
Future Generation Computer Systems 29 (2013) 1085–1095
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Utilizing memory content similarity for improving the performance of highly
available virtual machines
Balazs Gerofi ∗, Zoltan Vass, Yutaka Ishikawa
Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

a r t i c l e i n f o

Article history:
Received 2 February 2012
Received in revised form
14 May 2012
Accepted 11 June 2012
Available online 4 July 2012

Keywords:
Virtualization
Hypervisor
Checkpoint
Recovery
Fault tolerance

a b s t r a c t

Checkpoint-recovery based Virtual Machine (VM) replication is an emerging approach towards
accommodating VM installations with high availability. However, it comes with the price of significant
performance degradation of the application executed in the VM due to the large amount of state that
needs to be synchronized between the primary and the backup machines. It is therefore critical to find
new ways for attaining good performance, and at the same time, maintaining fault tolerant execution. In
this paper, we present a novel approach to improve the performance of services deployed over replicated
virtual machines by exploiting data similarity within the VM’s memory image to reduce the network
traffic during synchronization. For identifying similar memory areas, we propose a bit density based hash
function, upon which, we build a content addressable hash table. We present a quantitative analysis on the
degree of similaritywe found in variousworkloads, and introduce a lightweight compressionmethod,which,
compared to existing replication techniques, reduces network traffic by up to 80% and yields a performance
improvement over 90% for certain latency sensitive applications.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

With the recent increase in cloud computing’s prevalence, the
number of online services deployed over virtualized infrastruc-
tures has experienced a tremendous growth. At the same time,
however, the latest hardware trend of growing number of com-
ponents in current computing systems renders hardware failures
common place rather than the exception [1]. Replication at the
Virtual Machine Monitor (VMM) layer is an attractive technique
to ensure fault tolerance in such environments, primarily, because
it provides seamless failover for the entire software stack exe-
cuted inside the Virtual Machine (VM), regardless the applica-
tion or the underlying operating system. One particular approach,
checkpoint-recovery based VM replication, has gained a lot of
attention recently [2–5].

Checkpoint-recovery based replication of virtual machines is
attained by capturing the entire execution state of the running VM
at relatively high frequency in order to propagate changes to the
backup machine almost instantly. Essentially, it keeps the backup
machine nearly up-to-date with the latest execution state of the
primarymachine so that the backup can take over the execution in
case the primary fails [2].
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Between checkpoints the VM executes in log-dirty mode,
i.e., write accessed pages are recorded so that when the snapshot is
taken only pages that were modified in the most recent execution
phase need to be transferred. One phase of dirty logging and
transferring the corresponding changes is often called a replication
epoch [2,4,5]. In order to reduce the overhead of transferring
dirty pages, replication data can be transferred asynchronously,
overlapping the VM’s execution in the subsequent epoch.

However, any fault tolerant system needs to ensure that the
state from which an output message is sent will be recovered
despite any future failure, which is commonly referred to as
the output commit problem [6]. As a consequence of such a
requirement, during the execution phase of each epoch, output of
the running VM needs to be held back, i.e., disk I/O and network
traffic have to be buffered and can be released only after the backup
machine acknowledged the corresponding update.

With workloads that touch memory rapidly, the time required
to propagate changes at the end of an epoch may exceed
the replication period itself, leading to substantial overhead,
and causing significant performance degradation (over 2 X
slowdown) to the application, even if dirty content is transferred
asynchronously [2]. This anomaly becomes rather severe in
case the application is latency sensitive, such as several online
services [7].

Various recent papers have explored the phenomena of content
redundancy. VMware ESX Server [8] and Satori [9] eliminates
identical pages shared among andwithin VMs’memory content for
better physical memory utilization. Koller and Rangaswami [10]
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Fig. 1. Average overlapping bytes of the non-zero dirty memory areas and their most similar matches in the non-dirty memory region or in the recently dirtied pages cache
according to the comparison unit size in various workloads.
proposed I/O deduplication, a mechanism that utilizes content
redundancy for improving I/O performance. All these studies
suggest that there is a significant degree of content self-similarity
in today’s complex workloads.

In this paper we investigate how to utilize such similarities to
improve the efficiency of virtual machine replication, and thus, the
performance of services being executed inside the replicated VM.
We make the following contributions:

• A quantitative analysis of several workloads regarding the degree
of self-similaritywithin their memory content is presented.

• Taking advantage of such redundancy we propose a lightweight
compression method which, instead of transferring the actual
dirty pages, finds similar areas in the memory content corre-
sponding to the VM’s previous replication epoch and transfers
a compressed difference. Having the backup VMwaiting a repli-
cation epoch behind the primary enables us to simply apply the
difference andbring itsmemory content to the latest replication
state.

• For identifying similar memory areas, we propose a bit density
based hash function, uponwhich,we build a content addressable
hash table.

• Finally, we eliminate the VM downtime at the data transfer phase
of each replication epoch by having the virtual machine executed
in copy-on-write mode until the compression is finished.

Our mechanism reduces the amount of data transferred during
replication by up to 80% and improves the performance of certain
latency sensitive applications over 90% as opposed to the regular
asynchronous replication.

