
An Efficient Process Live Migration Mechanism for

Load Balanced Distributed Virtual Environments

Balazs Gerofi∗, Hajime Fujita† and Yutaka Ishikawa∗†

∗ Graduate School of Information Science and Technology

The University of Tokyo

Tokyo, JAPAN
† Information Technology Center

The University of Tokyo

Tokyo, JAPAN

{bgerofi@il.is.s, hfujita@cc, ishikawa@is.s}.u-tokyo.ac.jp

Abstract—Distributed virtual environments (DVE), such as
multi-player online games and distributed simulations may in-
volve a massive amount of concurrent clients. Deploying dis-
tributed server architectures is currently the most prevalent
way of providing such large-scale services, where typically the
virtual space is divided into several distinct regions requiring each
server to handle only part of the virtual world. Inequalities in
client distribution may, however, cause certain servers to become
overloaded, which potentially degrades the interactivity of the
environment and thus renders the load balancing problem a
crucial issue. Prior research has shown several approaches for
avoiding uneven workload, nevertheless, addressing the problem
mainly at the application layer.

In this paper we focus on solving the DVE load balancing prob-
lem at the operating system level. We propose an efficient process
live migration mechanism, which is optimized for processes
maintaining a massive amount of network connections. Building
on top of it, we have implemented a decentralized middleware
that instruments process migration among the cluster nodes,
attempting to equalize loads on all machines. We demonstrate
the performance of the live migration mechanism on a real-
world multiplayer game server and show the behavior of the
load balancing engine through a realistic DVE simulation.

I. INTRODUCTION

In distributed virtual environments (DVE), for example,

massively multi-player online games (MMPOG), networked

virtual environments (NVE) [1] and distributed simulations

such as the High-Level Architecture (HLA) [2] thousands, or

even hundreds of thousands of concurrent entities, i.e. clients,

may interact with each other. To support such large-scale vir-

tual environments, typically, a distributed server infrastructure

is used, where the virtual space is partitioned into several

distinct zones requiring each server to manage only a portion

of the virtual world [3].

However, neither the interaction nor the movement of

clients in the virtual space is predictable, which from time

to time leads to high concentration of clients in certain

zones. This causes imbalanced load distribution among the

servers, adversely affecting the response time and damaging

the interactivity of the virtual environment.

Previous studies have yielded several approaches to balance

the workload among DVE servers, although addressing the

problem always at the application layer [3], [4]. Load bal-

ancing algorithms implemented at this abstraction level are

suffering from the following restrictions: Client migrations are

heavy, because client state has to be subtracted and transferred

between the zones and clients have to reconnect to the new

server; the load of a particular server maintaining a certain

zone can be directly migrated only to a server handling

a neighboring zone in the virtual space, imposing severe

constraints on the physical machines that may participate in

the load balancing procedure at the given period [5].

In this paper we investigate solving the load balancing

problem of a cluster distributed DVE server at the operating

system level. Our architecture is based on a single IP address

cluster, where the router broadcasts incoming packets to every

node [6], [7]. We are aiming at operating zone servers as the

migratable units of the system, thus requiring two important

conditions to be satisfied. On one hand, zone servers may

hold a massive amount of network connections that have to be

sustained transparently on the destination node, on the other

hand, they exhibit highly interactive behavior that must not

degrade during the migration.

We propose a process live migration mechanism that allows

continued execution of applications during most of the migra-

tion procedure and is optimized for processes that maintain

a massive amount of network connections. Our mechanism

tracks socket changes incrementally and transfers them in

an aggregated fashion, which we call incremental collective

socket migration. Both remote (client) and local (in-cluster)

connections are migratable, with the transition being fully

transparent from the peers’ point of view. Our technique offers

short process freeze time, the time while the application stays

unresponsive during the migration, therefore making it feasible

for highly interactive applications.

Due to their diverse utilization in DVE communications,

we support migrating both UDP and TCP sockets, where TCP

sockets can stay either in established or in listening states.

Prior research has reported that in-cluster socket migration

may cause incoming packet loss during the migration [8]. We

address the problem of preventing incoming packet loss by

exploiting the broadcast property of the network configuration.
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Fig. 1: DVE cluster server architecture.

Building upon process live migration, we have developed

a completely decentralized middleware layer, which monitors

the load of each node in the cluster and instruments process

migrations among the computers attempting to equalize the

loads on all machines.

