
Partially Separated Page Tables for Efficient
Operating System Assisted Hierarchical Memory

Management on Heterogeneous Architectures

Balazs Gerofi∗, Akio Shimada∗, Atsushi Hori∗ and Yutaka Ishikawa∗†
∗ RIKEN Advanced Institute for Computational Science

Kobe, JAPAN
† Graduate School of Information Science and Technology

The University of Tokyo

Tokyo, JAPAN
bgerofi@riken.jp, a-shimada@riken.jp, ahori@riken.jp, ishikawa@is.s.u-tokyo.ac.jp

Abstract—Heterogeneous architectures, where a multicore pro-
cessor is accompanied with a large number of simpler, but
more power-efficient CPU cores optimized for parallel workloads,
are receiving a lot of attention recently. At present, these co-
processors, such as the Intel R© Xeon PhiTM product family,
come with limited on-board memory, which requires partitioning
computational problems manually into pieces that can fit into
the device’s RAM, as well as efficiently overlapping computation
and communication. In this paper we propose an application
transparent, operating system (OS) assisted hierarchical memory
management system, where the OS orchestrates data movement
between the host and the device and updates the process
virtual memory address space accordingly. We identify the main
scalability issues of frequent address space changes, such as
the increasing price of TLB invalidations with the growing
number of CPU cores, and propose partially separated page
tables with address-range CPU masks to overcome the problem.
With partially separated page tables each core maintains its
own set of mappings of the computation area, enabling the
OS to perform address space updates in a scalable manner,
and involve a particular CPU core in TLB invalidation only if
it is absolutely necessary. Furthermore, we propose dedicated
data movement cores in order to efficiently overlap computation
and communication. We provide experimental results on stencil
computation, a common HPC kernel, and show that OS assisted
memory management has the potential for scalable transparent
data movement.

I. INTRODUCTION

Although Moore’s Law continues to drive the number of

transistors per square mm, reducing voltage in proportion to

transistor size, so that the energy per operation would be

dropping fast enough to compensate for the increased density,

is no longer feasible. As a result of such transition, heteroge-

neous architectures are becoming widespread. In a heteroge-

neous configuration, multicore processors, which implement a

handful of complex cores that are optimized for fast single-

thread performance, are accompanied with a large number of

simpler, and slower, but much more power-efficient cores that

are optimized for throughput-oriented parallel workloads [1].

The Intel R© Xeon PhiTM product family is Intel’s latest

design targeted for processing highly parallel workloads. The

Pre-Production Intel R© Xeon PhiTM card, used in this paper,

provides a single chip with a large number of x86 cores1,

with each processor core supporting a multithreading depth of

four. The chip also includes coherent L1 and L2 caches and the

inter-processor network is a bidirectional ring [2]. Currently,

the Intel R© Xeon PhiTM is implemented on a PCI card, and

has its own on-board memory, connected to the host memory

through PCI DMA operations. This architecture is shown in

Figure 1.

Fig. 1: Architectural overview of a multicore host computer
equipped with a manycore co-processor, connected through
PCI Express.

The on-board memory is faster than the one in the host, but

it is significantly smaller. Only a few Gigabytes on the card,

as opposed to the 64 GBs residing in the host machine. This

limited on-board memory requires partitioning computational

problems into pieces that can fit into device’s RAM. At this

time, it is the programmer’s responsibility to partition larger

computational problems into smaller pieces that can run on

a co-processor and achieve high performance by efficiently

overlapping computation and communication.

However, the Intel R© Xeon PhiTM co-processor features a

standard memory management unit (MMU), which can be

utilized to provide much larger amount of virtual memory than

1At the time of writing this paper, the exact number of CPU cores on the
Pre-Production Intel R© Xeon PhiTM is confidential and the authors are under
non-disclosure agreement.

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-0-7695-4996-5/13 $26.00 © 2013 IEEE

DOI 10.1109/CCGrid.2013.59

360

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

that is physically available. Just like on the multicore host,

the operating system keeps track of the physical memory and

manages the mapping from virtual to physical addresses. Thus,

the OS running on the manycore unit can transparently move

data between the card and the host, similarly how swapping

is performed in a traditional OS.