We begin with characterizing various workloads in terms of
memory content self-similarity in Section 2. Section 3describes the
design of our proposed replication method and Section 4 provides
details on the implementation. Experimental evaluation is given
in Section 5. Section 6 surveys related work, and finally, Section 7
presents future plans and concludes the paper.

2. Background and content similarity analysis

In this section we present the motivation and rationale behind
this study. We start with describing each workload we investi-
gated, which is then followed by a quantitative analysis regarding
the degree of content self-similarity they exhibit.

2.1. Workloads

Reliable execution may be required by a diverse set of ap-
plications, such as long lasting computations or mission critical
online services. Inspired by previous studies in the domain of high-
availability [2,4] we chose four different workloads. Three of them
were deployed on Ubuntu Linux and one onWindows Server 2003.
– Linux kernel compile is an elaborate workload, stressing mainly
CPU andmemory, but doing a fair amount of disk I/O aswell.We
compile the bzImage target of the vanilla Linux kernel version
2.6.31 with default configuration.

– SPECweb 2005 banking emulates an Internet personal banking
web-site, where clients are accessing their accounts, making
transactions, etc. Requests are transmitted over SSL throughout
the whole benchmark [7].

– SPECweb 2005 e-commerce resembles theworkload characteris-
tics of an online store. Customers are browsing, customizing and
purchasing products. Both SSL and plain HTTP are utilized [7].

– Exchange load generator is a benchmark utility that stresses
Microsoft’s Exchange Server. It simulates a scenario where
multiple users read and sendmessages, browse their calendars,
request meetings, and so forth [11].

2.2. Analysis

As mentioned earlier, checkpoint-recovery based replication of
virtualmachines is delivered by capturing snapshots of the running
VM at relatively high frequency so that changes can be reflected to
the backup machine almost instantly.

Between subsequent snapshots, write accessed memory pages
are logged to narrow the image necessary to transfer at the end of
each epoch. Previous studies suggested that thememory content of
nowadays’ complex workloads may exhibit a rather high degree of
self-similarity. We were curious to see to what extent the content
of dirty pages could be expressed with help of the content from
the previous epoch. In order to retain access tomost of the previous
epoch’s memory content, wemaintain a small cache of the recently
dirtied pages (RDP). The cache consists of 5120 pages and it is
updated at the end of each epoch replacing pages in a least recently
used (LRU) fashion.

We analyzed the similarity attributes of each workload by
performing an extensive search over the non-dirty memory region
and the RDP cache and identified the bestmatch for every non-zero
dirty area. Such comparison were carried out in every 100 ms for
a 10 min execution of each workload. To speed up the search, we
utilized our content addressable hash table, searching through all
entries in the correspondinghashbuckets. For detailed information
of the content addressable hash table refer to Section 3.

We collected statistics of the average percentage of overlapping
bytes between each non-zero dirty area and its best match in the
content hash. We were also wondering how the unit size of the
search may affect such property and used 2, 1 kB, 512, 256, 128
and 64 B as comparison granularity.

Fig. 1 indicates the results obtained for each workload. Looking
at the numbers of kernel compilation, the figure shows that
the degree of similarity scales from 78% up to almost 85%
with shrinking the comparison granularity from 2 kB gradually
down to 64 bytes. SPECweb2005’s Banking workload shows the
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Fig. 2. Utilizing content similarity in VM replication, high-level design. Three main steps of updating the backup VM during a replication epoch: (1) For each dirty memory area
identify a similar region in the VM’s memory content corresponding to the previous replication epoch and generate a compressed difference. (2) Transfer the update to the backup
machine. (3) Apply the difference to the backup VM’s memory.
Table 1
Distribution of memory areas (unit size 512 bytes).

Workload Dirty pages Zero
areas (%)

Identical
match (%)

RDP
cache (%)

Kernel 3842 9.2 15 41
Banking 2153 9.6 36 44
E-commerce 1797 10.2 34 48
Exchange 2925 9.8 38 48

steepest increase, from 77% up to nearly 87% gaining almost
10% improvement as the comparison granularity is set finer.
The E-commerce workload shows fewer improvements with the
comparison granularity change and grows approximately 6% from
the initial 79%. Among all workloads, however, the Windows
Server based Exchange Server proved to have the highest degree of
self-similarity, scaling from 79% up to almost 88% when reaching
64 bytes comparison granularity.

As seen, for all workloads there is an apparent increase in the
degree of similarity with the decreasing unit size of the memory
comparisons. While a finer grained comparison granularity clearly
leads to a higher compression ratio, it also introduces additional
overhead to the compression mechanism itself. Smaller unit size
implies an increase in the number of data structures representing
the memory (see Section 3), as well as in the number of hash table
lookups during the compression.

We opted to use 512 bytes as area unit size in our experiments,
because it is fine grained enough to give reasonable compression
and the number of data structures is also acceptable. Table 1
provides further insights regarding the distribution of different
memory area types with this unit size. For each workload it
indicates the average number of dirty pages in 100 ms, the ratio
of areas that contain only zeros, the ratio of areas that have fully
identical matches either in the non-dirty region or in the RDP
cache, and the ratio of areas that have their most similar pair in
the RDP cache.

