
Toward Operating System Support for Scalable
Multithreaded Message Passing

Balazs Gerofi
RIKEN Advanced Institute for

Computational Science
bgerofi@riken.jp

Masamichi Takagi
RIKEN Advanced Institute for

Computational Science
masamichi.takagi@riken.jp

Yutaka Ishikawa
RIKEN Advanced Institute for

Computational Science
yutaka.ishikawa@riken.jp

ABSTRACT
Modern CPU architectures provide a large number of pro-
cessing cores and application programmers are increasingly
looking at hybrid programming models, where multiple threads
of a single process interact with the MPI library simultane-
ously. Moreover, recent high-speed interconnection networks
are being designed with capabilities targeting communica-
tion explicitly from multiple processor cores. As a result,
scalability of the MPI library so that multithreaded appli-
cations can efficiently drive independent network communi-
cation has become a major concern.
In this work, we propose a novel operating system level

concept called the thread private shared library (TPSL), which
enables threads of a multithreaded application to see specific
shared libraries in a private fashion. Contrary to address
spaces in traditional operating systems, where threads of a
single process refer to the exact same set of virtual to phys-
ical mappings, our technique relies on per-thread separate
page tables. Mapping the MPI library in a thread private
fashion results in per-thread MPI ranks eliminating resource
contention in the MPI library without the need for redesign-
ing it. To demonstrate the benefits of our mechanism, we
provide preliminary evaluation for various aspects of multi-
threaded MPI processing through micro-benchmarks on two
widely used MPI implementations, MPICH and MVAPICH,
with only minor modifications to the libraries.

Categories and Subject Descriptors
D.4 [Operating Systems]: Organization and Design; C.2.1
[Computer-Communication Networks]: Network Ar-
chitecture and DesignNetwork Communications

Keywords
Hybrid kernels; Per thread page tables; MPI; MPI+OpenMP;
Hybrid programming; Message Rate; Threads

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroMPI ’15, September 21-23, 2015, Bordeaux , France
c⃝ 2015 ACM. ISBN 978-1-4503-3795-3/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2802658.2802661

As the rate of CPU clock improvement has stalled for the
last decade, primarily due to energy consumption issues, in-
creased use of parallelism in the form of multi- and many-
core CPUs have been chased to improve overall performance.
Manycore processors, which come with a large number of
processing cores providing relatively lower clock rates but
significantly higher power efficiency, are already widespread
in high performance computing. While the number of cores
keeps climbing steadily, the rate of growths in other node
level resources, most notably RAM, has been lacking be-
hind. Consequently, application developers are increasingly
looking at hybrid programming models, that enable better
resources consolidation. On the other hand, recent high-
speed interconnection networks are being designed with ca-
pabilities targeting communication from multiple processor
cores, explicitly requiring applications and the runtime sys-
tem to drive communication simultaneously from multiple
CPUs [8].

At present, one of the most prevalent hybrid approaches is
to leverage MPI for inter-node communication and to rely on
OpenMP for efficient exploitation of node level parallelism.
Because this model indicates sharing MPI among multiple
threads, scalability of the MPI library has become a ma-
jor concern. Prior research has investigated efficient multi-
threaded message passing thoroughly from improving MPI
performance in face of multiple threads, via better integra-
tion of MPI with other programming models (e.g., OpenMP,
UPC) all the way to making multiple MPI ranks available
in a single multithreaded process [7, 13, 19, 11, 28, 12, 26].
Most of these efforts, however, require extensive modifica-
tions not only to MPI internals, but often to the MPI API
as well.

In this paper, we approach the MPI scalability problem
from an operating system (OS) perspective. In traditional
operating system kernels, threads that run in the same OS
process, i.e., share a single address space, usually share the
same set of hardware page tables1. Notice, however, that
an OS process is a software concept while page tables are
used for address translation by the hardware and there is
nothing that prevents different hardware threads in a many-
core system to use a separate set of page tables even if they
execute threads that logically belong to the same process.
Sharing the same address space means providing the same
virtual to physical mappings for all participating threads,
which can be ensured through careful synchronization even
if page tables are decentralized. Furthermore, per-thread

1We explicitly target the x86 architecture in this paper.

page tables2 enable mapping certain parts of the address
space to different physical memory across CPUs. In partic-
ular, individual threads of a multithreaded process may see
a shared library in a private fashion, as if the threads were
different processes, which is the main focus of this study.
We summarize our contributions as follows.

• We propose thread private shared library (TPSL), a
novel operating system level concept that enables threads
of a multithreaded application to see a specific shared
library in a private fashion.

• Mapping the MPI library in a thread private fashion
results in per-thread MPI ranks, which eliminates re-
source contention inside MPI and enables threads to
perform lockless communication.

• As opposed to existing threaded MPI solutions, our
proposal can be applied to any implementation of the
message passing interface requiring only minor modi-
fications to their codebase.

We describe the usage model of our approach in OpenMP
and provide preliminary evaluation using various micro bench-
marks on two MPI implementations, MPICH [4] and MVA-
PICH [5]. We demonstrate TPSL mapped MPI’s ability to
yield the same messaging performance in a multithreaded
OpenMP environment to that of the flat MPI configuration.
We also show that through parallel communication our tech-
nique can yield up to 10X speed-up for a stencil computation
HALO exchange using derived datatypes when running over
16 CPU cores.
The rest of this paper is organized as follows. We begin

with providing some background information on hybrid ker-
nels and IHK/McKernel in Section 2. Section 3 discusses
per thread page tables, required MPI modification and the
usage model. Experimental evaluation is given in Section 4.
Section 5 provides further discussion, Section 6 surveys re-
lated work, and finally, Section 7 presents future plans and
concludes the paper.