Nevertheless, the scenario of manycore co-processor based

memory management is considerably different than regular

disk based swapping. On one hand, accessing the host memory

from the co-processor is substantially faster than accessing

a disk on the host, which notably reduces the cost of data

movement itself. On the other hand, the large number of

cores in the co-processor introduce scalability issues in the

regular process address space model in case the virtual to

physical mappings are frequently updated. In modern CPU

architectures, which come with a Translation Lookaside Buffer

(TLB) to cache memory translations, when a virtual address

is remapped to a new physical page, the corresponding TLB

entry has to be invalidated on each CPU core that might cache

the previous mapping. Because in the regular process address

space model [3], such as in Linux [4], the same set of page

tables are used on all cores, the invalidation operation has

to be performed on every CPU cores in the given address

space. However, frequent remappings happening concurrently

on all cores render the cost of TLB invalidation extremely

high. Notice, however, that in many of the HPC applications

(such as in stencil computation kernels), CPU cores operate

mostly on their private area of the data grid and share only a

relatively small fraction for communication.

Driven by this observation, we propose partially separated
page tables (PSPT) to address the TLB problem. With PSPT

each thread, thus CPU core, maintains its own set of page

tables of the computation area, i.e., the memory area that is

modified during computation, filling in a virtual to physical

mapping only if the given core operates on the particular

address. This enables the OS to perform address space updates

only on affected cores when remapping a virtual address to a

different physical page, and involve a particular CPU core in

TLB invalidation only if it is absolutely necessary. To be able

to find affected CPUs efficiently, we accompany PSPT with

address-range CPU bitmask, which are updated consistently

with the per-core page tables.

Moreover, because there is a large number of cores available

on the co-processor board, some may be utilized for special

purposes, such as control of data movement. We propose ded-
icated data movement cores that perform pre-fetch operations

from the host memory so that computation and communication

can be efficiently overlapped. We provide preliminary results

on a standard stencil computation kernel and show that OS

assisted memory management is capable of transparent data

movement in a scalable manner. For instance, providing twice

as much of virtual memory than that is available physically

comes with an average of less than 9% runtime overhead when

scaling up to 128 application threads.

The rest of this paper is organized as follows, Section II

provides background information, Section III discusses the

design of hierarchical memory management, including par-

tially separated page tables. Section IV provides experimental

results, Section V surveys related work, and finally, Section

VI concludes the paper.

II. BACKGROUND

RIKEN Advanced Institute of Computational Science and

the Information Technology Center at the University of Tokyo

have been designing and developing a new scalable system

software stack for a new heterogeneous supercomputer con-

sisting of server-grade host machines equipped with manycore

co-processors.

Fig. 2: Main components of Interface for Heterogeneous
Kernels (IHK) and the manycore kernel.

Figure 2 shows the main components of the proposed

software stack. The Interface for Heterogeneous Kernels (IHK)

is designed to hide hardware-specific functions and provide

kernel programming interfaces to operating system developers.

The IHK resides in both the host and manycore units. IHK on

the host is currently implemented as a Linux device driver. The

inter-kernel communication (IKC) layer performs data transfer

and signal notification between the host and the manycore

CPUs.

We have already explored various aspects of a co-processor

based system, such as scalable communication facility with

direct data transfer between the co-processors [5], possible

file I/O mechanisms [6], and a new process model aiming at

efficient intra-node communication [7].

We are currently developing a lightweight kernel based OS

targeting manycore CPUs over the IHK, and at the same

time, design considerations of a hybrid execution model over

the co-processor and the host multicore are also undertaken.

The minimalistic kernel is designed with taking the following

properties into account:

• On board memory of the co-processor is relatively small,

thus, only very necessary services are provided by the

kernel.

• CPU caches are also smaller, therefore, heavy system

calls are shipped to and executed on the host.

361

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

III. DESIGN

A. Execution Model

In spite of the current architecture of manycore co-processor

based systems, where the co-processor is attached to a host

machine (as shown in Figure 1), presumably, in the future

the focus will shift towards the co-processor itself, possibly

placing the host machine more and more into the background.

Moreover, projections for future exascale configurations sug-

gest that not only the number of cores per node, but also the

number of nodes per system will increase dramatically. Thus,

we are designing an execution model taking such transitions

into account.

In order to realize scalable communication among processes

running on future systems, we believe that sharing the ad-

dress space among multiple cores inside a node, i.e., running

a single, multi-threaded process (think of hybrid MPI and

OpenMP programming), or at most a few, is the only viable

approach compared to assigning separate processes to each

core. Therefore, we are focusing on shared address spaces

inside a node.