One of the key observations is that the kernel compilation
workload is significantly heavier than the rest in terms of memory
usage. It also has a substantially lower degree of similarity as
the ratio of memory areas that have identical matches. Another
observation is the ratio of zero areas, which appears to be
close across all workloads. Note that the regular asynchronous
replication can also omit transferring zero pages, but since it
operates on page size granularity it is unable to eliminate zero
areas that are smaller in length than a page. It is alsoworth pointing
out, that only less than half of the dirty areas have their most
similar matches in the RDP cache, i.e., more than half of them are
rather similar to the non-dirty memory region of the VM.
3. System design

In this section we give an overview of the system architecture,
describe how similar memory areas are identified and detail some
of the design choices we faced during the development of our
replication strategy.

The main idea of the algorithm is depicted by Fig. 2. Three
major steps are executed during every epoch of the replication.
After the VM is suspended and the dirty page map is updated,
instead of transferring dirty pages directly to the backup machine,
we first attempt to find similar memory areas both in the VM’s
non-dirty memory region and in the cache of most recent dirty
pages. For each area we make an XOR based diff against the
best match and compress it with a lightweight method, explained
below. Second, the compressed data along with the addresses
of the reference areas are transferred to the backup machine
asynchronously. Finally, the backup VM applies the uncompressed
diffs to the referencedmemory areas and updates the dirty regions.

3.1. Finding similar memory areas

There have been several solutions proposed in the literature for
finding similar elements in high-dimensional spaces, which may
be also considered for application in the context of finding similar
memory regions. A short survey regarding some of the possible
techniques is presented in Section 6.

Hashing is one of the prevalent approaches, although choosing
the right hash function in this case is rather complicated, due to the
desire for having similar elements mapped to the same hash value.
Notice, that the ultimate purpose of finding a similar memory area
is to generate an XOR based difference that holds zero values on
most of its offsets. While many of the existing hashing solutions
consider the actual bit sequences of the input vectors, an XOR
based diff may result inmany zeros already if it is just ensured that
the compared vectors have high bit density on the same offsets.

Driven by this idea,we propose a simple hashing solution that is
built upon a pop-count based projection. Fig. 3 depicts the hashing
mechanism. Regardless the size of the memory area concerned,
it is divided into 32 sections where each section corresponds to
one bit in the hash (resulting in a 4 bytes long hash value). On
each section the number of bits set is calculated and compared
against a threshold, which determines whether the corresponding
bit in the hash value is set or not. Our current implementation
utilizes an empirical value of having 80% of the number of bits
set as threshold. Each bit in such projection indicates the density
of bits set in the corresponding section of the original memory
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Fig. 3. Density based hash function.

Fig. 4. Content and address based hash table.

area, mapping similar memory areas to the same hash value.
Since the introduction of SSE4.2 instruction set extension, pop-
count is natively supported by the x86 architecture, which makes
it computationally very efficient. Pop-count also proved to be
sufficient enough throughout our experiments, and while a more
rigorous comparison would be desired among existing hashing
techniques, such a study is outside the scope of this paper.

3.2. Content addressable hash table

Using the pop-count based hash function we built a hash
table that can be addressed through two dimensions: address and
content. Fig. 4 demonstrates the hash table’s arrangement. Each
non-zero memory area is represented by a memory descriptor,
that holds the memory address of the area and the corresponding
content hash value. All descriptors are inserted through both
dimensions, where descriptors residing in the same hash bucket
of the content hash table refer to memory areas that have likely
similar content. Our current implementation uses 18 bits wide
hash tables both in address and content dimensions.

Once the dirty memory areas are identified at the end of
a replication epoch, the corresponding memory descriptors are
removed from the hash table. Memory descriptors that belong to
the RDP cache are distinguished and they hold a pointer to the
cached data instead of the actual VMmemory. Otherwise, they play
the same role with other entries that describe non-dirty memory.

3.3. Compression

The purpose of finding similar areas in the memory content
corresponding to the VM’s previous replication epoch is to
decrease the network traffic required to update the backup
machine. Once we obtain the corresponding memory area, the
most similar the content hash table could identify, a XOR based
compression is then performed.

One possible light-weight approach to compressing XOR
vectors, suggested by related work [12], is run-length encoding
(RLE). RLE tends to be very efficient on samples where long
Fig. 5. XOR compression of dirty memory areas.

Fig. 6. Comparison of bitmask based and RLE compressions. Average compressed
length of each method (left axis), and the distribution of XOR vectors (right axis)
according to the number of non-zero elements they contain. Samples are from the kernel
compilation workload.

sequences of the same value are frequent, however it gives poor
results when this isn’t the case. Fig. 5 demonstrates an alternative,
bitmask based mechanism, where the main steps are as follows.
First, the dirty memory area and its similar pair is compared and a
XOR based diff is generated. Since we expect that many offsets of
the resulting vector are filled with zeros, we generate a bitmask to
describe which offsets hold non-zero values. The bitmask and the
actual non-zero values are then simply concatenated.

We collected XOR vectors from the execution of the kernel
compilation workload in order to make a comparison between the
above mentioned two compression methods. For each vector we
recorded the number of non-zero elements and the length of the
compressed vectors for both techniques. At the end, the average
length as the function of non-zero elements and the method used
was computed.