2. BACKGROUND
Before diving into per-thread page tables and private in-

stance libraries, we provide an overview of IHK/McKernel
[25], our hybrid kernel configuration upon which the rest of
this work is built.
Traditionally, operating systems in high-end computing

followed two approaches to deliver scalable performance and
the reliability needed for extreme scale. In the full weight
kernel (FWK) approach [2, 31], a full Linux environment is
taken as the basis and features that inhibit HPC scalabil-
ity and performance are removed. The light-weight kernel
(LWK) approach, on the other hand, [17, 16] starts from
scratch and effort is undertaken to add sufficient functional-
ity so that it provides an API close to that of a general pur-
pose OS, while at the same time it retains the desired scal-
ability and reliability. However, with the considerably in-
creased complexity of recent HPC applications, e.g., demand
for components such as in-situ analysis, elaborate monitor-
ing and performance tools, etc., the full availability of Linux
APIs has gained high importance. Unfortunately, neither of

2We use the terms per-thread, per-core, and per-CPU page
tables interchangeably in this paper.

Figure 1: Overview of the IHK/McKernel architec-
ture and the system call delegation mechanism.

the above mentioned approaches yields a fully Linux com-
patible environment.

As a result, multiple recent research projects are investi-
gating a hybrid approach [25], [1], [30], [9], where Linux is
run simultaneously with a light-weight kernel on the same
node. IHK/McKernel is our approach to providing such a
hybrid configuration. The IHK/McKernel architecture is
shown in Figure 1. At the heart of the stack is a low-
level software infrastructure called Interface for Heteroge-
neous Kernels (IHK) [25]. IHK is a general framework that
provides capabilities for partitioning resources in a many-
core environment (e.g., CPU cores and physical memory)
and it enables management of lightweight kernels. It also
provides an Inter-Kernel Communication (IKC) layer, upon
which system call delegation is implemented. McKernel is a
lightweight kernel designed for HPC, which can be booted
only from IHK.

In case of IHK/McKernel, the application is run primarily
on McKernel to achieve the needed scalability and reliabil-
ity, but McKernel implements only performance sensitive
system calls and the rest of the OS services are offloaded
to Linux. With respect to this study, one of the most im-
portant attributes of McKernel is its drastically small code
base, which enables rapid experimentation with OS features
that would be otherwise highly intrusive and cumbersome
to implement in Linux.

3. DESIGN AND IMPLEMENTATION
This section details the design of the proposed OS concept,

called thread private shared library, it discusses the required
modifications to MPI and demonstrates its usage model in
an OpenMP application.

3.1 Thread Private Shared Libraries
As we pointed out earlier, in all major operating systems

available currently (e.g., Linux, Windows, FreeBSD, etc.)
multiple threads running in the same OS process, i.e., shar-
ing a single address space, actually share the same set of
page tables. Page tables are merely data structures that are
referred by the memory management unit (MMU) to trans-
late virtual to physical addresses. The MMU obtains the
root of the page table tree via a special register in the CPU
(cr3 on x86), which is a private resource for each hardware
thread. Notice that an OS process is a software concept
while page tables are used for address translation by the
hardware and there is nothing that prevents different hard-
ware threads in a many-core system to use a separate set

(a) Regular shared page tables (b) Per-thread private page tables

Figure 2: Address space layout of a multithreaded application using regular and per-core private page tables.
(a.) All CPU cores see the same virtual to physical mappings, (b.) Most of the virtual address space (e.g., glibc and OpenMP)
are mapped to the same physical memory, but MPI is mapped to different physical regions via thread private page tables.

of page tables even if they conceptually belong to the same
OS process. Sharing the same address space by definition
means that each participating CPU follows the same set of
translations from virtual to physical addresses, which can be
easily guaranteed even if using distinct sets of page tables.
To this end, we have modified McKernel’s memory man-

agement system to enable each thread in an OS process us-
ing its own set of page tables. Consequently, certain virtual
addresses can be translated to different physical addresses
on a per-thread basis. Furthermore, we have introduced a
mapping table in the kernel that can be configured during
boot time (the boot time of McKernel, not Linux) to indi-
cate that certain files should be mapped in a thread private
fashion even if the threads belong to the same process. Ap-
plying this mechanism to a specific shared library results in
seeing a separate instance of the library by each thread as if
they were different processes, hence the name thread private
shared library (TPSL).
Our current prototype implementation separates library

instances as follows. When the dynamic loader iterates li-
brary dependencies at application startup and request file
mappings for each shared library the kernel consults the
aforementioned table and maps them accordingly. To be
precise, the actual separation happens after glibc initial-
ization so that each thread acquires the library in a state
where possible BSS modifications performed via glibc init
hooks are reflected (see Section 3.2 for more details). In or-
der to eliminate resource contention inside the MPI library,
we instruct the kernel to map the entire library on a per-
thread basis. Strictly speaking threads participating in such
process do not share the entire virtual address space so one
could argue that they don’t belong to the same OS pro-
cess any more. Indeed, TPSL blurs the concept of processes
and threads and one could think of the same configuration
as separate processes sharing most of their libraries. While
shared mappings are commonplace, existing OS kernels un-
fortunately do not support transforming multiple processes
into a single process so that each original process would mu-
tate into a pthread sharing the same address space.
Figure 2 contrasts memory mappings between the tradi-

tional process wise shared page table configuration and the
proposed per-thread based model. As seen in Figure 2b,
the MPI library is mapped in a thread private fashion (em-
phasized by red lines), so from MPI’s point of view these
threads appear much like separate processes. On the other
hand, glibc and OpenMP remain shared resulting in a global
shared heap and the availability of OpenMP constructs as
in any regular multithreaded process.

