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Abstract—With the growing prevalence of cloud computing
and the increasing number of CPU cores in modern processors,
symmetric multiprocessing (SMP) Virtual Machines (VM), i.e.
virtual machines with multiple virtual CPUs, are gaining signifi-
cance. However, accommodating SMP virtual machines with high
availability at low overhead is still an open problem. Checkpoint-
recovery based VM replication is an emerging approach, but it
comes with the price of significant performance degradation of
the application executed in the VM due to the large amount of
state that needs to be synchronized between the primary and
the backup machines. Advanced features of high performance
interconnects, such as Remote Direct Memory Access (RDMA),
on the other hand, offer extreme network throughput. As such
feature may provide an opportunity for acceptable performance
degradation even for multi-core replicated virtual machines, the
impact of such technologies in the domain of VM replication
is important to assess. In this paper, we take a first look at
the performance advantages of RDMA for SMP virtual machine
replication. Moreover, in order to alleviate VM downtime during
replication, we propose fine-grained copy-on-write (COW), which
protects only memory pages that need to be transferred to the
backup host allowing simultaneous execution of the VM with the
replication. We find that the performance of replicated virtual
machines over high performance interconnects scales well with
the number of vCPUs in multiprocessor virtual machines, and
that RDMA based replication in conjunction with fine-grained
COW imposes acceptable overhead compared to the native VM
execution when applied to virtual machines with up to 16 vCPUs.

I. INTRODUCTION

With the recent increase in cloud computing’s prevalence,

the number of online services deployed over virtualized infras-

tructures has experienced a tremendous growth. At the same

time, the latest hardware trend of ever growing core number in

modern CPUs makes virtual SMP environments, i.e., Virtual

Machines (VM) with multiple virtual CPUs increasingly im-

portant [16]. Unfortunately, another implication of the growing

component number in current computing systems is the fact

that hardware failures have become common place rather than

exceptional.

Replication at the Virtual Machine Monitor (VMM) layer is

an attractive technique to ensure fault tolerance in virtualized

environments, primarily, because it provides seamless failover

for the entire software stack executed inside the virtual ma-

chine, regardless the application or the operating system.

There are currently two main approaches to primary-backup

based replication of virtual machines. Log-replay records all

input and non-deterministic events of the primary machine

so that it can replay them deterministically on the backup

node in case the primary machine fails [5], [18]. While

this solution provides high efficacy to uni-processor virtual

machines, its adaption to multi-core CPU environment is

cumbersome, because it requires determining and reproducing

the exact order in which CPU cores access the shared memory.

It has been shown that this approach imposes superlinear

performance degradation with the number of virtual CPUs on

several workloads when applied to multi-core VM setups [10].

On the other hand, checkpoint-recovery based replication of

virtual machines is attained by capturing the entire execution

state of the running VM at relatively high frequency in order

to propagate changes to the backup machine almost instantly

[7], [8], [15], [23]. This solution, essentially, keeps the backup

machine nearly up-to-date with the latest execution state of

the primary machine so that the backup can take over the

execution in case the primary fails [7].

Between checkpoints the VM executes in log-dirty mode,

i.e., write accessed pages are recorded so that when the

snapshot is taken only pages that were modified in the most

recent execution phase need to be transferred, along with the

vCPU context. One phase of dirty logging and transferring the

corresponding changes is often called a replication epoch [7],

[15], [23].

The main strengths of checkpoint-recovery based replication

is its inherent ability to tackle with multi-core configurations.

However, due to the large amount of state that needs to be

synchronized between the primary and the backup machines,

the imposed overhead over Gigabit Ethernet is substantial

even on uni-processor VM setups. Consequently, there have

been no studies so far focusing on checkpoint-recovery based

replication of multi-core virtual machines.

On the other hand, high-speed interconnects, such as Infini-

band [1] offer features including OS-bypass communication

and Remote Direct Memory Access (RDMA). OS-bypass

enables communication directly from user-space without the

involvement of the underlying operating system, and RDMA

allows direct data transfer from the memory of one computer

to the other. VM replication can benefit from such facility in
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several aspects. The very high throughput offered by RDMA

can significantly reduce the time needed for transferring dirty

pages to the backup machine at the end of each epoch and

OS-bypass communication allows the running VM to exploit

CPUs more efficiently.

Another obstacle, which stands in front of efficient

checkpoint-recovery based replication, is the fact that the VM

needs to be suspended at the end of each replication epoch so

that a consistent view of its memory contents can be retained

while changes are propagated to the backup host. Although

dirty memory pages can be collected first in a separate buffer

and transferred asynchronously, the imposed VM downtime

can be significant with workloads touching memory rapidly

[7]. We propose fine-grained copy-on-write (COW), which

allows the VM proceeding with its execution while dirty data

is collected, but protects only memory pages that correspond

to the latest update.