Figure 3 depicts the execution model under consideration.

The application will be executed in a co-operative fashion

between the host and the co-processor and part of the applica-

tion memory (see below for further clarification) is accessible

from both sides. The programmer can indicate her preference

regarding where (on the host or on the co-processor) a certain

part of the code should be executed.

Fig. 3: Co-processor based execution model.

For instance, highly parallel sections of the code will be

executed on the co-processor, but parts of the code that require

good serial performance can be moved to the more complex

cores of the host. However, due to the architecture trend

mentioned above, the application is primarily executed on the

co-processor and the co-processor’s memory behaves akin to

another level in the memory hierarchy.

Certain memory areas (which we call global) of the ap-

plication will be transparently available on both the host and

the co-processor. Such memory areas need to be allocated and

freed through special library functions, malloc global() and

free global(), respectively. The runtime system will provide

these functions and it also ensures consistency for concurrent

execution on the co-processor and the host CPU. As for

this paper, we are concerned with the memory management

system, that moves data between the host and the manycore

co-processor’s memory in an application transparent fashion.

B. Application Memory Layout
The application memory layout, with respect to the physical

memory available on the host and the co-processor board is

shown in Figure 4.

Fig. 4: Memory layout of an application running on the
manycore co-processor and the multicore host.

The left side of the figure illustrates the physical memory

attached to the host CPU, while the right side represents

the physical memory on the manycore co-processor. The

application virtual address space is primarily maintained by the

co-processors and as seen partially mapped onto the physical

memory of the manycore board. However, the rest of the

address space is stored in the host memory. The operating

system kernel running on the co-processor is responsible to

initiate data transfer between the host memory and the co-

processor’s RAM.
When the physical memory on the co-processor is almost

fully utilized the kernel selects victim pages and moves the

content to the host’s memory. Data movement happens com-

pletely transparently from the user’s point of view, essentially

providing the illusion of much larger memory than the actual

physical amount attached to the co-processor.
In order to retain full control over the data transfer between

the co-processor and the host, we have integrated data move-

ment directly into the virtual memory subsystem of our kernel

and orchestrate data movement manually by the DMA engine

residing on the co-processor. While this requires low level

modifications to the operating system organization, this way

we can eliminate any unnecessary software overhead both in

terms of CPU consumption and additional memory footprint.

C. Partially Separated Page Tables
As it has been already mentioned above, modern CPUs

cache virtual to physical mappings in the TLB. In a manycore

362

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

(a) Regular Page Tables (b) Partially Separated Page Tables

Fig. 5: Comparison of regular and partially separated page tables with respect to TLB invalidations. Dashed boxes
represent per-core private page tables, and dashed red lines denote TLB invalidations.

CPU configuration each CPU core has its own TLB and when

a virtual to physical mapping is modified, it has to be ensured

that all of the affected CPU cores invalidate their TLB entry for

the given memory address in order to avoid using a previously

cached translation.

In the regular page table configuration, where all CPU cores

in an address space refer to the same set of page tables, every

time a virtual to physical translation is updated all CPU cores’

TLB are invalidated. In traditional operating system kernels,

such as Linux, the TLB invalidation is done by means of

looping through the CPU cores and sending an Inter-processor

Interrupt (IPI). This configuration is shown in Figure 5a, where

red dashed lines indicate IPIs.

We have identified that with a large number of cores concur-

rently causing frequent TLB invalidations such as in a scenario

where the OS often modifies virtual to physical mappings,

the IPI loop becomes extremely expensive. Note, that on

certain multicore architectures multicast IPI is supported by

the hardware, however, the Pre-Production Intel R© Xeon PhiTM

does not provide with such capability.

As mentioned earlier, in case of many HPC applications,

such as stencil computation kernels, the computation area

is usually divided among CPU cores and only a relatively

small part of the memory is utilized for communication.

Consequently, CPU cores do not actually access the entire

computation area and when an address mapping is modified

most of the CPU cores are not affected. However, the informa-

tion of which cores’ TLB have to be invalidated is not available

due to the centralized book-keeping of address translations in

the address space wise page tables.

In order to overcome this problem we propose partially
separated page tables (PSPT), which is shown in Figure 5b.