3.2 MPI Modifications
There is a minimal set of modifications required to make

MPI aware of the proposed thread private configuration.
First, the process management interface (PMI) needs to be
able to handle these special processes slightly differently,
because they constitute multiple MPI ranks in a single OS
process. Using the HYDRA process manager, each applica-
tion process obtains its MPI rank and a file descriptor for an
established PMI connection through environment variables
(PMI RANK and PMI FD, respectively) and by default
the PMI proxy passes a single pair of values to each process.
We have modified the HYDRA process manager so that it
transfers a set of ranks and PMI fds to a process when TPSL
is used. In turn, the PMI initialization function in the MPI
library has been also extended to understand the new for-
mat and obtain its corresponding MPI rank and fd based on
thread IDs. To let MPI know which thread ID it is dealing
with, the MPI Init routine expects an additional thread
ID argument in our model. See Section 3.3 for an actual
example how this is used in application code.

The second change is not strictly MPI related, but rather
an Infiniband [3] specific modification. The low-level Infini-
band API requires applications to explicitly register memory
regions which are to be accessed via RDMA operations. The
registration and deregistration operations are relatively ex-
pensive so Infiniband modules in MPI implementations often
maintain a registration cache in order to minimize the num-
ber of calls to these functions. Unfortunately, to keep the
cache consistent with the application’s heap, MPI needs to
track memory allocations and deallocations (i.e., the mal-
loc() and free() family of routines). For this purpose, MPI

implementations usually provide their own heap manager by
overriding the standard libc calls (for example, MVAPICH
relies on a modified version of ptmalloc). By default, inter-
nal data structures of the heap manager are located in the
BSS section of the MPI library. Because TPSL maps MPI in
a thread private fashion, manipulating these data structures
independently results in an inconsistent state. To overcome
this problem, we simply moved them to the heap (leaving
only pointers in BSS as reference), which is shared across all
threads of the application even with per-core page tables.
As we will see later in Section 4, we applied our mechanism
to two MPI implementations, MPICH [4] and MVAPICH
[5]. The above described BSS modifications amount to ap-
proximately 20 lines of code change in case of MVAPICH
and even less within MPICH.

3.3 Usage Model
We will now demonstrate the usage model of MPI when

mapped through TPSL in an OpenMP multithreaded appli-
cation. The first difference compared to regular MPI is that
in case of TPSL, each OpenMP thread needs to initialize its
private instance of the MPI library via MPI Init(). As we
mentioned earlier, we extended MPI Init() so that it accepts
an additional thread ID argument.

#pragma omp parallel
{

MPI_Init(&argc, &argv, omp_get_thread_num());
}

Listing 1: MPI Initialization using TPSL.

Listing 1 demonstrates the initialization call. As seen,
each OpenMP thread passes its thread ID which it obtains
from the OpenMP library. Note that there is no explicit
requirement on how threads agree on their respective IDs,
but the number should be in the interval of [0, N), where N
is the number of ranks in one TPSL process.
The second example shows the usage of derived data types

in the context of a 3D stencil computation HALO area ex-
change [29].

MPI_Datatype sub_xz;
int sub_xz_size[3];
int sub_xz_start[3];
int xz_target;
...

#pragma omp parallel private(xz_target,
sub_xz_size, sub_xz_start)

{
/∗ Subarray type creation ∗/
sub_xz_size[0] = Z_SIZE / omp_get_num_threads();
sub_xz_size[1] = 2;
sub_xz_size[2] = X_SIZE;
sub_xz_start[0] = omp_thread_id ∗

(Z_SIZE / omp_get_num_threads());
sub_xz_start[1] = 0;
sub_xz_start[2] = 0;

MPI_Type_create_subarray(3, sizes,
sub_xz_size, sub_xz_start,
MPI_ORDER_C, MPI_DOUBLE, &sub_xz);

MPI_Type_commit(&sub_xz);

xz_target = (rank + omp_get_num_threads())
% num_ranks;

/∗ Main loop ∗/
for (iter = 0; iter < NR_ITERS; ++iter) {

/∗ Computation ∗/
...

/∗ HALO exchange ∗/
MPI_Isend(data, 1, sub_xz, xz_target, ...);
...

}
}

Listing 2: HALO exchange with derived datatypes using
TPSL.

Listing 2 indicates the code snippet. In particular, it
shows how each OpenMP thread creates a datatype to rep-
resent its own piece from the X-Z plane. One can see that
the Z dimension of the size and start arguments to the
MPI Type create subarray() function are computed accord-
ing to the number of OMP threads (Z SIZE /
omp get num threads()) and the thread ID (omp thread id
∗ (Z SIZE / omp get num threads())), respectively. The
variable xz target denotes the rank of the thread on the tar-
get node, which for the sake of simplicity is just an offset
by the number of threads in one process, assuming that in
the original code each rank would have sent the entire X-Z
plane simply to its subsequent rank in the MPI job.

