the number of CPU cores mapping them for NPB B class
benchmarks and SCALE (512MB).

small amount of memory and thus hierarchical memory man-
agement is not necessary. It has been already pointed out
by [27] that FT (Fourier-Transformation) and MG (three-
dimensional discrete Poisson equation) are highly memory
intensive workloads. We found that without algorithmic
modifications, such as shown in [30], running these appli-
cations in an out-of-core fashion is not feasible. Finally, IS
(Integer Sort) doesn’t appear to have high importance for
our study.
However, we use the Scalable Computing for Advanced Li-

brary and Environment (SCALE) [3], a stencil computation
code for weather and climate modelling developed at RIKEN
AICS. SCALE is a complex stencil computation application,
which operates on multiple data grids. It is written in For-
tran 90 and it also uses OpenMP to exploit thread level
parallelism.
For each benchmark we used two configurations with re-

spect to memory usage. Small configuration, i.e., B class
NPB benchmarks and 512 megabytes memory requirement
for SCALE, which we denote by SCALE (sml) were used for
experiments using only 4kB pages, while C class NPB bench-
marks and a 1.2GB setup of SCALE, denoted by SCALE
(big) were utilized for the comparison on the impact of dif-
ferent page sizes. For all applications we used Intel’s com-
piler with the −O3 flag and verified in the compiler log that
special vector operations for the Xeon PhiTM were indeed
generated. In order to move the computation data into the
PSPT memory region we interface a C block with the For-
tran code which explicitly memory maps allocations to the
desired area. It is also worth mentioning that in all ex-
periments we mapped application threads to separate CPU
cores, partially due to the fact that we dedicated some of the
hyperthreads to the page usage statistics collection mecha-
nism for LRU.
Regarding the discussion on page replacement policies, we

will be comparing our proposal against an LRU approxima-
tion, which implements the same algorithm employed by the
Linux kernel [22]. It tracks pages on two lists, the active and
inactive queues, where active denotes pages which are de-
rived as part of the application’s working set, while inactive
represents the rest of the memory. Pages transit between
these two states based on periodic scanning of the access bit
of the corresponding PTEs, which is carried out in a timer
set for every 10 milliseconds. As briefly mentioned above, we
use dedicated hyperthreads for collecting page usage statis-
tics, i.e., the timer interrupts are not delivered to application
cores so that interference with the application is minimized.

5.2 Page Sharing among CPU Cores
As we mentioned above, we found that in various HPC

applications the footprint of CPU cores accessing pages on
the computation area is surprisingly regular. Figure 6 illus-
trates the result of our analysis, which we obtain from the
per-core page tables of PSPT. For each application we show
the distribution of pages (in the computation area) accord-
ing to the number of CPU cores that access them. The key
observation is that for all applications listed, regardless the
overall number of CPU cores involved, the majority of pages
are shared by only a very few cores.

Specifically, in case of both CG and SCALE (stencil com-
putation) over 50% of the pages are core private. Further-
more the remaining pages are mainly shared by only two
cores. LU and BT show somewhat less regular pattern, nev-
ertheless, the majority of pages are still mapped by only less
than six cores and over half of them are mapped by at most
three. This implies that with PSPT, every time when a
page is swapped out only a few CPU cores’ TLB need to be
flushed as opposed to the every CPU scenario that regular
page tables require.

5.3 Relative Performance to Memory Constraint
Before moving on to demonstrate scalability of PSPT, as

well as the impact of various page replacement policies, we
provide measurements on how the degree of memory con-
straint imposed on various applications affects performance.

Figure 8: Relative performance with respect to
physical memory provided for NPB B class bench-
marks and SCALE.