In this paper, we study the feasibility of high perfor-

mance interconnects in the domain of checkpoint-recovery

based replication of SMP virtual machines, enhanced with an

efficient copy-on-write mechanism. We make the following

contributions:

• A quantitative analysis of various workloads regarding
their behavior patterns over SMP virtual machines with

respect to checkpoint-recovery based replication.

• The design and implementation of virtual machine repli-

cation on top of the Linux kernel virtual machine (KVM),

with the integration of Infiniband’s Remote Direct Mem-
ory Access (RDMA) facility.

• A fine-grained copy-on-write mechanism that eliminates

the VM downtime during replication via protecting mem-

ory pages, whose value need to be retained so that

changes can be transferred to the backup host, and

allowing simultaneous execution of the VM.

• Finally, a comparative performance evaluation between
Gigabit Ethernet and Infiniband RDMA based replication
of SMP virtual machines with up to 16 virtual CPUs.

We find that the performance of replicated virtual machines

over high performance interconnects scales well with the

number of vCPUs in SMP virtual machines. The linux kernel

compile workload, for example, suffers only 34% slowdown

compared to the native virtual machine’s performance when

executed on an 8 vCPUs replicated VM.

We begin with characterizing various workloads in terms

of memory usage and I/O patterns on SMP virtual machines

in Section II. Section III describes the design of our RDMA

based replication method with copy-on-write and Section IV

provides details on the implementation. Experimental evalua-

tion is given in Section V. Section VI surveys related work,

and finally, Section VII presents future plans and concludes

the paper.

II. WORKLOADS AND ANALYSIS

In this section we describe each workload we investigated,

which is then followed by a quantitative analysis regarding

their memory usage and I/O patterns on SMP virtual machines.

A. Workloads

Reliable execution may be required by a diverse set of

applications, such as long lasting computations or mission

critical online services. Inspired by previous studies in the

domain of high-availability [7], [10], [15] we chose three

different workloads.

- Linux Kernel Compile is an elaborate workload with

good scalability over SMP configurations, stressing

mainly CPU and memory, but doing a fair amount of disk

I/O as well. We compile the bzImage target of the vanilla

Linux kernel version 2.6.31 with default configuration.

- Nas Parallel Benchmarks (NPB) is a collection of

computationally intensive parallel applications perform-

ing various scientific computations [2]. We chose the

OpenMP version of several benchmarks due to their

excellent scalability over single node SMP configurations.

- SPECweb 2005 Banking emulates an Internet personal

banking web-site, where clients are accessing their ac-

counts, making transactions, etc. Requests are transmit-

ted over SSL throughout the whole benchmark [11].

SPECweb is a real world like application and therefore a

good candidate for fault tolerance.

B. Analysis

As mentioned earlier checkpoint-recovery based replication

of virtual machines is delivered by capturing snapshots of

the running VM at relatively high frequency so that changes

can be reflected to the backup machine almost instantly. As

it will be described in detail in Section III, the two main

components that contribute to the overhead of checkpoint-

recovery based VM replication are the memory pages dirtied

and the sectors written on block devices during the execution

phase of each replication epoch. In this section we analyze

the chosen workloads from the perspective of memory usage

and I/O patterns with respect to the number of virtual CPUs

deployed in the virtual machine.

To put the numbers into context, all measurements presented

in this Section took place on a 2.4GHz four CPU AMD

Opteron ccNUMA machine, with four cores each CPU (i.e.

16 cores altogether) and 8GBs of RAM. The virtual machines

had 1GB of RAM and the number of vCPUs will be indicated

in the description of each experiment. For further technical

details of our experimental framework, see Section V.

Kernel Compile. We carried out measurements of the

kernel compile workload on virtual machines configured with

1 to 16 virtual CPUs. The VM executed under log-dirty mode,

where we recorded the number of pages written in each 100

milliseconds. Note, that running the VM in log-dirty mode by

itself introduces certain overhead due to the fact that the first

write to each page causes a page fault in the beginning of

every 100 milliseconds epoch. Moreover, at the end of each

epoch the dirty-log is reinitialized and all TLB entries have

to be invalidated. In Section V we provide exact numbers to

what extent the dirty-log mode affects execution time under

different setups.
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(a) Memory pages dirtied (page size is 4kB).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16

A
ve

ra
ge

 n
um

be
ro

f s
ec

to
rs

re
ad

/w
ri

tt
en

in
10

0m
s

Number of VCPUs

read written

(b) Block sectors read and written (sector size is 512 bytes).