We present performance measurements of the live migration

mechanism on OpenArena, an open source first-person shooter

(FPS) multi-player online game (which is an extension to

the Quake III game engine) [9]. Moreover, we demonstrate

experimental results on dynamically load balancing a realistic

DVE simulation, in which zone server processes maintain

a massive amount of client, as well as, local connections

such as MySQL database sessions. Characteristics of the

simulation, e.g., network communication properties, are based

on attributes of real-world MMPOGs.

The kernel level components of our prototype implementa-

tion are entirely comprised of kernel modules for Linux 2.6,

without any modifications to existing kernel code.

This paper makes the following contributions: an efficient

process live migration mechanism is designed and optimized

for processes maintaining a massive amount of network con-

nections; connections can be both client and in-cluster based

on TCP or UDP sockets; incoming packet loss during the mi-

gration is prevented by exploiting the broadcast configuration

of the router; and the migration mechanism is integrated into

a load balancing middleware providing operating system level

support for load balanced distributed virtual environments.

We begin with an architectural overview of the system

in Section II. Process live migration, incoming packet loss

prevention and socket migration are described in Section

III. The dynamic load balancing middleware is explained in

Section IV, implementation details are provided in Section V

and evaluation is given in Section VI. Section VII surveys

related work and Section VIII concludes the paper.

II. SYSTEM ARCHITECTURE AND ASSUMPTIONS

A. Cluster Configuration

Figure 1 summarizes the single IP address server architec-

ture, which consists of DVE and database servers. Each DVE

server node in the cluster is equipped with a public and a

local network interface. The same IP address is assigned to

the public interfaces and the local ones are used for in-cluster

communication. The router simply broadcasts each incoming

packet to all DVE server nodes [10]. Database servers may

Fig. 2: Software components of a server node.

store persistent state information, which is in turn accessed by

the zone server processes.

Unlike network address translation (NAT) based single IP

address clusters [11], where each time a connection is migrated

inside the cluster the router’s IP to MAC address mapping

needs to be updated [8], the benefit of the this configuration

is the combination of the single public IP address and the

broadcast property that allows migrating connections inside

the cluster without any extra effort on the router. For further

details on socket migration refer to Section III-C.

An issue immediately raised by the singe public IP config-

uration is how new connections are accepted. In our proposed

architecture DVE processes are identified by separate port

numbers, instead of separate IP addresses, ensuring that a

given port number is taken care by exactly one server node at

any time. Furthermore, in this paper we assume that files used

by DVE server processes are available on all server nodes,

either by having them replicated or if files are shared, through

a distributed file system.

B. Software Components

Figure 2 depicts the software components present on each

DVE server node. The components and their role in the system

are as follows:

mig mod: the process migration kernel module is an

extension of the BLCR [12] open-source checkpoint-

restart implementation, incorporating our changes for

supporting process live migration and TCP/UDP socket

migration;

cap trans mod: a kernel module handling network

packet capturing and address translation, that are part of

the incoming packet loss prevention and in-cluster socket

migration mechanisms, which will be explained in detail

in Section III-B and Section III-C, respectively.

transd: the translation daemon is a user-level daemon

process, that receives address translation requests and

consults the kernel for installing the appropriate filters.

It is present on all nodes inside the cluster that may be

involved in a local socket migration. The exact mecha-

nism will be described in Section III;

cond: the conductor daemon is another user-level dae-

mon process that monitors resource consumption of zone

server processes, communicates to other nodes’ conduc-

tors and instruments process migration for balancing load

among the server nodes. It is responsible for decisions
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such as initiating or accepting a process migration re-

quest.

migd: the process migration daemon is responsible for

actually carrying out migration requests, i.e. consulting

the kernel for executing a process checkpoint/restart op-

eration through the network. It works in tight co-operation

with the conductor process.

zone servi: each DVE zone server manages a partition of

the virtual space. Maintains multiple client connections

and may have connections with neighboring zone servers

in the virtual space or connections with other local

services such as database servers.

III. PROCESS AND SOCKET MIGRATION

A. Process Live Migration

Process live migration is the act of transferring a process

from a source node to a destination node while allowing the

program execution to proceed during most of the migration

procedure. One of the possible approaches is the so-called

precopy strategy [13], where the overall migration mechanism

is divided into two phases. The precopy phase lets the ap-

plication proceed with its execution while it asynchronously

transfers most of the process image. Subsequently, it tracks

and sends incremental updates of the data changed in memory

until a predefined condition is met. Finally, in the freeze phase,

the actual execution context is moved to the destination node,

during which only, the process stays unresponsive.