In PSPT each core has its own last level page table, i.e.,

Page Global Directory (PGD). Kernel-space and regular user-

space mappings point to the same Page Middle Directories

(PMD), and thus, use the same PTEs to define the address

space (regular boxes in the top of Figure 5b). However, for

the computation area per-core private page tables are used

(denoted by dashed boxes in Figure 5b). There are multiple

benefits of such arrangement. First, each CPU core sets

up PTEs exclusively for addresses that it actually accesses.

Second, when a virtual to physical mapping is changed, it

can be precisely determined which cores’ TLB might be

affected, because only the ones which have a valid PTE for

the particular address may have cached a translation. Consider

the red dashed lines in Figure 5b as opposed to Figure 5a for

regular page tables. As shown, PTE invalidation in case of

regular page tables require sending an IPI for each core (Figure

5a), while PSPT invalidates the TLB only on Core0 and Core1
(Figure 5b). Third, synchronization (particularly, holding the

proper locks for page table modifications) is performed only

between affected cores, eliminating coarse grained, address

space wise locks that are often utilized in traditional operating

system kernels [8].

It is also worth pointing out, that the private fashion of PTEs

does not imply that mappings are different, namely, private

PTEs for the same virtual address on different cores define the

same virtual to physical translation. When a page fault occurs,

the faulting core first consults other CPU cores’ page tables

and copies a PTE if there is any valid mapping for the given

address. Also, when a virtual address is unmapped, all CPU

cores’ page table, which map the address, need to be modified

accordingly. This requires careful synchronization during page

table updates, but the price of such activity is much less than

constant address space wise TLB invalidations.

Notice, that referring other cores’ page tables requires a

linear search over all CPUs in the given address space. In order

to speed up this search we maintain CPU bitmasks for address

ranges. When a core sets a translation for a particular virtual

address in its page tables, it also updates the corresponding

bitmask. During TLB shootdown, or PTE modifications, only

page tables for which the corresponding core is set in the given

address’ cpumask are iterated. This is shown in Figure 5b as

CPU bitmask, written in grey.

363

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

(a) Regular Page Tables (b) Partially Separated Page Tables

Fig. 6: Cost breakdown of concurrent address remappings (page faults) with regular and partially separated page
tables. Application is 2D heat diffusion stencil computation, data movement is performed in a synchronous fashion in the
page fault handler, computation area is 2GB and the physical memory on the co-processor is limited to 1GB.

D. Dedicated Data Movement Cores

Various recent studies have argued over the benefits of

dedicating CPU cores for specific operating system tasks [9],

[10]. In a dynamically changing address space, where data is

constantly moved back and forth between the host and the co-

processor’s memory, one of the important design goals is to

reduce page faults on application cores as much as possible,

i.e., to transparently overlap computation and data transfer.

Because the application cores are busy performing com-

putation, we dedicate spare CPU cores for controlling data

movement. In our current prototype implementation, syn-

chronous page faults initiate pre-fetch requests, which are

then executed by data movement cores. This involves moving

data in/out from/to the host, setting/unsetting mappings in

the affected page tables, and requesting TLB invalidations

for the corresponding CPU cores. In Section IV we present

experimental results on the effect of pre-fetcher cores with

respect to the reduced number of page faults.

IV. EVALUATION

A. Experimental Setup

Throughout our experiments the host machine was an

Intel R© Xeon R© CPU E5-2670, with 64 Gigabytes of RAM. For

the manycore co-processor we used the Pre-Production Intel R©

Xeon PhiTM card, which is connected to the host machine via

the PCI Express bus. It provides 3GB of RAM and a single

chip with a large number of x86 cores2, each processor core

supporting a multithreading depth of four. The chip includes

coherent L1 and L2 caches and the inter-processor network is

a bidirectional ring [2].

We provide preliminary results on our hierarchical memory

system running 25 iterations of a 2D 9-point heat diffusion

stencil computation kernel. We used Intel’s compiler to get

the best optimizations for the Xeon PhiTM. Threads (i.e., CPU

cores) divide the computation area among each other and only

2At the time of writing this paper, the exact number of CPU cores on the
Pre-Production Intel R© Xeon PhiTM is confidential and the authors are under
non-disclosure agreement.

the borders are used for exchanging information. It is worth

mentioning that thread assignment is static in our system, i.e.,

we do not migrate threads among CPU cores. Also, throughout

this paper we use 4kB physical pages.