The most important observation here is that the data dis-
tribution among OpenMP threads results in implicit paral-
lelization of the underlying datatype packing and unpacking
routines as well as of the data transfer. In Section 4.3 we will
provide measurements on how such parallelization impacts
performance.

4. EVALUATION
This section provides preliminary evaluation of the pro-

posed mechanism using various message passing micro-benchmarks.

4.1 Experimental Setup
Our experiments were conducted on a small cluster where

each node consists of Intel Xeon Ivy Bridge (E5-2670 v2 @
2.50GHz) CPUs with two sockets, ten cores per socket and
two hardware threads per core. The nodes are also equipped
with 64GB RAM organized in two NUMA domains and with
Mellanox Infiniband QDR (MT27500 ConnectX-3) intercon-
nection network. In all experiments where Linux’ perfor-
mance is compared to IHK/McKernel it is always ensured
that the Linux run is scheduled to the exact same set of
CPU cores and to the same NUMA domain with the McK-
ernel partition when our stack is used. To eliminate NUMA
effects we restricted all evaluation to NUMA node 0.

To demonstrate the transparency of our proposal, most
measurements were performed on two different MPI imple-
mentations, MPICH version 3.1.3 [4] and MVAPICH version
2.1 [5]. It is worth pointing out that MVAPICH itself was
derived from MPICH, however, it has gone through signifi-
cant changes over the course of time.

4.2 Latency, Message Rate and Bandwidth
In the first set of experiments we are focusing on latency,

message rate and bandwidth between communicating pairs
of processes or threads. We compare three configurations.
First, communicating process pairs between two nodes where
each MPI process is bound to a separate CPU core, denoted
by flatMPI. Second, communicating thread pairs using mul-
tithreaded MPI and OpenMP hybrid programming, indi-
cated by multithreaded MPI. These two experiments were
run on top of Linux. Finally, we evaluate communicating

(a) Linux+MVAPICH flat MPI (b) Linux+MVAPICH multithreaded MPI (c) IHK/McK+MVAPICH TPSL MPI

Figure 3: MVAPICH Latency.

(a) Linux+MVAPICH flat MPI (b) Linux+MVAPICH multithreaded MPI (c) IHK/McK+MVAPICH TPSL MPI

Figure 4: MVAPICH Message Rate.

(a) Linux+MVAPICH flat MPI (b) Linux+MVAPICH multithreaded MPI (c) IHK/McK+MVAPICH TPSL MPI

Figure 5: MVAPICH Bandwidth.

thread pairs using TPSL mapped MPI running on top of
IHK/McKernel also driven from OpenMP threads.
For all benchmarks we took the OSU benchmark set as ref-

erence [6]. We modified the latency and bandwidth bench-
marks to suit our needs. The communicating process pairs is
a straightforward extension of the original benchmarks. As
for the multithreaded version, it is worth noting that we used
dedicated tags for each thread pair in the MPI send/receive
routines. TPSL requires similar usage model to threads (as
we showed in Section 3.3), but tags are not necessary be-
cause the communicating thread pairs have their respective

MPI ranks.
Our primary intention is to verify that TPSL mapped

MPI performs on par with flat MPI (i.e., separate MPI
processes on each CPU core) even in the context of hy-
brid MPI+OpenMP model, where on the other hand multi-
threaded MPI experiences heavy resource contention due to
competing threads.

Figure 3, Figure 4 and Figure 5 indicate results measured
on MVAPICH for latency, message rate and bandwidth, re-
spectively. The X axis denotes message size, while Y axis
shows microseconds in case of latency, number of messages

(a) Linux+MPICH flat MPI (b) Linux+MPICH multithreaded MPI (c) IHK/McK+MPICH TPSL MPI

Figure 6: MPICH Latency.

(a) Linux+MPICH flat MPI (b) Linux+MPICH multithreaded MPI (c) IHK/McK+MPICH TPSL MPI

Figure 7: MPICH Messaging Rate.

(a) Linux+MPICH flat MPI (b) Linux+MPICH multithreaded MPI (c) IHK/McK+MPICH TPSL MPI

Figure 8: MPICH Bandwidth.

per second for message rate and MBs/sec for bandwidth.
Each figure provides results from 1 to 16 communicating
pairs of processes/threads.
For easy reference, the Y axis in all figures is adjusted so

that results for one communicating pair of processes/threads
are displayed at the same position. As indicated, while 16
process pairs using flat MPI only experience approximately
70% latency increase compared to 1 process pair, letting
multiple threads interact with the MPI library results in
over two orders of magnitude increase in latency. In con-
trast, the private nature of TPSL mapped MPI eliminates

any resource/lock contention inside MPI and consequently
enables the (almost) identical multi-threaded benchmark to
yield the same performance as separate communicating pro-
cesses.