Figure 8 illustrates the measurements for small size bench-
marks using PSPT with 4kB pages, 56 CPU cores, and FIFO

78

(a) bt.B (b) lu.B

(c) cg.B (d) SCALE (sml)

Figure 7: Performance measurements of NAS Parallel benchmarks and SCALE (sml) comparing regular page
tables and PSPT using various page replacement policies.

replacement policy. The X axis shows the ratio of mem-
ory provided and Y axis represents the relative performance
compared to the case where no data movement takes place.
As seen, two kinds of behavior can be distinguished. LU
and BT shows gradual decrease in performance with respect
to the amount of memory provided, which is immediately
visible once the physical memory available is less than 100%
of the application’s requirement.
On the other hand, CG and SCALE doesn’t suffer signifi-

cant performance degradation until approximately 35% and
55%, respectively. We believe this is due to sparse repre-
sentation of data in these applications. Nevertheless, once
the turning point is crossed, performance starts dropping
steadily for both of the benchmarks.
In order to stress our kernel’s virtual memory subsystem,

in the rest of the experiments we set the memory constraint
so that relative performance with FIFO replacement results
between 50% and 60% for each application.

5.4 PSPT and Page Replacement Policies
We will now provide runtime measurements for the three

benchmarks we evaluated from the NAS parallel suite and
for RIKEN’s SCALE. We are focusing on the benefits of par-
tially separated page tables with the combination of various
page replacements policies, as well as on their scalability
with the number CPU cores. As it has been discussed be-

fore (and shown in Figure 6), all of these applications have
very regular page sharing pattern among the CPU cores,
where a large fraction of the pages are mapped by only a
few CPU cores, suggesting significant benefits using PSPT.
Results are shown in Figure 7.

For each benchmark we ran five configurations. First,
using regular page tables and providing sufficient physical
memory so that data movement does not occur. This is
indicated by the legend no data movement. As mentioned
above, we limit physical memory so that FIFO replacement
using PSPT achieves approximately half of the performance
of the no data movement configuration. This translates to
physical memory limitation of 64% for BT, 66% for LU, and
37% in case of CG and approximately half of the memory
requirement of SCALE. We measured the performance of
FIFO replacement for both regular and partially separated
page tables, indicated by regular PT + FIFO and PSPT
+ FIFO, respectively. Additionally, we compare the perfor-
mance of page replacement policies by evaluating the effect
of LRU, denoted by PSPT + LRU, and Core-Map Count
Based replacement, indicated by PSPT + CMCP.

The first thing to point out is the fact that there is nothing
wrong with regular page tables in case no data movement
(and thus no address remapping) is performed by the OS.
However, when frequent page faults occur concurrently on
several cores, regular page tables hardly scale up to 24 cores,

79

App. Policy Attribute 8 cores 16 cores 24 cores 32 cores 40 cores 48 cores 56 cores

bt.B

FIFO
page faults 2726737 1362879 912466 643175 507325 422293 374839
remote TLB invalidations 12429404 7363887 5573193 4373695 3803838 3465130 3226009
dTLB misses 317301578 158902560 104686518 78861340 63265002 52566943 45131883

LRU
page faults 2081372 1121643 736023 526239 405079 343081 283699
remote TLB invalidations 36835046 27810383 19186674 13964030 10818576 9064231 7200812
dTLB misses 329974700 181141377 121038176 90000002 69873462 56684949 48067965

CMCP
page faults 2095202 1166479 707894 515089 355083 316789 262958
remote TLB invalidations 8054343 5007407 3492531 2772393 1968787 1932189 1683682
dTLB misses 303861675 154641090 102907981 77448482 61478878 51527221 43876503

cg.B

FIFO
page faults 1201555 612630 416332 316925 257412 214623 170332
remote TLB invalidations 5135525 2804708 1956586 1518976 1251353 1061759 848976
dTLB misses 2094329816 1047163487 698202996 523651167 418949006 349143469 299118728

LRU
page faults 697582 204362 159474 118680 103060 85709 74393
remote TLB invalidations 22972046 10429447 5799486 3472687 2551439 1913195 1536147
dTLB misses 2102332886 1051392986 700485750 524945408 419223430 348950189 298896012