B. Page faults and TLB invalidation

The first thing we measured is the detailed cost breakdown

of concurrent page faults with respect to the number of

CPU cores involved when executing the heat diffusion stencil

computation. The computation area of the application was

2GB and the physical memory was limited to 1GB. Data

movement was performed in a synchronous fashion inside the

page fault handler, using FIFO page replacement policy. Figure

6 shows the results.

The indicated components for page faults are: managing

paging data structures (lock/list); modifying page table entries

(PTE); remote TLB invalidation (TLB shootdown); data trans-

fer (DMA); and other miscellaneous operations (misc). Figure

6a shows the results for regular page tables, while Figure 6b

depicts the measurements when partially separated page tables

are used. Notice the difference between the scale of the core

numbers. The most important observation is that with regular

page tables the price of TLB shootdown grows faster than

linearly, which has a visible impact on runtime as soon as

over 16 cores. (Section IV-C provides runtime measurements.)

On one hand, each CPU core spends an increasing amount of

time interrupting all other cores in the address space, while

on the other hand, each core receives an increasing amount of

simultaneous TLB invalidation requests.

On the contrary, partially separated page tables enable

the kernel to involve only the affected CPU cores in TLB

invalidations, which yields much better scalability for the

stencil computation scenario. As Figure 6b shows the cost of

page faults stays nearly constant over 2 core up to 64 where

it takes approximately 45,000 CPU cycles, as opposed to the

nearly 700,000 for 32 cores when regular page tables are used.

364

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

(a) Hyper-threading disabled (b) Hyper-threading enabled

Fig. 7: Stencil computation runtimes. XGBv-YGBp denotes XGB application virtual memory and YGB physical memory.
PSPT stands for partially separated page tables, pre-fetch indicates that dedicated data movement cores are also utilized.

C. Stencil Computation

To assess the cost of OS supervised data movement we

measured runtimes of the above described stencil computation

kernel with various configurations. Figure 7 summarizes the

results. We ran the application in all cases with 2 GB virtual

memory allocated for the computation area. As the baseline for

further comparison, we first measured runtimes with physical

memory supplied enough so that no data movement takes

place, that is to say, with physical memory also set to 2 GB.

As for configurations where data movement is also required,

we limited the amount of physical memory to 1GB and we

have three different setups. First, synchronous data movement

(i.e., data movement is performed exclusively in page fault

handlers) with regular page tables. Second, synchronous data

movement with PSPT, and third, PSPT combined with dedi-

cated data movement cores that execute pre-fetch requests.

We have then two sets of measurements, both containing

the above mentioned four scenarios, one with each application

thread executing on separate CPU cores, and the other, where

hyper-threading is utilized, shown in Figure 7a and Figure 7b,

respectively. As it has been said earlier, the Pre-Production

Intel R© Xeon PhiTM co-processor we used features 57 CPU

cores, each with 4 hyperthreads. Because we dedicate one

hyperthread for each application thread for doing pre-fetch

operations, we measured the separate CPU cores case up to

56 cores, and the hyper-threading case up to 128. Notice, that

for 128 application hyper-threads there aren’t enough hyper-

threads left so that each application thread could have its own

dedicated pre-fetcher, and for this case only we distribute 64

pre-fetchers.

First thing to point out, regular page tables provide expected

scalability in case there are no address space modifications,

i.e., when the entire data fits into the physical memory. How-

ever, when data movement is done transparently by the OS

and thus, frequent address space modifications are performed,

regular page tables impose severe overhead on scalability

just over 8 application threads. On the contrary, partially

separated page tables show similar speedups to the no data

movement case. Furthermore, PSPT combined with dedicated

data movement cores yield runtimes even closer to the no data

movement scenario.

TABLE I: Cost of transparent data movement compared to the

no data movement case (hyperthreading disabled).

Number of cores 2 4 8 16 32 56

PSPT 32% 47% 38% 44% 56% 93%
PSPT+pre-fetch 11% 21% 14% 16% 26% 46%

The exact cost of data movement as the ratio of additional

runtime compared to the no data movement case is indicated

in Table I and Table II, without and with hyper-threading,

respectively.

TABLE II: Cost of transparent data movement compared to

the no data movement case (hyper-threading enabled).

Number of cores 4 8 16 32 64 128

PSPT 36% 32% 32% 37% 45% 33%
PSPT+pre-fetch 5% 8% 6% 7% 6% 22%

As seen, the price of synchronous data movement without

hyper-threading is 51% in average, while pre-fetching de-

creases the cost to an average of 22%. The highest overhead

we observe is when running the application over 56 cores,

where we identified the bottleneck as the contention on DMA

engines, suggesting that DMA is fully stressed in this case.