We have extended the Berkeley Lab Checkpoint/restart

library [12] for supporting process live migration. Our mecha-

nism is based on incremental checkpointing, i.e. incrementally

dumping address space changes in a helper thread, while let-

ting the application proceed with its original execution. Figure

3 illustrates the main steps of incremental checkpointing.

First, the application receives the signal of a live check-

pointing request. It clones a new thread and all the application

threads simply return from the signal handler (i.e. continue

their execution). The new thread enters the kernel via an

ioctl() call, transfers memory mappings to the destination

node and enters a loop of tracking address space changes

and incrementally checkpointing sockets. In each subsequent

iteration the loop timeout is decreased. When it reaches a

threshold of the timeout (which is currently 20 milliseconds)

it signals the application threads for final checkpointing.

Executing the signal handler, each application thread enters

the kernel, they synchronize on a barrier and a leader thread

is chosen based on setting an atomic variable. The leader

transfers open file table (note, that the contents of the files

are not transferred), file descriptors, where a final incremental

step of socket checkpointing is also performed, and thread

relations. Each thread then transfers registers, signal handlers

and its process/thread ID. They all enter a final barrier before

returning to userspace where they finish up the signal handler

and continue or finish their execution, according to the option

specified.

As for the destination node, the restarting steps performed

are the same with the regular BLCR mechanism [12], except

Fig. 3: Process live migration mechanism.

that the leader thread of the restarting process receives and

applies incremental updates on the process address space,

before the actual execution context gets migrated. Further

implementation specific aspects of the precopy strategy are

discussed in Section V-A.

Checkpointing can also be initiated directly from the kernel,

without notifying the application [14]. However, the signal

based approach offers a convenient property, such as that even

if a thread executes a system call and therefore may lock

important kernel structures, it will abandon the call and return

to userspace first. For further details on how socket migration

benefits from this, refer to Section V-C.

B. Prevention of Incoming Packet Loss

As we shall detail in Section III-C, restoring sockets on

the destination node is performed in the freeze-phase of the

process migration. Between disabling the socket on the source

node and restoring it on the destination, there is clearly a

certain period of time while the socket is not processing

incoming packets. These packets may get lost, requiring the

transport layer protocol to retransmit the data, thus adversely

affecting the interactivity of the application [8].

A mechanism for preventing incoming packet loss is real-

ized by capturing network packets, which match the migrating

socket, on the destination node while the connection is unre-

sponsive. In case of a TCP connection, before disabling the

socket on the source machine, remote IP, remote port and local

port number are transferred to the target node.
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After the TCP socket is successfully migrated, each packet

on the queue gets processed by the socket. For implementation

specific issues refer to Section V-B.

C. Incremental Collective Socket Migration

In this section we propose a socket migration mechanism,

which is optimized for processes that maintain a massive

amount of network connections.

The application’s file descriptor table is iterated during the

freeze-phase of the process migration procedure, where for

each open file the appropriate migration steps are performed.

BLCR supports regular files, which are re-opened on the

destination node, but sockets are simply omitted in the original

implementation.

We have extended BLCR for supporting socket migration.

Both UDP and TCP sockets are migratable, TCP sockets

possibly residing in established or in listening states. Socket

migration essentially, both in case of UDP and TCP sockets,

means disabling the socket (i.e. unhashing from lookup tables

and clearing its timers), subtracting state information, dumping

not yet processed incoming and outgoing packet queues,

transferring all data through the network and restoring it on

the destination node. Technical details of the socket migration

implementation are discussed in Section V-C.

Initially, we followed the natural way of iterating the file

descriptor table and migrating each socket one-by-one [15].

However, there are two reasons why this approach imposes

excessive performance overhead. On one hand, the network

bandwidth is not fully utilized because short periods of com-

putation (subtracting socket data) and network transmissions

are repeated numerous times. On the other hand, as we have

described earlier, socket migration is preceded by incoming

packet loss prevention on the destination node which intro-

duces further synchronizations between the source and the

destination machines.

