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ABSTRACT
Lightweight multi-kernel architectures, where HPC special-
ized lightweight kernels (LWKs) run side-by-side with Linux
on compute nodes, have received a great deal of attention
recently due to their potential for addressing many of the
challenges system software faces as we move towards exas-
cale and beyond. LWKs in multi-kernels implement only a
limited set of kernel functionality and the rest is supported
by Linux, for example, device drivers for high-performance
interconnects. While most of the operations of modern high-
performance interconnects are driven entirely by user-space,
memory registration for remote direct memory access (RDMA)
usually involves interaction with the Linux device driver and
thus comes at the price of service offloading.

In this paper we introduce various optimizations for multi-
kernel LWKs to eliminate the memory registration cost. In
particular, we propose a safe RDMA pre-registration mech-
anism combined with lazy memory unmapping in the LWK.
We demonstrate up to two orders of magnitude improvement
in RDMA registration latency and up to 15% improvement
on MPI_Allreduce() for large message sizes.

Categories and Subject Descriptors
D.4 [Operating Systems]: Organization and Design
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1. INTRODUCTION
With the increasing complexity of high-end supercomput-

ers, there is a growing consensus in the system software com-
munity that the current software stack will face significant
challenges as we look forward to exascale and beyond. The
necessity to deal with extreme degree of parallelism, hetero-
geneous architectures, multiple levels of memory hierarchy,
power constraints, etc. advocates operating systems that
can rapidly adapt to new hardware requirements, and that
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can support novel programming paradigms and runtime sys-
tems. On the other hand, a new class of more dynamic and
complex applications are also on the horizon, with an in-
creasing demand for application constructs such as in-situ
analysis, workflows, elaborate monitoring and performance
tools [20, 16]. This complexity relies not only on rich fea-
tures of POSIX, but also on the Linux APIs (such as the
/proc, /sys filesystems, etc.) in particular.

While the traditional ”standalone”lightweight kernels have
proven successful in tackling the high degree of parallelism so
that scalable performance for bulk synchronous applications
can be delivered, they generally fail to provide a fully Linux
compatible environment [11, 13, 19, 8, 7, 2]. An alternative
hybrid approach recognized recently by the system software
community is to run Linux simultaneously with a lightweight
kernel on compute nodes and multiple research projects are
now pursuing this direction [17, 1, 14, 3]. The basic idea
is that simulations run on an HPC tailored lightweight ker-
nel, ensuring the necessary isolation for noiseless execution
of parallel applications, but Linux is leveraged so that the
full POSIX API is supported. Additionally, the small code
base of the LWK can also facilitate rapid prototyping for
new, exotic hardware features [4, 5].

Linux compatibility is often provided by offloading OS re-
quests (e.g., system calls) from the LWK to Linux. Some of
the typically offloaded operations are file I/O, Linux specific
APIs (i.e., the /proc, /sys filesystems), and access to Linux
device drivers, such as drivers for high-performance intercon-
nects. Although modern interconnects, such as Infiniband,
enable applications to drive the NIC directly from user-space
using regular load/store instructions, certain functional-
ity still requires interaction with the device driver. One
particular example is registration of memory buffers for re-
mote direct memory access (RDMA) operations. Because
the Infiniband driver is invoked for RDMA registration via
a write() call, in multi-kernel settings an additional cost
for offloading is also involved.

In this paper, we investigate how to minimize the cost
of RDMA registration in the context of lightweight multi-
kernels and implement our proposal in the IHK/McKernel
architecture [14, 4]. In summary, we make the following
contributions:

• We propose a safe RDMA pre-registration mechanism
that registers McKernel’s physical memory during the
proxy process initialization in Linux, without exposing
the RDMA memory mappings to the LWK process it-
self;

• We make MVAPICH2 RDMA pre-registration aware



so that registration requests can be served locally, avoid-
ing the otherwise expensive write() calls.

• Finally, we further eliminate offloading cost by intro-
ducing a lazy munmap() synchronization mechanism,
which postpones reflecting unmap operations on the
Linux side until it is absolutely necessary and performs
them by piggybacking unmap requests to consecutive
offloaded system calls.

Through microbenchmarks, we demonstrate up to two or-
ders of magnitude improvement in RDMA registration la-
tency and up to 15% improvement on MPI_Allreduce() for
large buffers.

The rest of this paper is organized as follows. We be-
gin with providing some background information on hybrid
kernels and IHK/McKernel in Section 2. Section 3 dis-
cusses RDMA pre-registration and required MPI modifica-
tions. Experimental evaluation is given in Section 4. Section
5 surveys related work, and finally, Section 6 presents future
plans and concludes the paper.