CMCP
page faults 974695 507322 355728 273488 219813 169125 147269
remote TLB invalidations 4097411 2270867 1629661 1266941 1024237 788419 689344
dTLB misses 2092475232 1046394257 697830654 523418261 418753017 348865565 299034762

lu.B

FIFO
page faults 1664098 736180 474095 352133 281916 235222 203914
remote TLB invalidations 7670041 4370794 3182328 2575556 2166993 1953164 1703195
dTLB misses 1198077215 599572624 400681210 301074654 241110822 201467566 173098992

LRU
page faults 1404043 702963 469002 341749 249638 201451 201691
remote TLB invalidations 184015529 62149332 30745581 19286652 12227868 10137298 7161364
dTLB misses 1286055611 653339411 431973663 323255046 253339298 209722670 178214335

CMCP
page faults 849638 534063 415147 260252 172057 153015 159575
remote TLB invalidations 3791955 2747828 2289613 1476379 1024914 979601 1094896
dTLB misses 1195314147 598279823 399867708 300469205 240438760 200940292 172782035

SCALE

FIFO
page faults 1689552 845232 563854 171636 116877 96999 83817
remote TLB invalidations 6612775 3566425 2547823 817612 579835 497952 439276
dTLB misses 153176016 77193205 52302140 39044538 31526874 26470846 22932556

LRU
page faults 272450 145358 98365 73234 55315 45500 32988
remote TLB invalidations 17091293 7262438 4469165 3374882 2674781 2224822 1776893
dTLB misses 157644315 79764075 54112492 41294510 33055668 27486007 23655615

CMCP
page faults 698334 256230 137778 92977 73260 61343 62057
remote TLB invalidations 2522939 985460 545405 382940 312692 269734 281294
dTLB misses 150999236 75899452 51330254 38831504 31412049 26374264 22871311

Table 1: Per CPU core average number of page faults, TLB invalidations, and TLB misses for various work-
loads and page replacement policies as the function of the number of CPU cores utilized by the application.

resulting in completely unacceptable performance. In fact,
one can observe slowdown in most cases when more than 24
cores are utilized.
On the other hand, partially separated page tables pro-

vide relative speed-ups (i.e., scalability) similar to the no
data movement configuration. Considering page replace-
ment policies, surprisingly, we found that LRU yields lower
performance than FIFO, which we will discuss in more de-
tail below. Nevertheless, the key observation with regards
to page replacement policies is the superior performance of
the Core-Map Count based Replacement policy, which con-
sistently outperforms FIFO, yielding 38%, 25%, 23%, and
13% better results when running on 56 CPU cores for BT
(Figure 7a), LU (Figure 7b), CG (Figure 7c), and SCALE
(Figure 7d), respectively.

5.5 What is wrong with LRU?
In order to gain a deeper understanding of LRU’s behavior

we logged various attributes of the execution. Table 1 sum-
marizes the data. We provide per-core average values for
the number of page faults, remote TLB invalidations (i.e.,
TLB invalidation requests coming from other CPU cores),
and data TLB misses. As seen, LRU successfully decreases
the number of page faults compared to FIFO for all bench-
marks. We highlighted some of the values for CG to further
emphasize the difference. However, it comes at the price
of substantial (up to several times) increase in the number
of remote TLB invalidations. Contrary to our expectations,
the number of dTLB misses isn’t increased significantly by

LRU’s page scanning mechanism, mainly because there is
a large number of TLB misses anyway. Notice that TLB
misses do not only stem from TLB invalidations, but simply
from the fact that the size of the TLB cache is insufficient
for covering the entire address range mapped by the appli-
cation. Moreover, although it is not included in the table,
we also observe up to 8 times increase in CPU cycles spent
on synchronization (i.e., locks) for remote TLB invalidation
request structures. Altogether, we confirmed that the above
mentioned components account for the performance degra-
dation seen in case of LRU. On the other hand, while CMCP
also reduces the number of page faults compared to FIFO,
supporting the assumption with respect to the importance of
pages mapped by multiple CPU cores, it does not introduce
any overhead from the above mentioned issues.