As an improvement for this problem we have scattered the

file descriptor table iteration into three phases. In the first

phase, capturing details of all TCP connections are collected

and transferred to the destination node. When the capturing is

successfully enabled for all sockets, the second phase subtracts

state information and buffer queues of all connections into one

unified buffer that is transferred in one go to the destination

machine. Finally, BLCR’s regular file descriptor table iteration

is executed, but excluding the already processed network

connections.

Later, we noticed that subtracting socket changes incremen-

tally could also be performed during the precopy phase of

the migration, which significantly decreases the number of

bytes necessary to be transferred, because most of the socket

structures do not change when the loop timeout becomes short

enough during precopy. We maintain tracking structures for

connections and transfer only the changes in each subsequent

loop, including the final process freeze phase. In Section VI

we demonstrate the efficiency of the various improvements.

In-cluster Connection Migration: Local (in-cluster) connec-

tions demand special attention, because the local IP address

of the migrating socket changes after the migration. This issue

is overcome by enabling a translation filter on the peer’s host

and is demonstrated through the following example scenario.

Let us consider the situation, where process P on host IP1

is migrated to the node IP2, but it maintains a TCP connection

with a process running on host IP3. Steps are performed as

follows. First, IP1 contacts IP2 to request packet capturing

from IP3. Then, IP3 enables a translation filter (an in-kernel

mechanism on a lower level than the socket processing, which

is described in detail in Section V-D) for rewriting the target

IP address of packets that are transmitted to IP1 (the original

address of the connection) so that they will be sent to IP2

instead. For incoming packets, the filter exhibits the opposite

behavior, i.e. packets that arrive from IP2 will be modified

and the source IP address is rewritten to IP1. The socket is

then migrated to IP2, the captured packets are reinjected and

it continues communicating to IP3, without IP3 noticing the

transition.

IV. DYNAMIC LOAD-BALANCING

We developed a decentralized middleware, that monitors

resource consumption of the server nodes and instruments pro-

cess migration in order to load balance the cluster. Machines

may join and leave at any time.

When a DVE node is initialized, the conductor daemon

process scans the local (in-cluster) network looking for other

computers that play the same role in the system. At the same

time it answers discovery messages from other hosts that may

be also searching for DVE server nodes.

Important roles of the conductor daemon are monitoring the

node’s condition and updating the information received from

other machines. For the monitoring purpose the conductor

retrieves load information via the atop utility [16]. Each node

also keeps track of the load status of other nodes based on

the latest information they sent, practically maintaining an

approximation on the overall load of the whole cluster.

Our load balancing algorithm is sender initiated, meaning

that overloaded nodes initiate process migrations to lightly

loaded machines. Typically, a dynamic load balancing algo-

rithm can be further specified by four important properties:

a transfer policy, a location policy, a selection policy and an

information policy [17]. In the next subsections we describe

our load balancing mechanism in the context of these terms.

A. Transfer Policy

The transfer policy determines whether a node is in a

suitable state to participate in a migration.

On the sender side (i.e. the node from which the process is

migrated) our transfer policy is threshold driven, which means

that a node enters a migration initiator state when the local load

is over a critical threshold or when the difference between the

node’s load and the approximated overall cluster load exceeds

a certain value.

The receiver side (i.e. the node to where a process is

migrated) enters the migrating state based on a two-phase

commit protocol with the sender, allowing to receive only one
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migration at a given time. Note, that the actual receiver is

chosen based on the location policy and the transfer policy

only determines whether or not the chosen receiver is partic-

ipating in the migration. After the migration is successfully

finished, both nodes enter a calm-down period for stabilizing

the indicators of their resource consumption.

B. Location Policy

The location policy’s responsibility is to find a suitable node

where a process can be migrated.

Our location policy takes two attributes into account, the

current condition of the local node and the approximation of

the overall cluster load. It attempts to find a node in its local

peer database that has a load index which is on the opposite

side of the cluster average. The key objective of this step is

to find a node that is nearly as much lighter as the local node

is heavier compared to the overall average, which results in

both nodes’ load converging to the cluster wide average after

the migration. Once a feasible node is found, the migration is

negotiated with the destination.

C. Selection Policy

The selection policy decides which process has to be

migrated when a node is overloaded.

Our selection policy is also based on two attributes. It

tries to find a process that consumes approximately as much

CPU time as the difference between the local node and

the approximated average of the cluster. Once again, this

approach is driven by the idea of bringing both the sender

and the receiver nodes’ load closer to the approximated cluster

average.