Fig. 6 compares the efficacy of the two approaches. As seen,
when the number of non-zero elements in the XOR vector is small,
RLE outperforms the bitmask based approach. However, if the
number of non-zero elements is larger than approximately 10%
of the unit size, the bitmask compression yields better results.
Fig. 6 also shows the distribution of XOR vectors (on the right axis)
with respect to the number of non-zero elements they contain.
According to the observed distribution, XOR vectors on which the
bitmask based compression outperforms RLE comprise over 61% of
the samples.

Our implementation takes advantage of both approaches. It
starts performing a bitmask based compression, but if the com-
pressed size falls below the observed threshold it dynamically
switches to run length encoding.
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Fig. 7. Average time spent on similarity compression according to the number
of compute threads utilized. Kernel compilation workload, replication frequency is
100 ms, average number of dirty pages is approximately 3800. (Host machine is a 4
cores Intel Xeon with 2 hyperthreads each core.).

3.4. Copy-on-write

The merit of asynchronous data transfer during replication is
the reduction of VM downtime, i.e., the time while the virtual
machine is suspended when replication data is transferred to the
backup machine. Instead of waiting until the transfer completes,
the regular asynchronous replication first copies all dirty pages into
a local buffer, resumes the VM immediately and then transfers the
data to the backup host [2]. This way, data transfer overlaps the
next epoch’s execution phase.

Unfortunately, in our case this solution is not directly applica-
ble, because we need the entire memory content of the VM from
the given epoch so that comparison against the non-dirty memory
region can be also performed consistently.

In order to prevent extending VM downtime, we modified the
virtual machine monitor so that it does copy-on-write (COW)
apart dirty page tracking when it is desired. COW is enabled only
during the compression to ensure that the similarity scan accesses
memory contentwhich corresponds to the previous epoch. Clearly,
COW demands a certain amount of extra memory so that the
previous value of write accessed pages can be retained. However,
because COW is only enabled for a short period of time (see
Section 3.5) during each replication epoch, we observed a modest
demand for additional memory, up to 20 MB in the worst case.

3.5. Multi-core optimization

As the latest trend in computer hardware is the ever increasing
number of CPU cores, an obvious approach to achieving higher
performance is exploiting concurrency. Computing new hash
values for dirty memory areas, looking up similar regions in the
content addressable hash table, as well as performing the actual
XOR compression can be parallelized efficiently.

In order to avoid synchronization as much as possible our
similarity compression mechanism exploits two techniques, the
content hash table is implemented in a lock-free fashion so that
compute threads can access it simultaneously; moreover, during
compression thread-local data structures are utilized to collect
changes that need to be applied to the global hash table at the end
of each replication epoch.

Some basic synchronization is still inevitable, such as notifying
compute threads when data is available and making sure all
compute threads have finished before applying changes to the
global hash table.

Fig. 7 compares the efficiency of running the compression on
different number of CPU cores. As seen, for up to 4 threads we
achieve near linear speedup, but the improvement between 4 and
8 cores doesn’t follow this trend. We believe this is the effect
of the low-level arrangement of the Xeon CPU we used for our
experiments, which provides the illusion of 8 CPU cores via hyper-
threading, sharing the same amount of cache with the 4 CPU cores
configuration.
Fig. 8. The Linux KVM architecture.

4. Implementation

This section discusses technical issues regarding our implemen-
tation.

4.1. KVM

We chose the Linux Kernel Virtual Machine (KVM) [13] as the
platform of this study. KVM takes advantage of the hardware
virtualization extensions so that it achieves nearly the same
performance with the underlying physical machine.

Fig. 8 depicts the high-level KVM architecture. The most
important components are the kvm kernel module and qemu-kvm,
a KVM tailored version of QEMU. On top of these, libvirtd is an
often used facility for managing virtual machines, for which virsh
provides a command line interface. A major advantage of the KVM
architecture is the full availability of user-space tools in the QEMU
process, such as threading, libraries and so on.Wemake changes to
all components in order to integrate replication support into KVM.

4.2. Copy-on-write

On the lowest level, we extended the KVM kernel module
to perform copy-on-write when it’s requested by qemu-kvm.
Copy-on-write is a well applied technique in operating systems,
particularly for enforcing private access to an otherwise shared
memory area among separate address spaces. However, in our
case, COW is not as straightforward as it is with regular processes,
because the compression threads and the running VM actually
share the same address space. When a page is written and COWed,
the VM still needs to access the most recent content, while the
compression threads should see the previous epoch’s value. In
order to meet both requirements we remap the old content of the
page to another address and maintain a translation table, which is
queried by the compression threads to find out whether or not a
page has been COWed. Note, that COW pages are recycled in each
epoch once the compression is finished.

4.3. Compression and I/O buffering

Most of the replication logic, including the similarity based
compression is implemented in qemu-kvm, leveraging a great part
of the live migration code.

For disk I/O and network buffering we modified the virtio
drivers of qemu-kvm. The disk I/O buffer behaves also as a hash
table that operates on sector granularity so that read requests
referring to sectors which are already buffered can be accessed
consistently. As for network bufferingwemaintain an extra packet
queue that captures outgoing packets during the execution phase
of a replication epoch. Once the backupmachine acknowledges the
update both disk and network buffers are committed.