It is also worth pointing out that we did experiment with
adjusting the frequency of LRU’s page scanning mechanism.
In principle, the lower the frequency is, the less the TLB
invalidation overhead becomes. However, doing so defeats
the very purpose of LRU, i.e., decreasing the number of page
faults. Eventually, with very low page scanning frequency
LRU simply fell back to the behavior of FIFO. Nevertheless,
whenever LRU succeeded in decreasing the number of page
faults, it always yielded worse performance than FIFO.

5.6 The role of p in CMCP
As we mentioned earlier in Section 3, we provide mea-

surements on the effect of the ratio of prioritized pages for
CMCP policy. Figure 9 shows the results. As seen, the ratio

80

of prioritized pages affects performance improvement quite
significantly, moreover, the impact is also very workload spe-
cific. For instance, CG benefits the most from a low ratio,
while in case of LU or SCALE high ratio appears to work
better. We adjusted the algorithm’s parameter manually in
this paper, but determining the optimal value dynamically
based on runtime performance feedback (such as page fault
frequency) is part of our future work.

Figure 9: The impact of the ratio of prioritized pages
in CMCP.

One could also argue that the number of mapping cores
of a given page is dynamic with the time changing which
in turn naturally impacts the optimal value of p. Although
we believe the applications we consider in this paper exhibit
rather static inter-core memory access patterns, a more dy-
namic solution with periodically rebuilding PSPT could ad-
dress this issue as well.

5.7 The Impact of Different Page Sizes
In this Section we turn our attention towards the impact

of various page sizes (i.e., 4kB, 64kB and 2MB) supported
by the IntelR⃝ Xeon PhiTM. Using larger pages reduces the
number of TLB misses and thus can improve performance.
However, in case of OS level data movement there are two
problems when it comes to larger pages.
First, the usage of larger pages also implies that every

time a page is moved to or from the host memory, signif-
icantly more data needs to be copied. Second, since with
larger pages the granularity of the memory is more coarse
grained, the probability of different CPU cores accessing the
same page is also increased, and consequently, the price of
remote TLB invalidations when the corresponding address
is remapped. For example, using 2MB pages is 512x more
coarse-grained than the regular 4kB pages, but on the other
hand, 64kB pages yield only 16 times more coarse-grained
mappings, possibly benefiting more the hierarchical memory
scenario. Therefore, the main issue we seek to investigate
is how the increased price of the data movement and TLB
invalidations compare to the benefits of using larger pages.
We are also interested in seeing how the imposed memory
constraint influences performance.
We used the C class NPB benchmarks and SCALE with

1.2GB of memory. Figure 10 illustrates the results. Note
that we leave the investigation of combining various page
replacement policies with different page sizes as future work
and we present results only for FIFO replacement in this
paper. Nevertheless, for all measurements, we used 56 CPU
cores.

As expected, when memory constraint is low, large pages
(i.e., 2MB) provide superior performance compared to both
4kB and 64kB pages. However, as we decrease the mem-
ory provided, the price of increased data movement quickly
outweighs the benefits of fewer TLB misses. Due to their
finer granularity, the higher the memory constraint is the
more we can benefit from smaller pages. This tendency can
be clearly seen in case of BT and LU (Figure 10a and 10b,
respectively), where with the decreasing memory first 64kB
pages and later 4kB pages prove to be more efficient. On
the other hand, we found that for CG and SCALE (Figure
10c and 10d, respectively), 64kB pages consistently outper-
form 4kB pages even when memory pressure is already con-
siderably high. We believe further increasing the memory
pressure would eventually produce the expected effect, but
it is yet to be confirmed.