D. Information Policy

The information policy decides when information about

other nodes in the system is collected.

We follow a periodic policy, having each node broadcasting

its load information periodically to all nodes in the cluster,

which also serves as a heartbeat message denoting the node’s

presence in the system. Note that mechanisms for scalable

broadcasting, such as utilizing spanning-trees, have been pro-

posed [18], and are out of the scope of this paper.

V. IMPLEMENTATION

We next provide implementation details on process live

migration, incoming packet loss prevention, socket migration

and local address translation.

A. Process Live Migration

Process live migration following the precopy strategy is

built upon the mechanism of tracking dirty pages between

subsequent updates. Currently, two main approaches exist, one

manipulates the write bit of the page-table entries (PTE), while

the other utilizes the dirty bit [19].

We opted for the approach of using the dirty bit and relaxing

the swap facility, which is reportedly not a major restriction

in environments with highly interactive applications, because

swapping is not used anyway [19]. Utilizing directly the dirty

bit allows us having the dirty page tracking mechanism entirely

implemented in a kernel module, without any changes to

existing kernel code.

However, besides tracking dirty pages that are already part

of the process address space, another memory management

issue that arises is the changes in the address space itself.

Namely, insertions (i.e. memory allocations), modifications or

removals (i.e. freeing) of continuous memory areas that are

mapped in to the process address space. The Linux memory

management system maintains mapped in memory areas as a

linked list of vm area struct structures.

In order to track and reflect memory area changes we

maintain a linked list of our own tracking structures that store

the memory area properties of the last incremental loop. In

each subsequent loop this list and the actual vm area struct

list are compared and the tracking list is updated accordingly.

B. Prevention of Incoming Packet Loss

As we described earlier, before a TCP socket is migrated the

destination node enables a packet capturing feature in order

to prevent losing packets that might arrive while the socket is

unresponsive.

The actual capturing on the destination node is performed

by a Linux Netfilter hook [20]. Netfilter provides a facility

to attach arbitrary functions to certain phases of the network

stack processing. The capturing feature takes place on the

NF INET LOCAL IN hook, where packets that are delivered

to the localhost appear.

The hook function collects packets that match the cor-

responding socket’s remote IP, remote port and local port

numbers. It also checks TCP sequence numbers and stores

duplicated packets only once.

After the TCP socket is successfully migrated, the re-

injection phase iterates the capture queue and submits each

packet to the network stack by calling the netfilter’s okfn()

(which in case of IPv4 is the ip rcv finish() function).

C. Socket Migration

1) TCP: The initial step of migrating a TCP socket is

unhashing it from both the ehash and bhash kernel hashtables

and clearing the retransmission timer of the write queue.

Besides the main socket data structures, an important issue

is in-flight packets. The Linux kernel maintains several socket

buffer queues for representing TCP connections. The three

most important ones are the write queue for outgoing packets,

the receive queue for incoming packets and the out-of-order

queue for packets that arrived with sequence numbers which

do not fit into the expected sequence window. However, there

are two other queues which have to be taken into account.

The backlog queue, that holds packets while a TCP socket

is locked and the prequeue, that enables the Linux fast-path

receiving mechanism [21].

The benefit of signal based checkpointing notification is the

fact, that the process neither locks the socket nor performs

fast-path receiving, due to its return to userspace. This ensures

that both the backlog and the prequeue are empty during the
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process freeze phase and therefore copying the write queue,

the receive queue and the out-of-order queue is sufficient.

On the other hand, the socket tracking mechanism during the

precopy phase simply omits sockets that are locked or being

used for fast-path receiving, leaving the checkpoint either for

the subsequent loop or the final process freeze phase.

Each time a connection is checkpointed and transferred

to the destination, the target node simply stores the data.

During the freeze phase it only allocates a new socket structure

and applies the changes to the relevant fields of the socket

representation based on the latest update. It allocates receive,

write and out-of-order queues, updates packets and re-inserts

them. Finally, the socket is rehashed for both the ehash and

bhash hashtables, the retransmission timer is restarted and the

socket is attached to the right file descriptor of the process.

Adjustment of TCP timestamps on the destination node

is inevitable in order to preserve data transfer seamlessly

even after the migration. The Linux TCP implementation uses

kernel jiffies for timestamps which is a counter increased

approximately in every 10 milliseconds. Different nodes can

have different jiffies.