4.4. Transactional updates

Another particular issue worth mentioning is the transactional
nature of updating the backupmachine. When replication data are
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sent to the backup host, qemu-kvm cannot just read and apply the
changes directly, because a failure during the update would leave
the backup machine in an inconsistent state.

This implies that at the end of each replication epoch the
backup machine needs to collect the updates first and then apply
all changes together in a transactional fashion, only if all data
were received successfully. Unfortunately, the network protocol of
qemu-kvm’s live migration code doesn’t support this by default.

For this reason we extended the QEMUFile object with a buffer
and a flag that indicates that the file is in accumulating mode. The
primary machine toggles this flag on the file corresponding to the
backup connection and all subsequent writes are first buffered.
We record the number of bytes to be transmitted and inform the
backup machine in advance regarding the length of the update.
It can then read the whole stream, store it in a buffer and toggle
the backup file’s flag to indicate that subsequent read operations
issued by qemu-kvm should access the buffer instead of receiving
data from the network.

5. Evaluation

5.1. Experimental framework

Our experiments were conducted on three server nodes, each
machine equipped with a 4 cores Intel Xeon 2.2 GHz CPU (2
hyperthreads per core), 3 GB of RAM, a 250 GB SATA harddrive and
two Broadcom NetXtreme II BCM5716 Gigabit Ethernet network
interfaces. One of the physical network cards were bridged to
the virtual machine and used for application traffic and the other
was dedicated to the replication protocol. The host machines
run Ubuntu server 9.10 on Linux kernel 2.6.31 and we used
qemu-kvm 0.12.3 with kvm-kmod 2.6.31.6b as the basis of our
implementation. For both the Linux and Windows Server 2003
virtual machines we used the KVM virtio disk and network
drivers. We do not present performance results on the native host
machine, because in virtualized environments direct access to the
underlying machines is normally not available. However, we had
Intel’s hardware MMU virtualization support, i.e. Extended Page
Tables (EPT) enabled in all experiments. Each VM had one virtual
CPU and 1 GB of RAM allocated with memory ballooning support
disabled.

We used a separate desktop computer running Windows XP
for executing the Exchange Load Generator and another Ubuntu
desktop for the SPECweb client scripts. Furthermore, for the
SPECweb workload, one of our server nodes was utilized to host
a VM for SPECweb’s backend server deployment.

5.2. Kernel compilation

Our first target is the kernel compilation workload. In this
experiment we compile the bzImage target of Linux kernel
version 2.6.31 using the default configuration. We repeated each
experiment three times for each VM setup and report the average
wall-clock time measured.

Fig. 9 illustrates the results with respect to four different
VM setups. Native VM measures the execution time on the
original, unmodified KVM virtual machine. Regular asynchronous
replication indicates the method proposed in the Remus paper [2],
where the primary machine accumulates all replication data
first, resumes the VM immediately, and lets the actual transfer
overlapwith the next epoch’s speculative execution. The similarity
compression mode enables our proposed compression method,
but the VM is suspended until the end of compression in
each epoch. Finally, similarity compression with copy-on-write
indicates the case where data stream is similarity compressed and
Fig. 9. Duration of kernel compilation on native VM and with various replication
strategies.

Fig. 10. Compression ratio for kernel compilation.

the VM downtime is eliminated by having the virtual machine
executed in COWmode for the duration of the compression.

As seen, in terms of execution time, the overhead introduced
by the regular asynchronous replication leads to significant per-
formance degradation, showing nearly two times worse efficiency
compared to the native VM’s configuration. The 15 min required
by the native VM increased up to approximately 29 min in this
case. Similarity compression alleviates this overhead by reducing
the execution time near to 24 min, yielding a 20% performance
improvement.

We have previously discussed (in Section 3.5) how multi-
core execution is utilized for better performance. Fig. 7 revealed
the time spent on data compression in each 100 ms epoch. We
emphasize again, that without copy-on-write, throughout the
similarity compression the VM needs to be suspended so that
compute threads see a consistent view of the VM’s memory image.
In case of using four CPU cores the introduced downtime is
around 16 ms in each 100 ms replication epoch. Fig. 9 indicates
the improvement when such service interrupt is eliminated by
copy-on-write. As seen, with COW enabled the kernel compilation
completes in less than 21 min, reaching 70% of the native
VM performance, which corresponds to over 40% performance
improvement compared to the regular asynchronous replication.

Fig. 10 illustrates the compression ratio achieved by the sim-
ilarity compression. It shows the number of bytes transferred
in a couple of hundred subsequent epochs. We also logged the
compression ratio and computed the number bytes the regular
asynchronous replication would have transferred. One of the key
observations here is that the Gigabit Ethernet network doesn’t
offer wide enough bandwidth so that the regular replication could
catch up with our mechanism, this is in fact the reason of the
attained speedup. As seen, the average compression ratio settles
around 30%.
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(a) SPECweb Banking workload. (b) SPECweb E-Commerce workload.

Fig. 11. Average percentage of good and tolerable answers in SPECweb workloads.
5.3. SPECweb

The next two applications we investigate is SPECweb’s Banking
and E-Commerce workloads. The SPECweb configuration requires
at least three machines for running the experiments [7]. One of
the server hosts is the actual SPECweb application server, which is
accompanied by a backend machine. These were deployed in two
VMs residing on two separate physical machines. Besides these, a
desktop machine was utilized for running the SPECweb client side
scripts.