Message rate is even more expressive than latency because
it truly demonstrates the performance characteristics of to-
day’s network interfaces in response to multiple CPU cores.
As Figure 4 indicates, in case of flat MPI message rate in-
creases almost linearly with the number of communicating
process pairs yielding almost an order of magnitude higher
number of exchanged messages for 16 pairs compared to

one. In contrast, due to resource contention in the MPI
library, the performance of multithreaded message rate ac-
tually decreases with the number of threads. Again, TPSL
mapped MPI exhibits the same behavior as regular process
pairs, even though communication is driven from the same
OpenMP multithreaded environment.
Moving on to bandwidth, Figure 5 depicts the measure-

ments for all three scenarios. As seen, for large messages
the attained bandwidth is rather independent from the MPI
mechanism used, yielding basically the same value across all
measurements. On the other hand, small messages are more
interesting and give similar results to message rate. With
respect to the number of participating cores, an almost lin-
ear bandwidth increase can be observed in case of flat MPI.
Contrary, the multithreaded MPI configuration suffers heav-
ily from the increasing number of threads. Nevertheless,
similarly to message rate, TPSL mapped MPI delivers the
same bandwidth benefits as flat MPI, regardless the multi-
threaded nature of the benchmark.
We conducted the same set of measurements for MPICH

as well and Figure 6, Figure 7 and Figure 8 indicate the re-
sults. In general, the same conclusions can be drawn as for
MVAPICH, however, it’s worth pointing out that we used a
relatively recent, not yet optimized Infiniband module in this
experiments. We believe this is the main reason why mul-
tithreaded measurements across the board perform rather
irregularly. Setting this aspect of the data aside, TPSL
clearly demonstrates its agnostic nature of the underlying
MPI implementation.

4.3 HALO Exchange using Derived Datatypes
In order to demonstrate the benefits of a TPSL mapped

MPI library, we have developed a set of micro-benchmarks
that mimic HALO exchange in three dimensional stencil
computation [29]. The computation data is a 3D grid of
double precision floating points, and we provide 4 arrange-
ments varying the size of X, Y, and Z dimensions as follows.
Cube denotes a grid with 512 elements in each dimension,
Large X, Large Y, and Large Z stand for 16K elements in the
large dimension and the remaining dimensions (in alphabet-
ical order) are set to 128 and 64, respectively. The array is
layed out in row major order, implying that the X-Y plane
is contiguous in memory.
We used the subarray derived data type for exchanging

the X-Z and Y-Z planes. When employing TPSL MPI ranks,
OpenMP threads divide the surface among each other and
send their respective slice of the data. A code snippet demon-
strating this arrangement has been shown previously in Sec-
tion 3.3. Note that since the X-Y plane is contiguous in
memory, neither using derived datatypes nor parallelizing
the data transfer yield any benefits.
On the other hand, Figure 9 and Figure 10 indicate the

speedup gained according to the number of threads involved
in the data transfer for exchanging plane X-Z and Y-Z, re-
spectively. As seen, the X-Z HALO exchange performs best
when applied to the large Z grid arrangement, for which 16
threads yield almost 10X speedup compared to using only
one thread. Because the large Z dimension implies a lot
of small data chunks scattered non-contiguously in memory,
parallelizing the derived datatype packing operation yields
substantial improvements.

Figure 9: HALO exchange of the X-Z plane with
TPSL ranks.

Figure 10: HALO exchange of the Y-Z plane with
TPSL ranks.

As shown in Figure 10, parallelizing the Y-Z plane exchange
proved to be most beneficial when using large X dimension,
in which case 16 threads improve performance by over 5X.
To the contrary, with less suitable grid shapes increasing the
number of threads too far occasionally implies a slowdown
compared to fewer threads. Nevertheless, we observe im-
provements across all measurements when utilizing up to 8
threads for parallelizing HALO exchange.

5. DISCUSSION
We cover a couple of additional topics related to thread

private shared libraries, focusing primarily on their restric-
tions and weaknesses related to helper threads, memory con-
sumption and TLB contention.

5.1 Helper Threads
Throughout our experiments we deployed the MPI library

without utilizing helper threads. This isn’t necessary a re-
striction by itself, because MPICH for instance does not
use helper threads by default. When it comes to TPSL,
however, the main problem with helper threads is that the
operating system has no knowledge of whether a particu-
lar thread should see the same mappings of a per-thread
library as another existing thread or have its own page ta-
bles set up. We foresee multiple solutions to this problem.
One would be to introduce a dedicated flag to the clone()
system call that would indicate whether or not the thread
should see the same set of mappings with its parent. An-
other solution would be to allow threads switching between
mappings, which could also enable a thread to access arbi-
trary MPI ranks in the given process.

5.2 Memory Consumption
While the TPSL approach eliminates lock contention in

multi-threaded environments enabling threads to perform
lockless MPI communication, it also consumes extra resources.
First, because it maps libraries in a private fashion it con-
sumes additional memory for page tables. However, the ad-
ditional amount of memory required is not as severe as one
might imagine due to aggressive sharing of page tables when-
ever it is possible. The page table sharing mechanism works
as follows. Although each thread has its own page global
directory (PGD), TPSL separates page tables only for a pre-
defined region of the virtual address space. For mappings
that are identical process-wise, the page table tree is en-
tirely shared from the page middle directory (PMD) all the
way down to the actual page table entries. It is also worth
pointing out that physical pages backing the MPI library are
managed through copy-on-write, making extra copies only
when thread private modifications make it necessary.
Second, TPSL utilizes thread private buffers for unex-

pected messages and other MPI internals the same way as
flat MPI in case of multiple processes. In an optimized MPI
implementation such resources can be shared among threads
and thus memory consumption can be decreased. Again, the
MPI implementation could be made aware of TPSL map-
pings and make threads share buffers the same way as in a
multithreaded implementation, however this would clearly
require additional modifications.

5.3 TLB Implications
Modern CPU architectures employ Translation Lookaside

Buffers (TLBs) to cache recent translations from virtual to
physical memory, and thus to speed up lookup operations.
While TLB entries are typically private to hardware threads,
some modern CPUs enhance TLB performance by introduc-
ing additional levels of the TLB cache that can be shared
among hardware threads or CPU cores. Mapping MPI in a
thread private fashion makes threads utilized separate map-
pings from the hardware’s point of view, which in turn can
increase TLB resource contention in higher level caches.