Fig. 1: Average number of dirtied pages, block sectors read and written in 100 milliseconds for the kernel compile
workload according to the number of virtual CPUs deployed in the VM.
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Fig. 2: Average number of dirtied pages in 100 milliseconds for the NAS Parallel Benchmarks according to the number
of virtual CPUs deployed in the VM (page size is 4kB). The values for ft.B on 8 and 16 CPUs are truncated for clarity.

They are 55181 and 46951, respectively.

Figure 1a illustrates the numbers obtained. Kernel compile

has excellent scaling properties with the number of vCPUs de-

ployed in the virtual machine. As seen, the average number of

dirtied pages in every 100 milliseconds increases steadily with

the increasing number of virtual CPUs. Up to 4 CPUs it scales

linearly with the CPU number, while the increase weakens

somewhat with 8 and 16 CPUs. We believe this is the effect of

the underlying ccNUMA architecture and the combination of

the log-dirty execution mode. Notice, that a direct consequence

from the aspect of virtual machine replication is the increasing

need of network bandwidth so that the replication period can

be maintained. Taking other components of the replication

data (such as disk I/O), a socket based solution over Gigabit

Ethernet can incur significant performance degradation due to

its insufficient network bandwidth.

Another observation is the amount of block I/O involved in

the kernel compile workload. Figure 1b depicts the average

number of sectors read and written in 100 milliseconds.

The kernel compile workload, again, scales well and shows

steady increase in the number of I/O operations with the

increasing number of virtual CPUs. The key observation here

is the increase in the number of sectors written, because

disk modifications also need to be transferred to the backup

machine.

NAS Parallel Benchmarks. We performed the same

set of experiments for various applications from the NPB

benchmarks. We used their OpenMP version and set the

OMP NUM THREADS environment variable in the VM

to the number of virtual CPUs. Figure 2 shows the results

obtained from these experiments. There are several interesting

observations regarding NPB. First, note, that all these applica-

tions scale well with the number of CPUs in terms of execution
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time (see Section V), but this does not necessary imply an

increase in the number of dirtied pages. Second, it is apparent

that depending on the algorithm the number of pages dirtied

shows rather big differences. For instance, FT and SP touch

significantly more pages than the other benchmarks among the

ones we investigated.

However, we were more interested in assessing the memory

behavior as the function of the number of CPUs utilized. While

BT, FT, SP and UA exhibit obviously growing demand in

terms of dirtied pages when the number of CPUs increases, CG

and IS for example touch approximately the same amount of

pages regardless the CPU number in the system. As one could

expect, memory behavior with respect to the number of CPUs

visibly varies depending on the problem under consideration.

It is also worth noting that even the most scalable appli-

cation (in terms of dirtied memory), such as FT or SP, show

a decline in the number of pages when the number of CPUs

lifts from 8 to 16. Again, we believe this is the effect of the

log-dirty mode and the underlying ccNUMA architecture of

the host machine.

SPECweb2005 Banking. Similarly to the previously dis-

cussed workloads, we carried out the same set of experiments

for SPECweb Banking. SPECweb reports two values for a run,

the percentage of tolerable and good answers it harnesses from

the server during the test period. First, we tuned the SPECweb

config file to obtain the highest number of simultaneous ses-

sions that gives over 97% good and 100% tolerable answers on

the native VM with one virtual CPU. Then, we started adding

more virtual CPUs and increased the number of simultaneous

sessions to see if we get better results. Our observation was

that on this particular setup the bottleneck of the SPECweb

benchmark was memory rather than computing power.
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Fig. 3: Average number of dirtied pages in 100 milliseconds
for the SPECweb2005 Banking workload according to the
number of virtual CPUs deployed in the VM.

This is, in fact, reflected by Figure 3, which shows no

increase in the number of dirtied pages with the increasing

number of virtual CPUs in the VM. As for the I/O operations

of SPECweb2005 we obtained similar results, the number of

I/O write operations is relatively low, around 90 sectors per

100 milliseconds and it does not change with the number of

CPUs.

However, SPECweb2005 is still a good candidate for

RDMA based replication, due to the replication’s consistency

protocol which needs to hold back outside visible events, such

as network packets, until the backup machine acknowledges

the corresponding update of the given replication epoch. This

mechanism will be discussed in detail in Section III.

III. RDMA BASED VIRTUAL MACHINE REPLICATION

WITH COPY-ON-WRITE

In this section we first describe the mechanism of

checkpoint-recovery based virtual machine replication, fol-

lowing with the discussion of copy-on-write and Infiniband’s

RDMA integration.