Timestamps are recorded during packet transmission and

reception and they also form the basis of several TCP related

algorithms. Round-trip time measurement or congestion win-

dow size adjustment are some of the examples. In order to keep

these algorithms working appropriately after the migration

occurs, timestamps of the socket structures and buffers have

to be updated on the destination node. We overcome this

problem by recording the jiffies of the source node during

the checkpoint, computing the difference on the destination

node and adjusting the timestamps of each affected structure

accordingly.

2) UDP: Migrating UDP sockets is considerably easier

than TCP. Besides the main UDP socket data structure, we

only track and transfer the socket buffers residing on the

receive queue.

There is an issue, however, that is worth noting with respect

to UDP server sockets, that are bound to a local port. Each

UDP server socket has to be unhashed before the migration

takes place and consequently it has to be rehashed on the

destination node.

D. Local Address Translation

Local address translation, which is enabled on the (in-

cluster) peer’s endpoint of a migrated connection also

utilizes the Linux Netfilter facility [20]. There are two

hook functions registered for this purpose, one resides on

NF INET LOCAL IN, for translating incoming packets, the

other is attached to NF INET LOCAL OUT. Incoming pack-

ets’ source address and outgoing packets’ destination address

are rewritten, respectively.

We encountered two technical issues that are worth men-

tioning. There is a Linux IP destination cache entry assigned

to each outgoing packet, that is inherited from the socket

the packet originates from [21]. Since we do not modify the

socket details on the peer’s host, this structure holds the old
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Fig. 4: Packet delay due to migration (OpenArena server, 24

clients).

destination IP address, resulting in the packet’s transmission

to the old destination. This has been overcome by creating an

accurate destination cache entry and besides rewriting the IP

header’s destination address, the cache entry is also replaced.

Another issue was the TCP checksum, that needs to be

updated in order to reflect the modified IP header.

VI. EVALUATION

A. Experimental Framework

Experiments were conducted on a dedicated single IP

address cluster with five DVE server nodes and a MySQL

database server. Each node is equipped with a 2.4GHz Dual-

Core AMD Opteron processor and two gigabytes of RAM. All

machines are interconnected by a Gigabit Ethernet network for

in-cluster communication and each DVE server has a Gigabit

Ethernet public interface to which the router broadcasts in-

coming packets.

B. OpenArena

OpenArena is an open source first-person shooter (FPS)

multi-player online game based on the Quake III engine [9].

We evaluate our migration mechanism through live migrat-

ing an OpenArena server with 24 clients being involved.

OpenArena uses UDP protocol for server-client communi-

cation and the default update frequency is 20 messages per

second.

We experience a 20 milliseconds downtime of the server

process execution during the migration and assess the imposed

delay at the network packet level by capturing server packets

with tcpdump. Figure 4 shows the time difference between the

last packet of the source and the first packet of the destination

nodes. One of the key observations is the characteristic of

the regular execution, which updates the clients in every

50 milliseconds (i.e., 20 updates per sec). Focusing on the

migration, the imposed delay compared to the expected packet
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(a) Initial virtual space partitioning and the
main directions of the clients’ movement dur-
ing the simulation.
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300 400 500 600 700 800 900
10

15

20

25

30

35

40

Simulation time (sec)

Nu
m

be
r o

f D
VE

 zo
ne

 se
rv

er
 p

ro
ce

ss
es

node1

node2

node3

node4

node5

(d) Zone server process distribution among nodes with load-balancing
enabled.

0 100 200 300 400 500 600 700 800 900
60

65

70

75

80

85

90

95

100

Simulation time (sec)

C
P

U
 c

on
su

m
pt

io
n 

(%
)

node1

node2

node3

node4

node5

(e) CPU consumption per node without load-balancing.
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(f) CPU consumption per node with load-balancing enabled.

Fig. 5: Process freeze time, socket data transferred, zone server processes and load distribution among DVE server nodes.
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transmission is approximately 25 milliseconds, which remains

completely transparent from the clients’ point of view.

C. DVE Simulation Environment

We have implemented a DVE simulation with characteristics

resembling real-world multi-player online games. The server

process updates clients approximately 20 times per second

(which is the default setting of the Quake III engine) with

a message size of 256 bytes, an average value for MMPOGs

as reported [22], [23].