Indeed, the operating system could monitor page fault fre-
quency and adjust page sizes dynamically so that it always
provides the highest performance. At the same time, differ-
ent page sizes could be used for different parts of the address
space. Mapping frequently accessed areas with large pages
could reduce TLB misses, while data that need to be often
moved back and forth could benefit more from smaller page
sizes. Exploring these directions is part of our future plans.

6. RELATED WORK

6.1 Operating Systems for Manycores
Operating system organization for manycore systems has

been actively researched in recent years. In particular, issues
related to scalability over multiple cores have been widely
considered.

K42 [12, 20] was a research OS designed from the ground
up to be scalable. It’s Clustered Object model provides a
standard way for implementing concurrently accessed ob-
jects using distribution and replication, the same principles
we applied to page tables. At the time of K42, nevertheless,
there were no co-processors or multiple levels of memory
hierarchy.

Corey [7], an OS designed for multicore CPUs, argues that
applications must control sharing in order to achieve good
scalability. Corey proposes several operating system ab-
stractions that allow applications to control inter-core shar-
ing. For example, Corey’s range abstraction provides means
to control whether a memory area is private or shared by
certain CPU cores, however, in a Corey range all CPU cores
share the same set of page tables, and thus the TLB problem
we address cannot be handled by their solution. Moreover,
we are also aiming at application transparency.

Barrelfish [28] argues that multiple types of diversity and
heterogeneity in manycore computer systems need to be
taken into account. It represent detailed system information
in an expressive ”system knowledge base”accessible to appli-
cations and OS subsystems and use this to control tasks such
as scheduling and resource allocation. While we explicitly
address the IntelR⃝ Xeon PhiTM product family in this pa-
per, system knowledge base, as proposed in Barrelfish could
be leveraged for placing threads to CPU cores that have low
IPI communication cost so that TLB invalidations can be
performed more efficiently.

Scalable address spaces in particular have been also the
focus of recent research. Clements et. al [9] proposed in-
creasing the concurrency of kernel operations on a shared

81

(a) bt.C (b) lu.C

(c) cg.C (d) SCALE (big)

Figure 10: The impact of page sizes on relative performance with respect to memory constraint for various
benchmarks.

address space by exploiting read-copy-update (RCU) so that
operations that mutate the same address space can avoid
contention on shared cache lines. Moreover, published at
the same time with our previous proposal [14], they also
explored the idea of per-core page tables [10], however, nei-
ther hierarchical memory nor page replacement policies are
considered in their study.
An idea, similar to PSPT, has been discussed by Almaless

and Wajsburt [5]. The authors envision replicating page ta-
bles in NUMA environments to all memory clusters in order
to reduce the cost of address translations (i.e., TLB misses)
on CPU cores, which are located far from the otherwise cen-
tralized page tables. Although their proposal is similar to
ours, they are addressing a very NUMA specific issue, fur-
thermore, they do not provide an actual implementation.
In the context of heterogeneous kernels, IBM’s FusedOS

[25] also promotes the idea of utilizing different kernel code
running on CPU cores dedicated to the application and the
OS. However, they do not focus on hierarchical memory sys-
tems. GenerOS [32] partitions CPU cores into application
core, kernel core and interrupt core, each of which is ded-
icated to a specified function. Again, the idea of utilizing
dedicated cores for system call execution is similar to the
utilization of the host machine for offloading system calls
from the co-processor.
Villavieja et. al also pointed out the increasing cost of

remote TLB invalidations with the number of CPU cores in
chip-multiprocessors (CMP) systems [31]. In order to miti-

gate the problem the authors propose a lightweight hardware
extension (a two-level TLB architecture that consists of a
per-core TLB and a shared, inclusive, second-level TLB) to
replace the OS implementation of TLB coherence transac-
tions. While the proposed solution yields promising results,
it requires hardware modifications, which limits its applica-
bility. To the contrary, our proposal offers a solution entirely
implemented in software.