Moving on to the hyper-threading enabled experiments, one

can see that the cost of data movement is relatively smaller.

An average of 35% without and 9% with pre-fetching, respec-

tively. This is mainly because the hyper-threading execution

doesn’t scale as fast as separate CPUs (as seen runtimes

for 4 threads are actually worse than for 2), leaving more

space for the background data movement. With all application

threads having their own dedicated pre-fetcher, the price of

data movement can be kept as low as 6% in average up to 64

application threads.

365

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

D. The Effect of Pre-fetching on the Number of Page Faults
The ultimate goal of OS assisted data movement is not only

performing data copy in an on-demand, application transparent

manner, but also to overlap computation and communication

as much as possible.

Fig. 8: The effect of dedicated data movement cores on
the number of page faults per CPU core. Hyper-threading
disabled.

Dedicated data movement cores serve exactly this purpose.

As mentioned above, in our current prototype implementation,

dedicated data movement cores execute pre-fetch requests on

behalf of application cores. The effect of such activity can be

well demonstrated by the number of page faults application

cores cause. The less page faults there are, the more efficient

the overlapping mechanism is. Figure 8 shows the per-core

page fault numbers with and without dedicated data movement

cores. (Note the logarithmic scale of the Y axis.) As seen,

with background pre-fetching, the number of page faults is

approximately two orders of magnitude smaller. It also shows

good scalability with the increasing number of CPU cores,

except for 56, where the tendency stops. As said in Section

IV-C, pre-fetching for 56 cores causes contention on the DMA

engine, which explains why the number of page faults fails to

drop as fast as up to 32 cores, since pre-fetchers are unable to

pull data ahead of the computation cores as fast as with smaller

core numbers. Nevertheless, it still is an order of magnitude

better than the synchronous case.

V. RELATED WORK

A. Programming Models
Programming models for accelerators (i.e., co-processors)

have been the focus of research in recent years. In case of

GPUs, one can spread an algorithm across both CPU and GPU

using CUDA [11], OpenCL [12], or the OpenMP [13] acceler-

ator directives. However, controlling data movement between

the host and the accelerator is the entirely the programmer’s

responsibility in these models.
OpenACC [14] allows parallel programmers to provide

directives to the compiler, identifying which areas of code

to accelerate. Data movement between accelerator and host

memories and data caching is then implicitly managed by the

compiler, but as the specification states, the limited device

memory size may prohibit offloading of regions of code that

operate on very large amounts of data.

Although in an accelerated system the peak performance

includes the performance of not just the CPUs but also all

available accelerators, the majority of programming models

for heterogeneous computing focus on only one of these.

Attempts for overcoming this limitation, by creating a runtime

system that can intelligently divide computation (for instance

in an accelerated OpenMP) across all available resources

automatically are emerging [15].

Intel provides several execution models for Intel R© Xeon

PhiTM product family [16]. One of them, the so called Mine-
Your-Ours (MYO), also referred to as Virtual Shared Memory,

provides similar features to our proposal, such as transparent

shared memory between the host and the co-processor. How-

ever, at the time of writing this paper, the main limitation

of MYO is that the size of the shared memory area cannot

exceed the amount of the physical memory attached to the co-

processor. On the contrary, we explicitly address the problem

of dealing with larger data sets than the amount of physical

memory available on the co-processor card.

As for memory models, the Asymmetric Distributed Shared
Memory (ADSM) maintains a shared logical memory space for

CPUs to access objects in the accelerator physical memory but

not vice versa. The asymmetry allows light-weight implemen-

tations that avoid common pitfalls of symmetrical distributed

shared memory systems. ADSM allows programmers to assign

data objects to performance critical methods. When a method

is selected for accelerator execution, its associated data objects

are allocated within the shared logical memory space, which

is hosted in the accelerator physical memory and transparently

accessible by the methods executed on CPUs [17]. While

ADSM uses GPU based systems providing transparent access

to objects allocated in the co-processor’s memory, we are aim-

ing at a symmetrical approach over Intel’s MIC architecture.

B. Operating Systems for Manycores

Operating system organization for manycore systems has

been also actively researched during the last couple of years.

In particular, issues related to scalability over multiple cores

have been widely considered.