We replicate only the main SPECweb application server, for
which another physical machine was utilized to serve as backup
host. We ran three different setups, first we tuned the SPECweb
configuration so that 99% of the responses are categorized as
‘‘good’’ when executed on the native VM. Both the regular
asynchronous replication and the similarity compressed method
were thenmeasured with the same configuration andwe compare
the average percentage of ‘‘good’’ and ‘‘tolerable’’ responses
reported by the SPECweb client script. The replication period is set
to 50 ms in these experiments, because SPECweb is more sensitive
to network latency. Note, that changing the replication period
doesn’t affect the fairness of the comparison itself, because the
same epoch length is used in all setups.

Fig. 11(a) compares the results obtained for the Banking work-
load. SPECweb reports two separate values for each experiment,
the ratio of ‘‘good’’ and ‘‘tolerable’’ answers. As mentioned above,
the experiment is configured so that SPECweb evaluates 99% of the
responses from the native VM as ‘‘good’’.

A closer look at the results reveals that again, the regular asyn-
chronous replication introduces severe performance degradation
to SPECweb. The ratio of results marked as ‘‘good’’ dropped below
45% in this case, although 85% were still evaluated as ‘‘tolerable’’.

When similarity compression is performed, note that similarity
compression means COW enabled here, the ratio of ‘‘good’’ results
increased to 88%, yielding a 95% improvement compared to the
regular asynchronous replication. As for the ratio of ‘‘tolerable’’
answers, in case of similarity compression, 98% of the results are
‘‘tolerable’’, which is nearly as good as the performance of the
native VM.

Fig. 11(b) illustrates the same comparison for the E-Commerce
workload. As previously, the configuration was tuned to achieve
99% of the replies marked as ‘‘good’’ on the native VM. The perfor-
mance degradation imposed by regular asynchronous replication
is not as heavy as in case of the Bankingworkload and it only drops
to 90% and 74%, for ‘‘tolerable’’ and for ‘‘good’’, respectively.
Fig. 12. Compression ratio for SPECweb banking.

Previously, Table 1 in Section 2.2 showed a comparison of the
average number of dirtied pages for all workloads. As seen, the
E-Commerce workload is substantially lighter in terms of memory
usage compared to Banking. We believe this implies the lower
degradation in performance due to the fact that the overhead’s
main factor is the amount of data to be transferred. Our proposed
methodmitigates this overhead achieving 99% ‘‘tolerable’’ and 92%
‘‘good’’ responses, which, respectively, corresponds to a 10% and
24% improvement over the regular asynchronous replication.

Fig. 12 depicts the obtained compression ratio for the Banking
workload. We followed the same procedure as in case of kernel
compilation, recording the number of bytes transferred, the
ratio achieved and computing the amount of bytes the regular
replication would have had to transfer. Again, one of the key
observations is the fact that the Ethernet bandwidth would be
insufficient to keep up with the pace of the produced dirty data in
case of the regular replication. As shown, our proposedmechanism
attains an average of 20% compression ratio for the Banking
workload.

5.4. Exchange server

The results presented so far were all obtained on Ubuntu
Linux. In this section we evaluate the performance of our
mechanism when applied to Microsoft Exchange Server 2007
deployed over Windows Server 2003. The Microsoft Exchange
Server is a messaging system that provides e-mailing, calendars,
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(a) Average tasks completed under stress-mode in 10 min. (b) Task latency details. The values for RequestMeeting are truncated
for clarity. They are 24 583, 66 763, and 32 583, respectively.

Fig. 13. Microsoft exchange load generator results.
attachments, contacts, etc. We used the Microsoft Exchange Load
Generator utility [11], which simulates the server workload that is
generated by interaction of multiple users. This benchmark tool is
mainly used for the purpose of server sizing and deployment plan
validation, but it also provides a facility for stress-testing server
installations.

We ran the Exchange Load Generator on a separate Windows
XP client machine. Only the server host was replicated in our
experiments and we used the same three setups as we did
with SPECweb, native VM, regular asynchronous replication, and
similarity compression with COW enabled. The replication period
was calibrated to 50 ms. The Exchange Load Generator was
executed three times for 10 min under stress-test mode and we
report the average number of tasks finished for each setup.

Fig. 13(a) demonstrates the average number of Exchange tasks
completed in 10 min with respect to the different VM setups.
Compared to the native VM’s over 10 000 tasks, the achieved
performance in case of regular asynchronous replication degrades
to as low as 3954. Our proposed mechanism alleviates this
degradation finishing approximately 7100 tasks in 10 min, which
in turn is a 79% performance improvement.

Exchange Load Generator provides detailed information on
certain attributes of the executed tasks. We computed the average
latency of the most frequent tasks during the experiments.
Fig. 13(b) depicts the actual numbers obtained. As seen, when
compared to the native VM’s performance, the general tendency
is that responses generated during the regular replication have
significantly higher latency. On the other hand, latencies for the
similarity compression method reside in the interval of the native
and the regular replication’s, yielding significant improvements
in some cases, such as the SendMail, MakeAppointment, or
the CreateContact tasks. A closer look at the numbers reveals
that similarity compression, for these particular tasks, attains
substantially closer efficiency to the native VM than to the regular
asynchronous replication.