6. RELATED WORK
This section discusses related work in the domains of HPC

operating systems (particularly focusing on lightweight and
hybrid kernels) and multithreaded message passing.

6.1 Operating Systems for HPC
Lightweight kernels developed from scratch and designed

explicitly for HPC workloads date back for over two decades
now. Notably, Catamount [17] from Sandia National Lab-
oratories was one of the first systems which has been suc-
cessfully deployed on a large scale system. The IBM Blue-
Gene line of supercomputers have also been running an HPC
targeted lightweight kernel called CNK [16]. On the other
end of the lightweight kernel spectrum are kernels which
originate from Linux, but have been heavily modified to
meet HPC requirements ensuring low noise, scalability and
predictable application performance. Cray’s Extreme Scale
Linux [2] and ZeptoOS [31] follow this approach. Neither of
these approaches, however, succeed in retaining full Linux
compatibility and achieving high scalability at the same
time, which has become highly desired due to the increasing
complexity of large scale systems and applications.

To mitigate this issue, FusedOS [22] was the first to pro-
pose combining Linux with an LWK and since then, along
with IHK/McKernel [25], a whole new breed of OS research
(ANL’s Argo [1], Intel’s mOS [30], and Sandia National Lab-
oratories’ Hobbes [9]) have been investigating how to provide
LWK performance while retaining the Linux APIs. One of
the main arguments in favor of lightweight kernels in these
hybrid configurations is its ability to nimbly be adapted to
new technologies. Page table and virtual memory manage-
ment in general is a complex subsystem of the Linux kernel
and per-thread page tables would be a major development
effort in Linux. In contrast, McKernel is simple enough to in-
corporate changes for TPSL in a reasonable amount of time,
which we believe further justifies the need for lightweight
kernels in high-end computing.

Nevertheless, per-thread (or per-CPU) page tables have
been studied before in the context of scalable virtual ad-
dress spaces [10], as well as in our previous work for hierar-
chical memory management in heterogeneous architectures
[14, 15]. TPSL also relies on per-core page tables, however, it
leverages them to implement a novel OS concept, the thread
private library.

6.2 MPI and Threads
Prior research has considered efficient multithreaded mes-

sage passing extensively from improving MPI performance in
face of multiple threads, through better integration of MPI
with other programming models (e.g., OpenMP, UPC) all
the way to making multiple MPI ranks available in a single
multithreaded process.

Balaji et al. investigated building a fully thread-safe MPI
implementation with decreasing levels of critical-section gran-
ularity comparing coarse-grain locks, fine-grain locks and
lock-free operations [7]. Dozsa and colleagues used a com-
bination of a multichannel-enabled network interface, fine-
grained locks, lock-free atomic operations, and specially de-
signed queues to provide a high degree of concurrent access
on BlueGene/P systems [13]. While these studies focus on
improving the performance of a shared MPI rank across mul-
tiple threads, we eliminate resource contention at the OS
level by exposing separate instances of the MPI library.

Luo et al. proposed opening multiple network endpoints
within the MPI library and driving communication in paral-
lel relying on lock-free algorithms while retaining the single
MPI rank interface to the application [18, 19]. Although
their solution can be user transparent, contrary to TPSL it
requires extensive modifications to the MPI library. More-
over, this approach also inhibits performance degradation
when used by multiple threads due to the requirement for
keeping MPI’s FIFO message matching order which enforces
implicit serialization among threads using a shared rank.

With respect to the MPI+OpenMP hybrid programming
model, multiple previous studies have concluded that appli-
cations indeed can benefit from hybridization [20, 24]. In
response, Min et al. demonstrated how MPI can leverage
idle OpenMP threads that otherwise would not be involved
in communication [26]. They proposed various optimiza-
tions in different parts of MPI implementation, including de-
rived datatype processing, shared-memory communication,
etc. Generally, these improvements are effective at involv-
ing multiple CPU cores in an application’s communication
without the need for any modifications to the application,
but at the same time they shift the burden of extracting and

managing communication parallelism entirely to the MPI li-
brary.
MPI implementations, where MPI processes are imple-

mented as threads have been also considered previously [11,
28, 23, 21], however, these proposals require extensive modi-
fications, if not a complete rewrite of the MPI library. From
a usage point of view, the most similar study to our work is
the recent MPI Endpoints proposal [12]. The Endpoints pro-
posal calls for an extensions to the MPI standard that would
allow implementations to minimize contention and improve
performance by explicitly enabling multiple MPI ranks in
a multithreaded process. Again, the most important differ-
ence here is the need for an extensive redesign of the MPI
internals. Although Dinan et al. recently demonstrated a
library based approach to MPI endpoints [27], where ghost
processes running an unmodified MPI stack can transpar-
ently serve as MPI endpoints to the actual application, their
solution requires notifications via crossing process bound-
aries, which decreases performance for small messages. On
the contrary, TPSL blurs the notion of threads and processes
at the OS level and consequently enables separate MPI ranks
to be seen from different threads without crossing address
spaces.