6.2 Programming Models
Programming models for accelerators (i.e., co-processors)

have also been the focus of research in recent years. In case
of GPUs, one can spread an algorithm across both CPU
and GPU using CUDA [23], OpenCL [19], or the OpenMP
[24] accelerator directives. However, controlling data move-
ment between the host and the accelerator is entirely the
programmer’s responsibility in these models. Nevertheless,
a recent announcement by Nvidia reveals Unified Memory,
a new feature in the upcoming CUDA 6 release [4]. Unified
memory will allow the programmer to have a unified view
of the host and the device memory on GPUs, eliminating
the need to manually orchestrate data movement. Although
Nvidia states their mechanism works on the memory page
level, no details have been disclosed regarding their page
replacement policy.

OpenACC [8] allows parallel programmers to provide di-
rectives to the compiler, identifying which areas of code to
accelerate. Data movement between accelerator and host

82

memories and data caching is then implicitly managed by
the compiler, but as the specification states, the limited de-
vice memory size may prohibit offloading of regions of code
that operate on very large amounts of data.
Intel provides several execution models for the Xeon PhiTM

product family [16]. One of them, the so called Mine-Your-
Ours (MYO), also referred to as Virtual Shared Memory,
provides similar features to Nvidia’s unified memory, such
as transparent shared memory between the host and the co-
processor. However, at the time of writing this paper, the
main limitation of MYO is that the size of the shared mem-
ory area cannot exceed the amount of the physical memory
attached to the co-processor. On the contrary, we explicitly
address the problem of dealing with larger data sets than
the amount of physical memory available on the co-processor
card.
Other memory models have been also proposed for GPUs,

the Asymmetric Distributed Shared Memory (ADSM) main-
tains a shared logical memory space for CPUs to access ob-
jects in the accelerator physical memory but not vice versa.
When a method is selected for accelerator execution, its as-
sociated data objects are allocated within the shared logical
memory space, which is hosted in the accelerator physical
memory and transparently accessible by the methods exe-
cuted on CPUs [13]. While ADSM uses GPU based systems
providing transparent access to objects allocated in the co-
processor’s memory, we are aiming at an approach of the
opposite direction over Intel’s MIC architecture.

7. CONCLUSION AND FUTURE WORK
Memory management is one of the major challenges when

it comes to programming co-processor based heterogeneous
architectures. To increase productivity, we have investigated
the feasibility of an OS level, application transparent solu-
tion targeting the Intel Xeon Phi. Focusing on page re-
placement algorithms, one of our main findings is that state
of the art approaches, such as approximations of the LRU
policy, are not well suited for massive many-cores due to
their associated cost of obtaining page usage statistics. We
emphasize that the problem with LRU on many-core CPUs
does not stem from the policy of keeping recently used pages
close to the CPU. It is the price of frequently scanning page
table entries, which requires a large number of extra TLB
invalidations.
Building upon our previous proposal, per-core Partially

Separated Page Tables (PSPT), in this paper, we have pro-
posed Core Map Count based Priority (CMCP) page re-
placement policy that prioritizes pages based on the number
of mapping CPU cores. The main advantage of our approach
is the ability to eliminate remote TLB invalidations other-
wise necessary for page usage tracking.
We have further evaluated PSPT on various real life ap-

plications and demonstrated its scalability to large number
of CPU cores. Enhanced with CMCP, we have also shown
that we consistently outperform existing page replacement
policies by up to 38% when running on 56 cores. Addition-
ally, for the first time, we have provided an implementation
of the experimental 64kB page support of the Intel Xeon Phi
and concluded that adequate page size is a function of the
memory constraint and there is space for 64kB pages in the
context of hierarchical memory management. Across vari-
ous workloads, our system is capable of providing up to 70%
of the native performance with physical memory limited to

half, allowing essentially to solve two times larger problems
without any need for algorithmic changes.