As we have mentioned, checkpoint-recovery based replica-

tion of virtual machines is attained by capturing the entire

execution state of the running VM at high frequency in order

to reflect the changes to the backup machine almost instantly.

Between checkpoints the VM executes in log-dirty mode, i.e.,

write accessed pages are tracked so that when the snapshot

is taken only pages that were modified in the most recent

execution phase need to be transferred. In order to reduce

the overhead of transferring dirty pages, replication data can

be buffered and transferred asynchronously, overlapping the

VM’s execution in the subsequent epoch [7].

However, any fault tolerant system needs to ensure that the

state from which an output message is sent will be recovered

despite any future failure, which is commonly referred to as

the output commit problem [19]. As a consequence of such

requirement, during the execution phase of each epoch, output

of the running VM needs to be held back, i.e., disk I/O and

network traffic have to be buffered and can be released only

after the backup machine acknowledged the corresponding

update [7], [8], [15].

A. Fine-Grained Copy-On-Write

It is important to point out, that even in case of asyn-

chronous data transfer, it has to be ensured that the update

transferred to the backup machine holds a consistent view of

the memory corresponding to the given replication epoch. One

possible solution, introduced in Remus [7], is to suspended the

VM, collect the changes into a separate buffer, and resume the

VM before beginning the actual data transfer.

As we showed in Section II-B, several workloads touch

an increasing number of dirty pages during the same period

of time when the number of virtual CPUs is increased in

SMP virtual machines. In Section V we will also show that

copying this big amount of data into a separate buffer by

itself takes a significant amount of time. In order to alleviate

this downtime, we propose fine-grained copy-on-write, which

works as the followings. When the VM is suspended at the end

of a replication epoch so that the dirty page map is obtained,

instead of simply reinitializing the dirty map, it is preserved by

the VMM. During the next execution phase, each time a write

page-fault occurs (the VM runs in dirty-log mode), the old
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primary VM

I / O buffer

backup VM
(previous state)

- dirty memory region

high-performance
interconnectRDMA write

1.
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3.

- RDMA buffer

Fig. 4: RDMA based VM replication with copy-on-write, high-level design. Three main steps of updating the backup VM
during a replication epoch: 1.) Pause the VM, enable COW, resume the VM, copy dirty pages and dirty disk sectors into a
buffer, and disable COW. 2.) Transfer the update to the backup machine via RDMA. 3.) Apply the changes to the backup VM’s
memory.

bitmap is first consulted. If the write refers to a page present

in the old dirty bitmap, then a copy of the original page is

retained.

TABLE I: Ratio of dirty pages necessary to COW.
Workload Kernel Comp. ep.B sp.B ft.B SPECweb
Ratio 41% 56% 30% 12% 40%

Notice, that pages which do not appear in the old dirty

bitmap do not need to be COW protected, because they are

not part of the update. Table I shows the ratio of pages which

was necessary to be copied for some of the workloads, when

executed over 8 vCPUs. As seen, the ratio scales between 12%

and 56%, allowing the fine-grained COW mechanism to save

significant amount of work via not copying unnecessary pages.

Our proposed mechanism lets the VM to be resumed

immediately after the dirty bitmap is obtained and the VCPU

context is captured. The replication engine, in turn, uses the

old content of the pages during the data transfer.

B. RDMA

With workloads that touch memory rapidly, the time re-

quired to propagate changes at the end of an epoch may exceed

the replication period itself, leading to substantial overhead,

and causing significant performance degradation to the appli-

cation, even if dirty content is transferred asynchronously [7].

This anomaly becomes rather severe in case the application is

latency sensitive, such as several online services [11].

We alleviate the overhead of transferring the increased

amount of data with the utilization of Infiniband’s RDMA

facility. Notice, however, that contrary to virtual machine

migration [12], where the new content of each dirty page can

be directly transferred to the corresponding remote address

of the target machine, in case of VM replication the backup

needs to buffer the updates first, otherwise, a failure during

the data transfer would leave it in an inconsistent state. This

implies that at the end of each replication epoch the backup

machine needs to apply all changes together in a transactional

fashion, only if all data were received successfully. For this

reason, we maintain a large continuous buffer on the backup

machine which can be accessed via RDMA from the primary

host.

Before executing any RDMA operations, it is required that

the target machine, in our case the backup host, registers the

memory buffer where data will be transferred to and informs

the primary machine of the buffer’s remote key returned

from the registration. We exchange this remote key in the

initialization phase of the replication.