Corey [9], an OS designed for multicore CPUs, argues

that applications must control sharing in order to achieve

good scalability. Corey proposes several operating system

abstractions that allow applications to control inter-core shar-

ing and to take advantage of the likely abundance of cores

by dedicating cores to specific operating system functions.

Similarly to Corey, we also focus on scalability issues of kernel

data structures, namely, the page tables, and demonstrate that

replication with careful synchronization scales better than

centralized management. Nevertheless, our goal is complete

application transparency. Moreover, similarly to Corey, we also

dedicate certain OS functionality to specific CPU cores, i.e.,

background data movement, and show the benefits of doing

so.

Barrelfish [18] argues that multiple types of diversity and

heterogeneity in manycore computer systems need to be taken

into account. It represent detailed system information in an

366

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

expressive ”system knowledge base” accessible to applica-

tions and OS subsystems and use this to control tasks such

as scheduling and resource allocation. While we explicitly

address the Intel R© Xeon PhiTM product family in this paper,

system knowledge base, as proposed in Barrelfish could be

leveraged for placing threads to CPU cores that have low

IPI communication cost so that TLB invalidations can be

performed more efficiently.

Scalable address spaces in modern operating systems have

been also the focus of recent research. Clements et. al [8]

proposed increasing the concurrency of kernel operations on

a shared address space by exploiting read-copy-update (RCU)

so that soft page faults can both run in parallel with operations

that mutate the same address space and avoid contending

with other page faults on shared cache lines. Our approach

also enables scalable updates to a shared address space, but

instead of exploiting efficient locking heuristics on shared data

structures we replicate data structures (page tables for the

computation area) and allow page faults to update only the

affected cores’ replica.

An idea, similar to PSPT, has been discussed by Almaless

and Wajsburt [19]. The authors envision replicating page tables

in NUMA environments to all memory clusters in order to

reduce the cost of address translations (i.e., TLB misses)

on CPU cores, which are located far from the otherwise

centralized page tables. Although their proposal is similar

to ours, they are addressing a very NUMA specific issue,

furthermore, no actual implementation is provided.

Villavieja et. al also pointed out the increasing cost of

remote TLB invalidations with the number of CPU cores in

chip-multiprocessors (CMP) systems [20]. In order to mitigate

the problem the authors propose a lightweight hardware exten-

sion (a two-level TLB architecture that consists of a per-core

TLB and a shared, inclusive, second-level TLB) to replace

the OS implementation of TLB coherence transactions. While

the proposed solution yields promising results, it requires

hardware modifications, which limits its applicability. To the

contrary, our proposal offers a solution entirely implemented

in software.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an operating system assisted

hierarchical memory management system targeting manycore

co-processor based heterogeneous architectures. In our sys-

tem, data movement between the host memory and the co-

processor’s RAM is controlled entirely by the OS kernel, so

that data transfer remains completely transparent from the

application’s point of view.

We have found that with traditional address space wise page

tables, OS assisted memory management on a manycore co-

processor imposes severe performance degradation, especially,

when address remappings are issued simultaneously on a large

number of CPU cores. In order to overcome the scalability

problem, we have proposed partially separated page tables,

where each application thread (i.e., CPU core) maintains

its own set of translations for the computation area of the

application, filling in a virtual to physical mapping only if

the given core operates on the particular address. This enables

the OS to perform address space updates only on affected

cores when remapping a virtual address to a different physical

page, and thus, achieve good scalability. Furthermore, we

have proposed leveraging idle CPU cores for dedicated data

movement on behalf of the application. We have tested our

prototype system on stencil computation, a common HPC

kernel, and showed that OS assisted memory management is

capable of scalable transparent data movement.

In the future, we intend to further address scalability issues

for the case where a large number of cores are used. Also,

because 2D stencil computation is a relatively straightforward

application in terms of memory access patterns, we intend to

apply our system to a wide range of other applications. We are

planning to investigate how far the kernel can draw intelligent

decisions on what data to pre-fetch and possibly offer APIs

for the application to provide such information.

ACKNOWLEDGMENT

This work has been partially supported by the CREST

project of the Japan Science and Technology Agency (JST).

We would like to express our gratitude to Intel Japan

for providing the hardware, software and technical support

associated with the Intel R© Xeon PhiTM product family.