With respect to future architectures, such as the afore-
mentioned Knights Landing chip, which will replace the PCI
Express bus with printed circuit board (PCB) connection
between memory hierarchies (rendering the bandwidth sig-
nificantly higher), we expect to see further performance ben-
efits of our solution. In the future, we intend to dynamically
adjust page sizes during runtime in response to memory con-
straint as well as to integrate such decisions with page re-
placement policies.

Acknowledgment
This work has been partially supported by the CREST project
of the Japan Science and Technology Agency (JST) and by
the National Project of MEXT called Feasibility Study on
Advanced and Efficient Latency Core Architecture.

We would also like to express our gratitude to Intel Japan
for providing early access to the pre-production version of
the hardware, as well as for the technical support associated
with the IntelR⃝ Xeon PhiTM product family.

8. REFERENCES
[1] Intel unveils 72-core x86 Knights Landing CPU for

exascale supercomputing.
http://www.extremetech.com/extreme/171678-

intel-unveils-72-core-x86-knights-landing-cpu-

for-exascale-supercomputing.

[2] NASA. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB.

[3] RIKEN AICS. Scalable Computing for Advanced
Library and Environment.
http://scale.aics.riken.jp/.

[4] Unified Memory in CUDA 6.
http://devblogs.nvidia.com/parallelforall/

unified-memory-in-cuda-6.

[5] Almaless, G., and Wajsburt, F. Does
shared-memory, highly multi-threaded,
single-application scale on many-cores? In Proceedings
of the 4th USENIX Workshop on Hot Topics in
Parallelism (2012), HotPar ’12.

[6] Arpaci-Dusseau, R. H., and Arpaci-Dusseau,
A. C. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau, 2013.

[7] Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y.,
Kaashoek, F., Morris, R., Pesterev, A., Stein,
L., Wu, M., Dai, Y., Zhang, Y., and Zhang, Z.
Corey: an operating system for many cores. In
Proceedings of the 8th USENIX conference on
Operating systems design and implementation (2008),
OSDI’08, pp. 43–57.

[8] CAPS Enterprise and CRAY Inc and The
Portland Group Inc and NVIDIA. The OpenACC
Application Programming Interface. Specification,
2011.

[9] Clements, A. T., Kaashoek, M. F., and
Zeldovich, N. Scalable address spaces using RCU
balanced trees. In Proceedings of the seventeenth
international conference on Architectural Support for
Programming Languages and Operating Systems
(2012), ASPLOS ’12.

83

[10] Clements, A. T., Kaashoek, M. F., and
Zeldovich, N. RadixVM: scalable address spaces for
multithreaded applications. In Proceedings of the 8th
ACM European Conference on Computer Systems
(2013), EuroSys ’13.

[11] Denning, P. J. Virtual Memory. ACM Computing
Surveys 2 (1970), 153–189.

[12] Gamsa, B., Krieger, O., Appavoo, J., and Stumm,
M. Tornado: maximizing locality and concurrency in a
shared memory multiprocessor operating system. In
Proceedings of the third symposium on Operating
systems design and implementation (1999), OSDI ’99.

[13] Gelado, I., Stone, J. E., Cabezas, J., Patel, S.,
Navarro, N., and Hwu, W.-m. W. An asymmetric
distributed shared memory model for heterogeneous
parallel systems. In Proceedings of the fifteenth edition
of ASPLOS on Architectural support for programming
languages and operating systems (New York, NY,
USA, 2010), ASPLOS ’10, ACM, pp. 347–358.

[14] Gerofi, B., Shimada, A., Hori, A., and Ishikawa,
Y. Partially Separated Page Tables for Efficient
Operating System Assisted Hierarchical Memory
Management on Heterogeneous Architectures. In
Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on (may
2013).

[15] Intel Corporation. Intel Xeon Phi Coprocessor
Software Developers Guide, 2012.