The high level design of the RDMA based VM replication

with copy-on-write is shown in Figure 4. At the end of each

replication epoch, the primary machine suspends the VM,

saves the VCPU context, enables COW and resumes the VM

immediately. In parallel with the next epoch’s execution it

collects all changes in a buffer. Once the changes are in place,

COW can be disabled and the VM continues running in dirty-

log mode. The primary machine does a handshake with the

backup to ensure the buffer on the remote side is ready for

receiving the updates. An RDMA write is then issued and all

data are transferred to the backup machine. Once the transfer

finished, buffered disk sectors and network packets can be

released on the primary machine. Finally, the backup machine

updates the VM’s memory content and commits disk I/O.

Our current implementation uses a static buffer for the

purpose of collecting updates due to better utilization of the

network bandwidth during the RDMA transfer [12]. Other-

wise, for each page a separate RDMA write would have to

be issued. In the future we plan to improve this with dynamic

buffer management.

IV. IMPLEMENTATION

This section discusses technical issues regarding our imple-

mentation.

A. KVM

We chose the Linux Kernel Virtual Machine (KVM) [13]

as the platform of this study. KVM takes advantage of the

hardware virtualization extensions so that it achieves nearly

the same performance with the underlying physical machine.
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Fig. 5: The Linux kernel virtual machine architecture.

Figure 5 depicts the high-level KVM architecture. The most

important components are the kvm kernel module and qemu-
kvm, a KVM tailored version of QEMU. On top of these,

libvirtd is an often used facility for managing virtual machines,

for which virsh provides a command line interface. A major

advantage of the KVM architecture is the full availability of

user-space tools in the QEMU process, such as threading,

libraries and so on.

B. Replication Logic and I/O Buffering

The replication logic is entirely implemented in qemu-kvm,

leveraging a great amount of the live migration code.

For disk I/O and network buffering we modified the virtio

drivers of qemu-kvm. The disk I/O buffer behaves also as

a hash table that operates on sector granularity so that read

requests referring to sectors which are already buffered can be

accessed consistently. As for network buffering we maintain

an extra packet queue that captures outgoing packets during

the execution phase of a replication epoch. Once the backup

machine acknowledges the update both disk and network

buffers are committed.

C. Transactional Updates

We have mentioned the transactional nature of updating the

backup machine in Section III. Unfortunately, the network

protocol of qemu-kvm’s live migration code doesn’t support

this by default.

For this reason we extended the QEMUFile object with a

buffer and a flag that indicates that the file is in buffered mode.

The primary machine toggles this flag on the file correspond-

ing to the backup connection and all subsequent writes are first

buffered. The backup machine, on the other hand, associates

the replication receive buffer to the QEMUFile object referred

in the VM state loaders. It then toggles the file’s flag to indicate

that subsequent read operations issued by qemu-kvm should

access the buffer instead of trying to receive data from the

network.

D. Copy-On-Write

On the lowest level, we extended the KVM kernel module

to perform copy-on-write when it’s requested by qemu-kvm.

Copy-on-write is a well applied technique in operating sys-

tems, particularly for enforcing private access to an otherwise

shared memory area among separate address spaces. However,

in our case, COW is not as straightforward as it is with regular

processes, because the replication mechanism and the running

VM actually share the same address space. When a page is

written and COWed, the VM still needs to access the most

recent content, while the replication engine should see the

previous epoch’s value. In order to meet both requirements

we copy the old content of the page to another address and

maintain a translation table, which is queried by the replication

engine to find out whether or not a page has been COWed.

Note, that COW pages are recycled in each epoch after COW

is disabled.

E. InfiniBand RDMA

We implement the RDMA transfer through OpenFabrics’

native Infiniband verbs API [3]. The native InfiniBand verbs

form the lowest software layer for the IB network, and allow

direct user-level access from the qemu-kvm process to the IB

host channel adaptor (HCA) resources while bypassing the

operating system. At the IB verbs layer, we used the queue

pair model for supporting channel-based communication se-

mantics during the handshake between the primary and backup

machines, as well as for memory-based communication se-

mantics, i.e., RDMA.

V. EVALUATION

A. Experimental Setup

Throughout our experiments the host machine of the repli-

cated VM was a 2.4GHz four CPU AMD Opteron ccNUMA

machine, with four cores each CPU (i.e. 16 cores altogether),

8GBs of RAM and a 250GB SATA harddrive. The machine

was equipped with two Intel 82546GB Gigabit Ethernet net-

work interfaces. One of the physical network cards were

bridged to the virtual machine and used for application traffic

and the other was dedicated to the replication protocol for

the experiments, when replication took place over Gigabit

Ethernet. Moreover, a Mellanox MT26428 Infiniband QDR

HCA was also present in both the primary and the backup

hosts for the experiments utilizing RDMA.