The virtual space is partitioned into one hundred zones

following a ten times ten grid shape. Each DVE server node

is initially assigned to 20 zones, i.e. there are 20 zone server

processes running on each of them. Figure 5a depicts the

zone arrangement and the initial assignment to server nodes.

Zone servers (processes) all maintain a MySQL session with

the local database server, where properties of the virtual

world are repeatedly updated. They perform the so-called real-

time loop [24], which continuously processes events from

clients, governs interactions among them and responds state

updates. CPU consumption of a zone server process grows

proportionally with the number of clients present in the given

zone. We currently do not maintain direct connections among

the zone servers. With careful synchronization among the hosts

involved, local socket migration could be performed for such

connections as well, which we intend to address as part of our

future work.

There are 10,000 clients participating in our DVE simulation

initially following a uniform distribution among the zones.

The overall experiment takes approximately 15 minutes, in

which clients from the middle regions of the virtual space are

instructed to gradually move into the directions of the up-left

and down-right corners. Figure 5a also shows the direction

of the high-level movement of clients. Reportedly, this sort

of clustering of entities in large-scale environments is very

common [24]. We log and analyze the load distribution of the

DVE servers, both with and without load balancing.

D. DVE Experimental Results

Measurements were conducted to assess live migration pro-

cess freeze time of zone servers used in our DVE simulation.

We show how collective and incremental socket migration (de-

scribed in Section III-C) improves live migration performance.

We migrate zone server processes with different number of

client connections, where the number of clients varies from

16 up to 1024. Each server also maintains a local MySQL

session.

Figure 5b shows experimental results on live migration

worst case process freeze time in case of iterative, collec-

tive and incremental collective socket migration. Furthermore,

Figure 5c depicts the worst case (largest) amount of bytes

transferred during the process freeze phase according to the

number of maintained connections.

One of the key observations is that process freeze time

in case of iterative socket migration grows proportionally

with the number of bytes transferred, however this is not

case when collective and incremental socket migration is

enabled. Migrating sockets in an aggregated fashion helps

better utilizing the network bandwidth, while incrementally

tracking changes significantly decreases the number of bytes

representing the connections. As it is shown migrating over

1000 connections results in less than 40 milliseconds down-

time, which we believe is short enough even for a highly

interactive application.

Resource consumption during the simulation has been

logged to assess the efficiency of the load balancing middle-

ware. Figure 5e depicts the load distribution of nodes during

the simulation with load balancing disabled. It shows that

node1 and node5, the ones responsible for the upper and lower

regions of the virtual space suffer significant load concentra-

tion as the simulation progresses, eventually reaching a phase

of constantly consuming over 95% of their CPUs. Node3 and

node4, on the other hand, gradually become less and less

loaded, eventually falling below 65% of CPU utilization.

As Figure 5f demonstrates, with load balancing enabled the

system automatically reassigns (i.e. live migrates) zone server

from the nodes responsible for the upper and lower regions to

servers originally maintaining the middle regions of the virtual

space resulting in a much lighter imbalance in their resource

consumption.

An interesting aspect, changes in the number of zones

each particular node maintains, is shown on Figure 5d. As

it depicts part of the server processes ran on node1 and node5

were relocated, i.e. the number of processes decreased, to

nodes such as node3 and node4, where in turn the number

of processes increased.

VII. RELATED WORK

A. Connection Migration

Connection migration has been subject of many prior stud-

ies. NEC corp. proposed transferring TCP sessions between

nodes for a distributed Web Server architecture, assigning each

TCP session to a virtual IP address which is reported to cause

loss of incoming packets [8].

SockMi [25] offers TCP migration with IP layer forwarding

between the source and the target node, therefore it is not

feasible for decoupling a process entirely from its source

machine. Furthermore, it requires application specific support

for explicitly exporting and importing connections. Tcpcp [26]

provides similar capabilities to SockMi, where the source

node establishes an IP layer forwarding mechanism to the

destination after the migration takes place. However, Tcpcp

is implemented as a kernel patch. Earlier forwarding based

solutions were also proposed in MobileIP [27] and MSOCKS

[28].

TCP Migrate option [29] is an extension to the TCP

protocol in order to support session migration. The transfer

can be initiated by sending a special migrate SYN packet

with a previously arranged token in order to reestablish the

connection. A major drawback of this solution is that both ends

of the connection need the extension to the protocol, which

forms a strict limitation on the supported client machines.
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Reliable sockets (ROCKS) and reliable packets (RACKS)

[30] both offer transparent network connection mobility using

only user-level mechanisms. They can detect a connection

failure, preserve the endpoint of a failed connection in a

suspended state and automatically reconnect. However, they

both require the extended socket library on each side of the

connection.