[16] Intel Corporation. Knights Corner: Open Source
Software Stack, 2012.

[17] Jeffers, J., and Reinders, J. Intel Xeon Phi
Coprocessor High Performance Programming. Morgan
Kaufmann, 2013.

[18] Keckler, S., Dally, W., Khailany, B., Garland,
M., and Glasco, D. GPUs and the Future of
Parallel Computing. Micro, IEEE 31, 5 (2011), 7–17.

[19] Khronos OpenCL Working Group. The OpenCL
Specification, version 1.0.29, 8 December 2008.

[20] Krieger, O., Auslander, M., Rosenburg, B.,
Wisniewski, R. W., Xenidis, J., Da Silva, D.,
Ostrowski, M., Appavoo, J., Butrico, M.,
Mergen, M., Waterland, A., and Uhlig, V. K42:
building a complete operating system. In Proceedings
of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006 (2006),
EuroSys ’06.

[21] Matsuo, Y., Shimosawa, T., and Ishikawa, Y. A
File I/O System for Many-core Based Clusters. In
ROSS’12: Runtime and Operating Systems for
Supercomputers (2012).

[22] Mauerer, W. Professional Linux Kernel Architecture.
Wrox Press Ltd., Birmingham, UK, UK, 2008.

[23] NVIDIA Corp. NVIDIA CUDA Programming Guide
2.2, 2009.

[24] OpenMP Architecture Review Board. OpenMP
Application Program Interface. Specification, 2008.

[25] Park, Y., Van Hensbergen, E., Hillenbrand, M.,
Inglett, T., Rosenburg, B., Ryu, K. D., and
Wisniewski, R. FusedOS: Fusing LWK Performance
with FWK Functionality in a Heterogeneous
Environment. In Computer Architecture and High
Performance Computing (SBAC-PAD), 2012 IEEE
24th International Symposium on (2012), pp. 211–218.

[26] Saha, B., Zhou, X., Chen, H., Gao, Y., Yan, S.,
Rajagopalan, M., Fang, J., Zhang, P., Ronen,
R., and Mendelson, A. Programming model for a
heterogeneous x86 platform. In Proceedings of the
2009 ACM SIGPLAN conference on Programming
language design and implementation (New York, NY,
USA, 2009), PLDI ’09, ACM, pp. 431–440.

[27] Saini, S., Chang, J., Hood, R., and Jin, H. A
Scalability Study of Columbia using the NAS Parallel
Benchmarks. Technical report, NASA Advanced
Supercomputing Division, 2006.

[28] SchÃijpbach, A., Peter, S., Baumann, A.,
Roscoe, T., Barham, P., Harris, T., and Isaacs,
R. Embracing diversity in the Barrelfish manycore
operating system. In In Proceedings of the Workshop
on Managed Many-Core Systems (2008).

[29] Si, M., and Ishikawa, Y. Design of Direct
Communication Facility for Many-Core based
Accelerators. In CASS’12: The 2nd Workshop on
Communication Architecture for Scalable Systems
(2012).

[30] Sivan Toledo. A Survey of Out-of-Core Algorithms
in Numerical Linear Algebra, 1999.

[31] Villavieja, C., Karakostas, V., Vilanova, L.,
Etsion, Y., Ramirez, A., Mendelson, A.,
Navarro, N., Cristal, A., and Unsal, O. S. DiDi:
Mitigating the Performance Impact of TLB
Shootdowns Using a Shared TLB Directory. In
Proceedings of the 2011 International Conference on
Parallel Architectures and Compilation Techniques
(Washington, DC, USA, 2011), PACT ’11, IEEE
Computer Society, pp. 340–349.

[32] Yuan, Q., Zhao, J., Chen, M., and Sun, N.
GenerOS: An asymmetric operating system kernel for
multi-core systems. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on
(april 2010), pp. 1 –10.

84