The host machines run Ubuntu server 9.10 on Linux kernel

2.6.37 and we used qemu-kvm 0.14.50 with kvm-kmod 2.6.37

as the basis of our implementation. For the virtual machines

in each experiment we used the KVM virtio disk and network

drivers. We do not present performance results on the native

host machine, because in virtualized environments direct ac-

cess to the underlying machines is normally not available.

However, it is worth noting that in all experiments we had

AMD’s hardware MMU virtualization support, i.e. Nested

Page Tables (NPT) enabled. Unless stated otherwise, the VM

had 1 GB of RAM allocated.

B. Kernel Compilation

Our first target is the kernel compilation workload. In this

experiment we compile the bzImage target of Linux kernel

version 2.6.31 using the default configuration. We repeated

each experiment three times for each VM setup and report the

average wall-clock time measured.
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(c) NPB ep.B replication epoch lengths.
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(d) NPB bt.A runtimes.
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(e) NPB bt.A replication epoch lengths.
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(f) NPB ua.B runtimes.
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(g) NPB ua.B replication epoch lengths.
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(h) NPB sp.B runtimes.
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(i) NPB sp.B replication epoch lengths.
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(j) NPB ft.B runtimes.
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(k) NPB ft.B replication epoch lengths.
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(l) SPECweb Banking results (4 vCPUs).

Fig. 6: Performance results of various applications executed on native VM, dirty-log VM, GigE TCP/IP, and Infiniband
RDMA based replication, with and without COW, according to the number of vCPUs in the system.
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Figure 6a illustrates the execution times on the native virtual

machine, the VM running in log-dirty mode, replicated over

Gigabit Ethernet and Infiniband RDMA, with and without

COW enabled. Similarly to related work [7], we set the

replication period in this experiment to 100 milliseconds so

that failover from the user’s point of view remains entirely

transparent. As seen, having the VM run in log-dirty mode

by itself imposes a certain level of performance degradation,

however, this is inevitable in case of checkpoint-recovery

based replication.

Figure 1a indicated previously, that the kernel compile

workload exhibits a growing demand in terms of dirtied

memory and the number of I/O operations when executed

over multiple CPUs. Consequently, as seen on Figure 6a,

RDMA based replication attains an increasing performance

improvement compared to Gigabit Ethernet with the growing

number of CPUs in the system. The key observation, however,

is the combination of RDMA and copy-on-write that achieves

nearly the same performance with the dirty-log mode up to

8 vCPUs. Again, since dirty-log mode is unavoidable, it is

impossible for the replication to achieve higher performance

than that. As for 16 vCPUs, the kernel compilation completes

almost 3 times faster on a VM replicated over Infiniband as

opposed to GigE, regardless whether or not COW is enabled.

We believe this is due to the necessary synchronization during

COW, which introduces a growing overhead with the increas-

ing number of vCPUs in the system. Compared to the native

VM performance, replication over RDMA with COW suffers

7%, 13%, 29%, 34%, and 2.94 times slowdown in case of 1,

2, 4, 8 and 16 vCPUs, respectively.

C. NAS Parallel Benchmarks

The NAS Parallel Benchmarks revealed several interesting

properties of VM replication with respect to the performance

attained over different network interconnects. For the se-

quence, in which we discuss the various benchmarks from the

NPB set, we follow the order of growing number of dirtied

pages presented in Figure 2. For all experiments we set 100

milliseconds as the intended replication period. We measure

each benchmark on the native VM, VM executing in log-

dirty mode and on replicated VMs over Gigabit Ethernet and

Infiniband RDMA, with and without copy-on-write.

As seen previously on Figure 2, the ep.B benchmark touches

relatively low amount of memory regardless the number of

CPUs. Figure 6b illustrates the runtimes for ep.B. Due to the

small amount of changes that need to be synchronized, even

the bandwidth of Gigabit Ethernet is sufficient for keeping the

backup machine up-to-date according to the replication pe-

riod. Consequently, the results show very similar performance

degradation in case of both GigE and Infiniband, regardless

COW is enabled or not. This phenomenon is further verified

by Figure 6c, which shows the average duration of the VM

suspend and the data transfer phase per replication epoch,

when COW is disabled. As seen, while GigE spends an

increasing amount of time on transferring data to the backup

machine, both GigE and Infiniband completes the transfer

within close to 100 milliseconds regardless the vCPU number.

This observation, however, does not stand for bt.A, where

data transfer time (see Figure 6e) exceeds 100 milliseconds

in case of 2 virtual CPUs and above. Figure 6d shows clear

improvements of the RDMA replication method compared to

GigE for this benchmark.