2. BACKGROUND
We first provide an overview of IHK/McKernel [14, 4], our

hybrid kernel configuration upon which the rest of this work
is built.
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Figure 1: Overview of the IHK/McKernel architec-
ture and the system call delegation mechanism.

As we described earlier, lightweight multikernels are rel-
atively new in HPC system software and multiple recent
research projects are now investigating this direction [14],
[1], [17], [3]. IHK/McKernel is our solution to providing
such a hybrid configuration. The IHK/McKernel architec-
ture is shown in Figure 1. At the heart of the stack is a
low-level software infrastructure called Interface for Hetero-
geneous Kernels (IHK) [14]. IHK is a general framework that
provides capabilities for partitioning resources in a many-
core environment (e.g., CPU cores and physical memory)
and it enables management of lightweight kernels. It also
provides an Inter-Kernel Communication (IKC) layer, upon
which system call delegation is implemented. McKernel is a
lightweight kernel designed for HPC, which can be booted
from IHK.

In case of IHK/McKernel, the application is primarily run
on McKernel to achieve the desired scalability and reliabil-
ity, but McKernel implements only performance sensitive
system calls and the rest of the OS services are offloaded
to Linux. With respect to this study, the most important
attributes of McKernel are its system call offloading and ad-
dress space management mechanisms.

3. DESIGN AND IMPLEMENTATION
Before diving into RDMA pre-registration, we begin with

a more detailed description of the system call offloading
mechanism, which is illustrated in Figure 1. During system
call delegation McKernel marshalls the system call number
along with its arguments and sends a message to Linux via
a dedicated IKC channel. The corresponding proxy pro-
cess running on Linux is by default waiting for system call
requests through an ioctl() call into IHK’s system call del-
egator kernel module. The delegator kernel module’s IKC
interrupt handler wakes up the proxy process, which returns
to userspace and simply invokes the requested system call.
Once it obtains the return value, it instructs the delegator
module to send the result back to McKernel, which subse-
quently passes the value to user-space.
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Figure 2: Unified address space between Linux and
McKernel with RDMA pre-registration.

An addition to the system call offloading mechanism is
the concept of unified address space model. IHK/McKernel
ensures that offloaded system calls can seamlessly resolve
arguments even in case of pointers without explicitly trans-
ferring data the pointers refer to. The unified address space
model, along with the RDMA pre-registration (which we
will detail below), is depicted in Figure 2 and it is imple-
mented as follows. First, the proxy process is compiled as
a position independent binary, which enables us to map the
code and data segments specific to the proxy process to an
address range which is explicitly excluded from McKernel’s
user space. Second, the entire valid virtual address range
of McKernel’s application user-space is covered by a special
mapping in the proxy process for which we use a pseudo file
mapping in Linux. This mapping is indicated by the blue
box on the left side of the figure.

Note, that the proxy process does not need to fill in any
virtual to physical mappings at the time of creating the
pseudo mapping and it remains empty unless an address
is referenced. Every time an unmapped address is accessed,
the page fault handler of the pseudo mapping consults the
page tables corresponding to the application on the LWK
and maps it to the exact same physical page1. Needless to
say, Linux’ page table entries in the pseudo mapping have
to be occasionally synchronized with McKernel, for instance,
when the application calls munmap() or modifies certain map-
pings.

An overview of RDMA pre-registration is also depicted by
Figure 2. The basic idea is to map the LWK dedicated phys-

1For further details on unified address space refer to [6]
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Figure 3: RDMA registration cost and MPI_Allreduce() using large buffers on 16 compute nodes.

ical memory into the proxy process at the time of launching
the application and to register the entire region for RDMA
capability with the NIC. This mapping is indicated by the
grey box on the left side of the figure. As it’s also shown,
the corresponding virtual range is excluded from the actual
LWK process, which in turn ensures that regular applica-
tion code can not access this region of the memory directly.
The registration details are transferred to McKernel at LWK
process creation time and are utilized as follows.

When the application on the LWK requests to register
a memory region McKernel can resolve the buffer’s virtual
address into physical space and calculate its offset in the
LWK dedicated physical partition. Instead of registering
a new RDMA region, it can simply translate the request
into the pre-registered area and return the associated key
with the computed offset. Note that McKernel ensures that
MAP_ANONYMOUS memory mappings are contiguous in phys-
ical memory, otherwise the offset calculation would not be
viable. At the OS API level we have introduced a new sys-
tem call which expects a pair of virtual address plus buffer
length and returns the RDMA registration keys as well as
the corresponding offset.