7. CONCLUSION AND FUTURE WORK
The relatively higher rate of increase in the number of

CPU cores compared to other resources (e.g., memory) pro-
motes hybrid MPI+X programming models, where multiple
threads sharing the MPI library are utilized in a single ad-
dress space to exploit node-level parallelism. On the other
hand, to attain high-performance communication on mod-
ern NICs, multiple CPU cores are expected to drive the net-
work, which calls for multiple communication endpoints. To
bridge this gap without the need for redesigning the message
passing library, we have proposed a novel OS level concept,
which we call thread private shared library (TPSL).
Mapping the MPI library in a thread private fashion re-

sults in per-thread MPI ranks, which eliminates resource
contention inside MPI and enables threads to perform lock-
less communication. At the same time, it seamlessly retains
the multithreaded programming model that application de-
velopers are acquainted with. We have shown that TPSL
mapped MPI can yield similar messaging performance in
an OpenMP environment to that of the flat MPI configu-
ration and demonstrated how our mechanism can yield up
to 10X speed-up when using derived datatypes for HALO
exchange on 16 CPU cores. As we have shown for two MPI
implementations (MPICH and MVAPICH), our technique
requires only a minimal set of changes to the libraries.
In the near future we intend to further evaluate our pro-

posal using real applications running on scale, and possibly
applying it to other MPI implementations as well. We are
also excited to explore whether or not TPSL could be em-
ployed to tackle multithreaded scalability in other program-
ming models, such as PGAS.
Taking into account the amount of changes needed for

implementing per-thread page tables in McKernel, which
would be a major development effort in Linux, we believe
that TPSL very well demonstrates a lightweight kernel’s
ability to rapidly adapt to new software/hardware require-
ments.

Acknowledgment
This work is partially funded by MEXT’s program for the
Development and Improvement for the Next Generation Ul-
tra High-Speed Computer System, under its Subsidies for
Operating the Specific Advanced Large Research Facilities.

Part of this work has been performed while visiting the
mOS group at Intel Labs. We are grateful for all the valuable
discussions with Rolf Riesen, Evan Powers and David Van
Dresser.

We also acknowledge the McKernel development efforts of
Tomoki Shirasawa and Gou Nakamura from Hitachi.

8. REFERENCES
[1] Argo: An Exascale Operating System (Accessed: Jan,

2015). http://www.mcs.anl.gov/project/
argo-exascale-operating-system.

[2] Cray Linux Environment (CLE) 4.0 Software Release
Overview (Accessed: Jan, 2015).
http://docs.cray.com/books/S-2425-40/S-2425-40.pdf.

[3] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.2.

[4] MPICH: High-Performance Portable MPI (Accessed:
May, 2015). https://www.mpich.org/.

[5] MVAPICH: MPI over InfiniBand, 10GigE/iWARP
and RoCE (Accessed: May, 2015).
http://mvapich.cse.ohio-state.edu/.

[6] Network-Based Computing Laboratory, The Ohio
State University: OSU Micro-Benchmarks.
http://mvapich.cse.ohio-state.edu/benchmarks.

[7] Balaji, P., Buntinas, D., Goodell, D., Gropp,
W., and Thakur, R. Toward Efficient Support for
Multithreaded MPI Communication. In Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, A. Lastovetsky, T. Kechadi, and
J. Dongarra, Eds., vol. 5205 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2008,
pp. 120–129.

[8] Barrett, B. W., Hammond, S. D., Brightwell,
R., and Hemmert, K. S. The Impact of Hybrid-core
Processors on MPI Message Rate. In Proceedings of
the 20th European MPI Users’ Group Meeting (New
York, NY, USA, 2013), EuroMPI ’13, ACM,
pp. 67–71.

[9] Brightwell, R., Oldfield, R., Maccabe, A. B.,
and Bernholdt, D. E. Hobbes: Composition and
Virtualization As the Foundations of an Extreme-scale
OS/R. In Proceedings of the 3rd International
Workshop on Runtime and Operating Systems for
Supercomputers (New York, NY, USA, 2013), ROSS
’13, ACM, pp. 2:1–2:8.

[10] Clements, A. T., Kaashoek, M. F., and
Zeldovich, N. RadixVM: scalable address spaces for
multithreaded applications. In Proceedings of the 8th
ACM European Conference on Computer Systems
(2013), EuroSys ’13, pp. 211–224.

[11] Demaine, E. A Threads-Only MPI Implementation
for the Development of Parallel Programs. In In:
Proceedings of the 11th International Symposium on
High Performance Computing Systems (1997),
pp. 153–163.

[12] Dinan, J., Balaji, P., Goodell, D., Miller, D.,
Snir, M., and Thakur, R. Enabling mpi

interoperability through flexible communication
endpoints. In Proceedings of the 20th European MPI
Users’ Group Meeting (New York, NY, USA, 2013),
EuroMPI ’13, ACM, pp. 13–18.

[13] Dózsa, G., Kumar, S., Balaji, P., Buntinas, D.,
Goodell, D., Gropp, W., Ratterman, J., and
Thakur, R. Enabling Concurrent Multithreaded MPI
Communication on Multicore Petascale Systems. In
Proceedings of the 17th European MPI Users’ Group
Meeting Conference on Recent Advances in the
Message Passing Interface (Berlin, Heidelberg, 2010),
EuroMPI’10, Springer-Verlag, pp. 11–20.

[14] Gerofi, B., Shimada, A., Hori, A., and Ishikawa,
Y. Partially Separated Page Tables for Efficient
Operating System Assisted Hierarchical Memory
Management on Heterogeneous Architectures. In
Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on (May
2013), pp. 360–368.