Continuing our investigation, we now focus on the ua.B

benchmark. In Figure 2, we saw that ua.B touches a growing

amount of memory with the increasing number of CPUs in the

virtual machine. Although a similar effect could be already

observed on the kernel compile workload, as seen on Figure

6f, ua.B achieves slightly better performance over GigE with

COW enabled than RDMA without COW on 1 vCPU. One of

the reasons for this, besides that COW enables more efficient

execution, is the fact that the prolonged data transfer phase

(see Figure 6g) in case of GigE renders the frequency of

checkpoints lower than that in case of RDMA. Nevertheless,

when RDMA is combined with COW it achieves substantially

better performance than GigE. Again, RDMA and COW shows

close to dirty-log mode performance up to 8 vCPUs.

The two heaviest benchmarks we encountered were sp.B

and ft.B. As shown previously in Figure 2, both sp.B and

ft.B touch substantially higher number of pages than other

benchmarks on the same VM setup. Despite the fact that

the data transfer phase lasts considerably longer over GigE

for sp.B and ft.B (Figure 6i and Figure 6k, respectively),

rendering the number of checkpoints taken lower than in case

of RDMA, due to the large amount of data that needs to

be transferred, RDMA based replication shows significantly

better performance than GigE (illustrated by Figure 6h and

Figure 6j). Although, in case of ft.B, even RDMA with COW

is unable to converge to the performance of dirty-log mode

when run over 4 vCPUs and suffers a near 4 times slowdown

at 8 vCPUs already.

D. SPECweb

The last application we investigate is SPECweb’s Banking

workload. The SPECweb configuration requires at least three

machines for running the experiments [11]. One of the server

hosts is the actual SPECweb application server, which is

accompanied by a backend machine. These were deployed

in two VMs residing on two separate physical machines.

Besides these, a desktop machine was utilized for running the

SPECweb client side scripts.

We replicate only the main SPECweb application server and

ran five different setups: native VM, replication over GigE and

Infiniband, with and without COW for each. As mentioned in

Section II-B, we did not observe any significant change in

the amount of dirtied pages with the increasing number of

CPUs for this particular benchmark, and all results reported

here were obtained on a VM configured to have 4 virtual

CPUs. As we discussed before, network I/O must be held back

during the execution phase of each replication epoch and can

be released only after the backup machine acknowledges the

corresponding update. Since RDMA transfers the dirty data in
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much shorter period of time, for a latency sensitive workload,

such as SPECweb, substantial performance improvements can

be expected. On the other hand, presumably COW doesn’t

play a significant role in this case, because network I/O can

be released only after the update is acknowledged regardless

COW is enabled or not.

We obtain our measurements by first tuning the SPECweb

configuration so that 99% of the responses are categorized as

”good” when executed on the native VM. Both the Gigabit

Ethernet and the Infiniband RDMA based replicated VM

setups were then measured with the same configuration and

we compare the average percentage of ”good” and ”tolerable”

responses reported by the SPECweb client script. The repli-

cation period is set to 50 milliseconds in these experiments,

because SPECweb is more sensitive to network latency. Note,

that changing the replication period doesn’t affect the fairness

of the comparison itself, because the same epoch length is

used in all setups.

Figure 6l shows the results we obtained from these experi-

ments. As seen, the performance attained by Gigabit Ethernet

based replication is low, 45% and 76% without COW, 54%

and 82% with COW, for ”good” and for ”tolerable” answers,

respectively. This degradation is alleviated by the RDMA

based replication, which achieves 92% and 98% without COW,

94% and 99% with COW, for ”good” and ”tolerable” answers,

respectively.

VI. RELATED WORK

A. Virtual Machine Migration

Checkpoint-recovery based fault tolerance captures snap-

shots of the running VM at high frequency, often leveraging

the live migration support of the underlying Virtual Machine

Monitor (VMM). Thus, VM live migration is closely related

to checkpoint-recovery based replication. Solutions, such as

Xen [6], KVM [13], and VMware’s VMotion [17] all provide

the capability of live migrating VM instances. Pre-copy is

the dominant approach to live VM migration [6], [17]. It

initially transfers all memory pages then tracks and transfers

dirty pages in subsequent iterations. When the amount of data

transferred becomes small or the maximum number of iteration

reached, the VM is suspended and finally, the remaining dirty

pages and the VCPU context is moved to the destination

machine. VM replication, on the other hand, leaves the VM

running in pre-copy mode at all times so that dirty pages are

logged and the entire execution state can be reflected to the

backup node at the end of each replication epoch [7], [8].

Performance improvement to VM migration has been the

focus of several prior studies. Xian et al. showed how data

deduplication can be exploited to accelerate live migration

[22], while Microwiper [9] proposed ordered propagation of

dirty pages to transfer them according to their rewriting rates,

reducing service downtime during the migration.