We will now turn our attention towards another system
call offload optimization which we devised in conjunction
with RDMA pre-registration. As we mentioned earlier, cer-
tain address space operations need to be reflected in the
proxy process’ address space to ensure consistency. One
particular example is the munmap() system call. However,
since the proxy process only executes offloaded system calls,
it is sufficient to update its view of the virtual address space
just at the time when it executes a call that could possi-
bly refer to user-space addresses. Therefore, to eliminate
the communication cost associated with unmap operation
we simply record the memory range and piggyback the op-
eration to the subsequent offloaded system call.

3.1 MPI Integration
This section discusses the necessary modifications to MVA-

PICH2 so that RDMA pre-registration can be exploited.
There have been mainly two set of modifications made. First,
we modified the register_memory() and deregister_memory()

functions so that instead calling the IB library MVAPICH
invokes the specific McKernel system call. In order to stay
consistent with the rest of the MPI library, the call doesn’t
change the virtual address of the registration, however, it

records the pre-registered RDMA keys. Only at the time of
issuing the actual RDMA operation is the virtual address
rewritten to the one corresponding to the pre-registered off-
set (e.g., in the mv2_shm_coll_prepare_post_send() func-
tion).

A similar set of modifications have been made to the func-
tions dealing with vbuf structures. Some of the most impor-
tant ones are VBUF_SET_RDMA_ADDR_KEY() and
vbuf_init_rdma_write().

4. EVALUATION
This section provides evaluation of the proposed mecha-

nism using various micro-benchmarks.

4.1 Experimental Setup
Our experiments were conducted on a small cluster where

each node consists of Intel Xeon Ivy Bridge (E5-2670 v2 @
2.50GHz) CPUs with two sockets, ten cores per socket and
two hardware threads per core. The nodes are equipped
with 64GB RAM and with Mellanox Infiniband MT27500
(ConnectX-3) interconnection network.

4.2 Results
The first experiment we conducted is to measure RDMA

registration cost as the function of buffer size. To assess
both the original offload cost and the benefits of the pro-
posed mechanism we measure three configurations, Linux
with un-faulted virtual ranges, McKernel with regular of-
fload, and McKernel with pre-registration. Figure 3a indi-
cates the results. As seen, McKernel’s offloaded registration
mechanism adds a constant overhead compared to the base-
line Linux value. On the other hand, pre-registration on
McKernel yields up to two orders of magnitude better per-
formance than the baseline when applied to large buffers.

The second experiment is MPI_Allreduce() on 16 com-
pute nodes using MVAPICH2 with its default configuration
parameters. We observed that MPI_Allreduce() allocates
internal buffers in each iteration of the benchmark which in
turn get registered for RDMA. By applying the proposed
pre-registration optimization these requests can be elimi-
nated and consequently the overall performance is improved.
We report values for two large buffer sizes where this effect
proved significant. As seen in Figure 3b, we obtain 15% and
12% improvements on allreduce operations using 2MB and
4MB message sizes, respectively.



5. RELATED WORK
Various issues related to RDMA registration have been

studied previously. Mietke et al. provided a detailed break-
down of RDMA registration cost on Infiniband networks
[10]. Woodall et al. described a pipeline protocol to overlap
memory registration with RDMA operations [18]. Shipman
et al. investigated network buffer utilization and introduced
a new protocol to increase the efficiency of receiver buffer
utilization for Infiniband [15]. Dong et al. proposed a helper
thread based memory registration/deregistration strategy to
reduce registered memory on multicore architectures [9]. Ou
et al. introduce various optimizations to reduce the overhead
of communication buffer management [12].

While these works also focus on the problem of how to
reduce cost of RDMA registration, none of them considers
multi-kernel settings. To the best of our knowledge this is
the first proposal which explicitly aims at eliminating offload
cost in lightweight multi-kernel architectures.

6. CONCLUSION AND FUTURE WORK
In this paper we have introduced various optimizations for

multi-kernel LWKs to eliminate the system call offloading
cost associated with RDMA memory registration. Specifi-
cally, we have proposed a safe RDMA pre-registration mech-
anism and combined it with lazy memory unmapping. We
have implemented the proposed mechanism in the McKernel
lightweight multi-kernel and integrated support into MVA-
PICH2. We demonstrated up to two orders of magnitude
improvement in RDMA registration latency as well as up
to 15% improvement on MPI_Allreduce() when exchanging
large messages.

In the future, we will further investigate techniques to
reduce system call offloading cost in multi-kernel architec-
tures.
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