[15] Gerofi, B., Shimada, A., Hori, A., Masamichi, T.,
and Ishikawa, Y. CMCP: A Novel Page Replacement
Policy for System Level Hierarchical Memory
Management on Many-cores. In Proceedings of the
23rd International Symposium on High-performance
Parallel and Distributed Computing (New York, NY,
USA, 2014), HPDC ’14, ACM, pp. 73–84.

[16] Giampapa, M., Gooding, T., Inglett, T., and
Wisniewski, R. W. Experiences with a Lightweight
Supercomputer Kernel: Lessons Learned from Blue
Gene’s CNK. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance
Computing, Networking, Storage and Analysis
(Washington, DC, USA, 2010), SC ’10, IEEE
Computer Society, pp. 1–10.

[17] Kelly, S. M., and Brightwell, R. Software
architecture of the light weight kernel, Catamount. In
In Cray User Group (2005), pp. 16–19.

[18] Luo, M., Jose, J., Sur, S., and Panda, D.
Multi-threaded UPC runtime with network endpoints:
Design alternatives and evaluation on multi-core
architectures. In High Performance Computing
(HiPC), 2011 18th International Conference on (Dec
2011), pp. 1–10.

[19] Luo, M., Lu, X., Hamidouche, K., Kandalla, K.,
and Panda, D. K. Initial Study of Multi-endpoint
Runtime for MPI+OpenMP Hybrid Programming
Model on Multi-core Systems. In Proceedings of the
19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (New York, NY,
USA, 2014), PPoPP ’14, ACM, pp. 395–396.

[20] Lusk, E., and Chan, A. Early experiments with the
openmp/mpi hybrid programming model. In
Proceedings of the 4th International Conference on
OpenMP in a New Era of Parallelism (Berlin,
Heidelberg, 2008), IWOMP’08, Springer-Verlag,
pp. 36–47.

[21] Negara, S., Zheng, G., Pan, K.-C., Negara, N.,
Johnson, R. E., Kalé, L. V., and Ricker, P. M.
Automatic MPI to AMPI Program Transformation
Using Photran. In Proceedings of the 2010 Conference
on Parallel Processing (Berlin, Heidelberg, 2011),
Euro-Par 2010, Springer-Verlag, pp. 531–539.

[22] Park, Y., Van Hensbergen, E., Hillenbrand, M.,
Inglett, T., Rosenburg, B., Ryu, K. D., and
Wisniewski, R. FusedOS: Fusing LWK Performance
with FWK Functionality in a Heterogeneous
Environment. In Computer Architecture and High
Performance Computing (SBAC-PAD), 2012 IEEE
24th International Symposium on (Oct 2012),
pp. 211–218.

[23] PÃl’rache, M., Carribault, P., and Jourdren,
H. MPC-MPI: An MPI Implementation Reducing the
Overall Memory Consumption. In Recent Advances in
Parallel Virtual Machine and Message Passing
Interface, vol. 5759 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2009, pp. 94–103.

[24] Rabenseifner, R., Hager, G., and Jost, G.
Hybrid mpi/openmp parallel programming on clusters
of multi-core smp nodes. In Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro
International Conference on (Feb 2009), pp. 427–436.

[25] Shimosawa, T., Gerofi, B., Takagi, M.,
Nakamura, G., Shirasawa, T., Saeki, Y., Shimizu,
M., Hori, A., and Ishikawa, Y. Interface for
Heterogeneous Kernels: A Framework to Enable
Hybrid OS Designs targeting High Performance
Computing on Manycore Architectures. In High
Performance Computing (HiPC), 2014 21st Int. Conf.
on High Performance Computing (Dec 2014), HiPC
’14, pp. 1–10.

[26] Si, M., Peña, A. J., Balaji, P., Takagi, M., and
Ishikawa, Y. MT-MPI: Multithreaded MPI for
Many-core Environments. In Proceedings of the 28th
ACM International Conference on Supercomputing
(New York, NY, USA, 2014), ICS ’14, ACM,
pp. 125–134.

[27] Sridharan, S., Dinan, J., and Kalamkar, D. D.
Enabling Efficient Multithreaded MPI Communication
Through a Library-based Implementation of MPI
Endpoints. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis (Piscataway, NJ,
USA, 2014), SC ’14, IEEE Press, pp. 487–498.

[28] Tang, H., and Yang, T. Optimizing Threaded MPI
Execution on SMP Clusters. In Proceedings of the 15th
International Conference on Supercomputing (New
York, NY, USA, 2001), ICS ’01, ACM, pp. 381–392.

[29] Wallcraft, A. J., and Moore, D. R. The NRL
Layered Ocean Model. In Parallel Computing
(Amsterdam, The Netherlands, The Netherlands,
1997), vol. 23, Elsevier Science Publishers B. V.,
pp. 2227–2242.

[30] Wisniewski, R. W., Inglett, T., Keppel, P.,
Murty, R., and Riesen, R. mOS: An Architecture
for Extreme-scale Operating Systems. In Proceedings
of the 4th International Workshop on Runtime and
Operating Systems for Supercomputers (New York,
NY, USA, 2014), ROSS ’14, ACM, pp. 2:1–2:8.

[31] Yoshii, K., Iskra, K., Naik, H., Beckmanm, P.,
and Broekema, P. C. Characterizing the
Performance of Big Memory on Blue Gene Linux. In
Proceedings of the 2009 International Conference on
Parallel Processing Workshops (2009), ICPPW ’09,
IEEE Computer Society, pp. 65–72.