High performance interconnects have also been used in the

context of virtual machine migration, Huang et al. presented

RDMA based migration over Infiniband [12], Note however,

that they only consider uni-processor VMs, besides, VM

replication involves various different technical issues which

distinguishes our work from this study,

B. Virtual Machine Replication

Bressoud and Schneider [5] introduced first the idea of

hypervisor-based fault tolerance by executing the primary and

the backup VMs in lockstep mode, i.e., logging all input and

non-deterministic events of the primary machine and having

them deterministically replayed on the backup node in case

of failure. While Bressoud and Schneider demonstrated this

technique only for the HP PA-RISC processors VMware’s

recent work implements the same approach for x86 archi-

tecture [18]. These works, however, can handle only uni-

processor environments. Deterministic-replay imposes strict

restrictions on the underlying architecture and its adaption

to multi-core CPU environment is cumbersome, because it

requires determining and reproducing the exact order in which

CPU cores access the shared memory.

In the context of deterministic (i.e. replayable) SMP ex-

ecution, solutions on different abstraction levels have been

proposed. Flight Data Recorder [21] is a hardware extension

that enables deterministic replay for SMP environments, but

it is unclear what degree of concurrency they can handle

without significant performance degradation. Runtime system

level solutions, such as Respec [14] and CoreDet [4] ensure

deterministic execution of multi-threaded applications, but

their main weakness compared to VM level solutions is the

inability to provide fault tolerance for an entire software stack

(including the operating system), which is encompassed by

a virtual machine. SMP-ReVirt [10] exploits hardware page

protection to detect and accurately replay sharing between

virtual CPUs of a multi-core virtual machine, however, their

experiments report superlinear slowdown with the increasing

number of virtual CPUs.

Checkpoint-recovery based solutions such as Remus [7]

and Paratus [8] can overcome the problem of multi-core

execution by capturing the entire executions state of the

VM and transferring it to the backup machine. Although

most of the data transfer can be overlapped with speculative

execution, transferring updates to the backup machine at very

high frequency still comes with great performance overhead.

Kemari [20] follows a similar approach to Remus, but instead

of buffering output during speculative execution, it updates the

backup machine each time before the VM omits an outside

visible event.

Improving the performance of checkpoint-recovery based

VM replication has become an active research area recently.

Lu et al. [15] proposed fine-grained dirty region identification

to reduce the amount of data transferred during each replica-

tion epoch, while Zhu et al. [23] improved the performance

of log-dirty execution mode by reducing read- and predicting

write-page faults. All the above mentioned studies in the do-

main of checkpoint-recovery based VM replication, however,

deal only with uni-processor environments. By contrast, we

focus on multi-core virtual machines in conjunction with high-

performance interconnects.
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VII. CONCLUSIONS AND FUTURE WORK

Checkpoint-recovery based virtual machine replication is

attractive, it provides high availability for the entire software

stack executed in the VM, and it is inherently capable of

dealing with SMP configurations. However, it comes with

great overhead due to the large amount of state that needs

to be synchronized frequently between the primary and the

backup hosts.

In this paper we have analyzed various workloads from

their memory usage and I/O patterns, focusing particularly on

their behavior as the function of the increasing number of

CPUs in SMP virtual machines. We found that the number of

pages and the number of disk sectors written in a unit period

of time vary widely with the workloads under consideration.

Nevertheless, they often increase rapidly with the number of

CPUs in the system, imposing a growing demand for the

network bandwidth available for replication.

In order to eliminate VM downtime during the replication

we have proposed fine-grained copy-on-write, that retains the

original values only for pages that belong to the given update,

allowing the VM to proceed with its execution simultaneously

with the replication mechanism. To alleviate the overhead of

frequent synchronization, we have designed and implemented

VM replication over Infiniband, utilizing OS-bypass commu-

nication and Remote Direct Memory Access. Our experi-

ments showed that checkpoint-recovery based replication over

RDMA in conjunction with fine-grained COW offers scalable

fault-tolerance when applied to SMP virtual machines. For

example, the kernel compile workload on an RDMA replicated

VM with 8 vCPUs shows only 34% slowdown compared

to the native VM’s performance, while SPECweb’s Banking

workload achieves around 94% of the native score.

We have mentioned the potential impacts of the checkpoint

frequency on the achievable performance. Long running com-

putations without I/O would benefit from longer replication

epochs (i.e., lower checkpoint frequency), while those, sensi-

tive to network latency, require short epochs so that network

I/O can be released as soon as possible. In the future, we

intend to investigate how the optimal length of replication

epoch could be determined automatically, based on application

characteristics, such as memory usage and I/O patterns.
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