REFERENCES

[1] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan, M. Rajagopalan,
J. Fang, P. Zhang, R. Ronen, and A. Mendelson, “Programming
model for a heterogeneous x86 platform,” in Proceedings
of the 2009 ACM SIGPLAN conference on Programming
language design and implementation, ser. PLDI ’09. New
York, NY, USA: ACM, 2009, pp. 431–440. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542525

[2] E. Saule and U. V. Catalyurek, “An Early Evaluation of the
Scalability of Graph Algorithms on the Intel MIC Architecture,” in
26th International Symposium on Parallel and Distributed Processing,
Workshops and PhD Forum (IPDPSW), Workshop on Multithreaded
Architectures and Applications (MTAAP), 2012. [Online]. Available:
http://bmi.osu.edu/ esaule/public-website/paper/mtaap12-SSC.pdf

[3] A. S. Tanenbaum, Operating systems: design and implementation.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1987.

[4] W. Mauerer, Professional Linux Kernel Architecture. Birmingham, UK,
UK: Wrox Press Ltd., 2008.

[5] M. Si and Y. Ishikawa, “Design of Direct Communication Facility for
Many-Core based Accelerators,” in CASS’12: The 2nd Workshop on
Communication Architecture for Scalable Systems, 2012.

[6] Y. Matsuo, T. Shimosawa, and Y. Ishikawa, “A File I/O System
for Many-core Based Clusters,” in ROSS’12: Runtime and Operating
Systems for Supercomputers, 2012.

[7] A. Hori, A. Shimada, and Y. Ishikawa, “Partitioned Virtual Address
Space,” in ISC’12: International Supercomputing Conference, 2012.

[8] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “Scalable address
spaces using RCU balanced trees,” in Proceedings of the seventeenth
international conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’12. New York, NY,
USA: ACM, 2012, pp. 199–210.

[9] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang,
“Corey: an operating system for many cores,” in Proceedings of the 8th
USENIX conference on Operating systems design and implementation,
ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp.
43–57.

367

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

[10] Q. Yuan, J. Zhao, M. Chen, and N. Sun, “GenerOS: An asymmetric
operating system kernel for multi-core systems,” in Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, april
2010, pp. 1 –10.

[11] N. Staff., “NVIDIA CUDA Programming Guide 2.2,” 2009.
[12] Khronos OpenCL Working Group, The OpenCL Specification,

version 1.0.29, 8 December 2008. [Online]. Available:
http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[13] OpenMP Architecture Review Board, “OpenMP Application
Program Interface,” Specification, 2008. [Online]. Available:
http://www.openmp.org/mp-documents/spec30.pdf

[14] CAPS Enterprise and CRAY Inc and The Portland
Group Inc and NVIDIA, “The OpenACC Application
Programming Interface,” Specification, 2011. [Online]. Available:
http://www.openacc.org/sites/default/files/OpenACC.1.00.pdf

[15] T. R. W. Scogland, B. Rountree, W.-c. Feng, and B. R. de Supinski,
“Heterogeneous Task Scheduling for Accelerated OpenMP,” in 26th
IEEE International Parallel and Distributed Processing Symposium,
Shanghai, China, May 2012.

[16] Intel Corporation, “Knights Corner: Open Source Software
Stack,” 2012. [Online]. Available: http://software.intel.com/en-
us/forums/showthread.php?t=105443

[17] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and
W.-m. W. Hwu, “An asymmetric distributed shared memory
model for heterogeneous parallel systems,” in Proceedings of
the fifteenth edition of ASPLOS on Architectural support for
programming languages and operating systems, ser. ASPLOS ’10.
New York, NY, USA: ACM, 2010, pp. 347–358. [Online]. Available:
http://doi.acm.org/10.1145/1736020.1736059

[18] A. Schpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs, “Embracing diversity in the Barrelfish manycore operating
system,” in In Proceedings of the Workshop on Managed Many-Core
Systems, 2008.

[19] G. Almaless and F. Wajsburt, “Does shared-memory, highly multi-
threaded, single-application scale on many-cores?” in Proceedings of
the 4th USENIX Workshop on Hot Topics in Parallelism, ser. HotPar
’12, 2012.

[20] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal, “DiDi:
Mitigating the Performance Impact of TLB Shootdowns Using a Shared
TLB Directory,” in Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 340–349.
[Online]. Available: http://dx.doi.org/10.1109/PACT.2011.65

368

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 02:35:21 UTC from IEEE Xplore. Restrictions apply.