Another key observation is that all tasks have higher latency
than 50 ms even in case of the native VM, which implies that
the main factor of the regular replication overhead is the inability
of propagating changes to the backup VM fast enough. We have
verified this by running a couple of experiments with 100 ms
replication epoch and observed very similar results.

Fig. 14 illustrates the compression ratio similarity compression
achieves against the regular data transfer. We used the same
method to generate this figure as for the previous workloads
and we draw similar conclusion. The main source of the attained
performance improvement is the fact that the compressed stream
Fig. 14. Compression ratio for Windows Exchange Server.

can propagate more changes than the regular replication. Our
proposed solution maintains an average 28% compression ratio for
the Exchange Server workload.

5.5. CPU and memory consumption

Previously, we showed how replication of various workloads
benefits from our proposed compression technique. Clearly,
performing such activity in every 50/100 ms requires additional
resources on the primary VM’s host machine. In this section we
turn our attention to evaluate the price of the compression in terms
of CPU and memory consumption.

There are several sources for additional memory demand
when performing VM replication. Disk I/O buffering and network
packet capturing both allocate extra chunks of memory, which are
inevitable for ensuring consistency. We logged two attributes of
the block cache, the frequency how often disk I/O was involved in
replication data, and the number of sectors dirtied when disk I/O
occurred. The replication epoch was set to 100 ms and the block
sector size was 512 bytes.

Table 2 illustrates the obtained results for all workloads. The
first column shows the percentage of replication epochs when
block I/O was involved, the second and third columns show the
maximum and the average size of the I/O buffer per epoch during
the experiment. As seen, block I/O varies significantly according to
theworkload considered. Across all workloads the average amount
of memory consumed as block cache scales from 160 to 800 kB,
reaching 4.7 MB in the worst case.
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Table 2
Replication resource consumption (area unit size 512 bytes).

Workload I/O freq. (%) Max. size of
disk I/O buff

Avg. size of disk
I/O buff (kB)

Max. size of content
hash (MB)

Avg. size of
content hash (MB)

Avg. CPU overhead (%)

Kernel compilation 11 4.7 MB 800 19 13 125
SPECweb Banking 6 850 kB 280 24 23 134
SPECweb E-commerce 6 352 kB 160 22 21 132
Microsoft Exchange 70 4.6 MB 265 52 50 148
In Section 3, Fig. 4 showed the arrangement of the content hash,
which holds a descriptor structure for each non-zero area in the
VM’s memory content. Table 2 also shows the average and the
maximum size of the content hash table. The table reveals that the
memory allocated for the content descriptors scales from 18 to 50
MB, and from 13 to 50MB, as average, andmaximum, respectively.
Moreover, we maintain an LRU cache of 5120 pages that allocates
another 20 MBs. Overall the memory consumption of the content
hash scaled from 38 up to 70 MB in our experiments, which we
think is acceptable for a 1 GB virtual machine.

We used the atop [14] utility for logging CPU consumption
of qemu-kvm during the experiments both with and without
replication enabled. To assess the replication overhead in terms of
CPU consumption, we computed the average CPU usage in both
cases and report the difference between the replication enabled
and the native VM cases. The last column of Table 2 indicates the
obtained results, note that 100% corresponds to one CPU core here.
As seen, the additional CPU power required is about 130%, which
equals to a little above utilizing an extra CPU core. We believe
such overhead is reasonable, especially with the ever growing core
number of recent CPU architectures.

6. Related work

Similar elements in high dimensional spaces. Finding similar regions
to dirtymemory areas is essentially a similarity search in a high di-
mensional space. Previous works have yielded several approaches
for finding similar elements in high-dimensional spaces. Solutions,
such as K-clustering [15] or R-trees [16] could provide very accu-
rate results, however, due to their computational complexity they
cannot be applied in the scenario of VM replication.