B. Process Migration

Process migration has been a hot topic in system research

and several distributed operating systems offer the capability

of migrating processes. V-System [13], Amoeba [31], Mach

[32], Sprite [33], and MOSIX [34] are some of the examples,

although connection migration is supported in a very limited

way. Amoeba provides connection migration, but it restricts

the implementation for dealing explicitly with RPC commu-

nications, which are layered on the lower level FLIP protocol

[35] instead of TCP/IP.

BLCR [12] is an open source checkpoint-restart library for

Linux, which can be used for migrating processes. BLCR

currently does not support either connection migration or

incrementally dumping address space changes.

Zap [36] implements a thin virtualization layer on top of

the operating system which provides the facility of migrating

a group of processes, called pods. Zap’s VNAT mechanism for

virtualizing network resources supports connection migration.

Its main drawback is that it requires the Zap VNAT mechanism

to be present also on the client side in order to map the virtual

address to the new remote physical address after the migration.

Incremental checkpoint/restart has been proposed by several

recent studies [14], [19]. While they all offer the benefit of

process live migration, none of them deals with sockets, there-

fore lacking the ability of migrating processes that maintain

network connections.

C. Virtual Machine Migration

Virtual machine (VM) migration is an actively researched

topic in recent years. Solutions based on Xen [37], KVM [38]

and VMware’s VMotion [39] provide also with the ability of

live migrating VM instances.

Due to its clear separation of the OS from the underlying

hardware VM migration naturally eliminates the problem of

”residual dependencies”, which is an advantage comparing

to migration on the process level [40]. While several Single

System Image (SSI) systems leave residual dependencies on

the source node after a process is migrated, such as network

connections are routed through, or certain system calls are

still forwarded back to the source node, our proposed solution

transfers all the dependencies of the process.

It has also been shown that VM live migration keeping

network connections alive gives comparable service downtime

to process level live migration [37]. However, no results are

disclosed for the case where massive amount of connections

are involved.

On the other hand, taking zone server as the migratable unit

of the system, the disadvantage of VM based solutions lies in

the fact that each server would have to reside in its own VM

allocating extra resources.

D. Load balancing Distributed Virtual Environments

Prior studies have yielded several approaches to load bal-

ancing server architectures in Distributed Virtual Environments

[3], [4], [5], [24]. These techniques, however, are all concerned

with application layer solutions and none of them deals with

support on operating system level.

To the best of our knowledge, only MOSIX [34] has been

considered so far for managing cluster resources at the OS

level in the domain of game server hosting [41]. However,

involvement of the MOSIX home-node in network communi-

cation even after process migration and the lack of support

for live migrating multithreaded applications makes MOSIX’

application cumbersome for interactive applications such as

DVE servers.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a novel operating system level approach to

automatically load balancing distributed virtual environments

has been proposed.

We have presented a process live migration mechanism that

is optimized for applications maintaining a massive amount of

network connections. No modificatios are required either to the

TCP protocol or to the client side network stack. Incremental

collective socket migration, a technique that tracks socket

changes and transfers them in an aggregated fashion, offers

acceptable process freeze time even for highly interactive ap-

plications. A mechanism for preventing incoming packet loss

during the migration has also been proposed. Experimental

results on OpenArena, an FPS multiplayer online game server

showed that the transition remains completely transparent

from the clients’ point of view. Moreover, we demonstrated

through processes that resemble realistic DVE communication

properties, that migrating over 1000 TCP connections can

be performed with keeping the process freeze time less than

40ms.

Exploiting process live migration, we have developed a

decentralized middleware that instruments process migration

among the cluster nodes at the operating system level. We have

shown that it succeeds in equalizing imbalances in the load of

a set of machines participating in a DVE simulation, leaving

the load balancing problem entirely transparent for application

developers. Our prototype implementation is based on Linux

2.6 with kernel level components entirely implemented in

kernel modules, making their deployment process easy.

Process live migration that keeps network connections alive

could be utilized in several other scenarios, such as addressing

fault tolerance or power management. In the future we intend

to investigate further use cases. Multimedia streaming, among

others, is one of our main future perspectives.
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