Another prevalent approach is hashing, although, one-way hash
functions such as MD5 or SHA-1 are not feasible, because by
definition, they map elements that are close in the input space to
different hash values. To overcome this problem, local-sensitive
hash functions [17] have been proposed in the literature, but none
of them turned out to be efficient enough in our case. In the context
of network filesystems, LBFS [18] suggested combining SHA-1with
Rabin fingerprints in order to locate identical areas on different
offsets within files. However, we are aiming at finding similar
areas, not only identical ones. A recent work, Difference Engine [19]
suggested using one-way hash functions, but instead of hashing
the whole memory area, only portions of the page are hashed at
random offsets and the obtained values are then combined. In this
paper we proposed a pop-count based hash function, which is
computationally less expensive and extracts information based on
bit density of thewholememory areas rather than the bit sequence
of random offsets.
Memory content similarity and deduplication. Content similarity in
memory has been also investigated in the literature. VMware ESX
Server [8] and Satori [9] introduced techniques for better utilizing
the physical memory in virtualized systems by eliminating
duplicate memory content across and within virtual machine
instances. Identical pages are detected and deduplicated into
one single read-only page. Copy-on-write is then utilized to
ensure consistency in case the page is modified. Difference
Engine [19] aims at the same goal, but it leverages sub-page
level page sharing and memory compression to further improve
memory efficiency. Koller and Rangaswami [10] proposed I/O
deduplication, a mechanism that utilizes content similarity for
improving I/O performance by eliminating I/O operations and
reducing the mechanical delays during I/O operations. Of these,
Difference Engine and I/O deduplication have apparent similarities
to our work because they both utilize a content based hash
table to find similar content in the memory. However, our
hashingmechanism and sharing granularity is different than those
proposed in the above papers.
Virtual machine migration. Checkpoint-recovery based fault toler-
ance captures snapshots of the running VM at high frequency,
often leveraging the live migration support of the underlying
VirtualMachineMonitor (VMM). Thus, VM livemigration is closely
related to checkpoint-recovery based replication. Solutions, such
as Xen [20], KVM [13], and VMware’s VMotion [21] all provide the
capability of live migrating VM instances. Pre-copy is the domi-
nant approach to live VM migration [20,21]. It initially transfers
all memory pages then tracks and transfers dirty pages in subse-
quent iterations. When the amount of data transferred becomes
small or the maximum number of iteration reached, the VM is sus-
pended and finally, the remaining dirty pages and the VCPU con-
text is moved to the destination machine. VM replication, on the
other hand, leaves the VM running in pre-copy mode at all times
so that dirty pages are logged and the entire execution state can be
reflected to the backup node at the end of each replication epoch
[2,3]. In parallelwith ourwork a recent paper proposed a technique
similar to ours, where content similarity is exploited in the context
of VM live migration [12]. However, their proposed technique for
identifying similar memory pages is different than ours, further-
more, VM replication involves various different technical issues,
which distinguishes our work from this study.
Virtual machine replication. Bressoud and Schneider [22] intro-
duced first the idea of hypervisor-based fault tolerance by exe-
cuting the primary and the backup VMs in lockstep mode, i.e.,
logging all input and non-deterministic events of the primary
machine and having them deterministically replayed on the
backup node in case of failure. While Bressoud and Schneider
demonstrated this technique only for the HP PA-RISC processors,
VMware’s recent work implements the same approach for x86
architecture [23]. Deterministic-replay, however, imposes strict
restrictions on the underlying architecture and its adaption to
multi-core CPU environment is cumbersome, because it requires
determining and reproducing the exact order in which CPU cores
access the shared memory. Flight Data Recorder [24] and the work
of Dunlap et al. [25] enable deterministic replay for SMP environ-
ments, but it is unclearwhat degree of concurrency they canhandle
without significant performance degradation.

Checkpoint-recovery based solutions such as Remus [2] and
Paratus [3] overcome the problem of multi-core execution by
capturing the entire executions state of the VM and transferring
it to the backup machine. Although most of the data transfer can
be overlapped with speculative execution, transferring updates to
the backup machine at very high frequency still comes with great
performance overhead. Kemari [26] follows a similar approach
to Remus, but instead of buffering output during speculative
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execution, it updates the backupmachine each time before the VM
omits an outside visible event.

Improving the performance of checkpoint-recovery based VM
replication has become an active research area recently. Lu and
cker Chiueh [4] proposed fine-grained dirty region identification
to reduce the amount of data transferred during each replication
epoch, while Zhu et al. [5] improved the performance of log-
dirty execution mode by reducing read- and predicting write-
page faults. In this paper we also focus on reducing the amount
of data transferred during each replication epoch, although we
utilize content similarity instead of fine-grained dirty region
identification.

7. Conclusions and future work

Checkpoint-recovery based virtual machine replication is
attractive, it provides high availability for the entire software stack
executed in the VM, and it runs on commodity hardware. However,
it comes with great overhead due to the large amount of state that
needs to be synchronized frequently between the primary and the
backup hosts.

In this paper we have first presented a quantitative analysis of
various workloads in terms of content similarity in their memory
image. For all workloads we investigated, we have found that the
degree of overlapping bytes between dirty data and the previous
epoch’s memory content is high, about 80% when the comparison
granularity is 512 bytes.

We have proposed a novel compression method to alleviate
the replication overhead by exploiting such similarities. Our
mechanism uses a content addressable hash table to identify
similar memory areas to the dirty content in memory region
corresponding to the previous replication epoch and expresses the
changes with a compressed XOR difference.

The proposed compression method can reduce network traffic
by up to 80%, thus, propagating changes faster and yielding
a performance improvement of over 90% for certain latency
sensitive applicationswhen compared to the regular asynchronous
replication. We also showed that the compression comes with
modest resource consumption, it requires up to 70 MB extra
memory when it is applied to a 1 GB VM and utilizes a little more
than an extra CPU core for computation.

One of the merits of checkpoint-recovery based replication
is its inherent capability of handling symmetric multiprocessing
(i.e.multiprocessor) virtualmachines. Checkpoints cover the entire
execution state of the VM, including any non-determinism that
arises due to concurrent access of shared memory in case of SMP
configurations. Since wide-spread usage of SMP virtual machines
is highly anticipated [27], in the future we intend to evaluate the
scalability of our approach over VMs with multiple virtual CPUs
and larger amount of memory.
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