
Enhancing TCP Throughput of Highly Available
Virtual Machines via Speculative Communication

Balazs Gerofi
The University of Tokyo

bgerofi@il.is.s.u-tokyo.ac.jp

Yutaka Ishikawa
The University of Tokyo

ishikawa@is.s.u-tokyo.ac.jp

Abstract
Checkpoint-recovery based virtual machine (VM) replication is
an attractive technique for accommodating VM installations with
high-availability. It provides seamless failover for the entire soft-
ware stack executed in the VM regardless the application or the
underlying operating system (OS), it runs on commodity hardware,
and it is inherently capable of dealing with shared memory non-
determinism of symmetric multiprocessing (SMP) configurations.
There have been several studies aiming at alleviating the overhead
of replication, however, due to consistency requirements, network
performance of the basic replication mechanism remains extremely
poor.

In this paper we revisit the replication protocol and extend
it with speculative communication. Speculative communication
silently acknowledges TCP packets of the VM, enabling the guest’s
TCP stack to progress with transmission without exposing the mes-
sages to the clients before the corresponding execution state is
checkpointed to the backup host. Furthermore, we propose repli-
cation aware congestion control, an extension to the guest’s TCP
stack that aggressively fills up the VMM’s replication buffer so
that speculative packets can be backed up and released earlier to
the clients. We observe up to an order of magnitude improvement
in bulk data transfer with speculative communication, and close
to native VM network performance when replication awareness is
enabled in the guest OS. We provide results of micro-, as well as
application-level benchmarks.

Categories and Subject Descriptors C.4 [Performance Of Sys-
tems]: Fault-tolerance; D.4.5 [Operating Systems]: Reliability—
Fault-tolerance, Checkpoint/restart

General Terms Design, Reliability, Performance

Keywords Virtualization; Hypervisor; Checkpoint; Recovery;
Fault Tolerance

1. Introduction
With the recent increase in cloud computing’s prevalence, the num-
ber of online services deployed over virtualized infrastructures,
i.e., over Virtual Machines (VM), has experienced a tremendous
growth. At the same time, the latest hardware trend of grow-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

ing component number in current computing systems (e.g., data-
centers, high-end computer clusters, etc.) renders hardware failures
common place rather than exceptional [32]. Hence, designing soft-
ware with fault-resilience in mind has become a major concern.

Replication at the Virtual Machine Monitor (VMM) layer is an
attractive technique to ensure fault tolerance in virtualized environ-
ments, primarily, because it provides seamless failover for the en-
tire software stack executed inside the virtual machine, regardless
the application or the underlying operating system (OS).

There are currently two main approaches to primary-backup
based replication of virtual machines. Log-replay records all in-
put and non-deterministic events of the primary machine so that it
can replay them deterministically on the backup node in case the
primary machine fails [4], [25]. Although this solution provides
high efficacy to uni-processor virtual machines, its adaption to vir-
tual SMP environments, i.e., virtual machines with multiple virtual
CPUs, is cumbersome, because it requires determining and repro-
ducing the exact order in which CPU cores access the shared mem-
ory [24]. While virtual SMP environments are gaining increasing
importance [20], it has been shown that log-replay imposes super-
linear performance degradation with the increasing number of vir-
tual CPUs on various workloads [11].

The other approach, checkpoint-recovery based replication,
captures the entire execution state of the running VM at relatively
high frequency in order to propagate changes to the backup ma-
chine almost instantly [6, 9, 12, 19, 35]. This solution, essentially,
keeps the backup machine nearly up-to-date with the latest exe-
cution state of the primary machine so that the backup can take
over the execution in case the primary fails [6]. One of the main
strengths of checkpoint-recovery based replication is its inherent
ability to tackle with multi-core configurations [12].

However, any fault tolerant system needs to ensure that the state
from where an output message is sent will be recovered despite any
future failure, which is commonly referred to as the output commit
problem [27]. As a consequence of such requirement, output of
the running VM needs to be held back, i.e., disk I/O and network
traffic have to be buffered and can be released only after the backup
machine acknowledged the corresponding update [6, 9, 19].

Several recent studies have explored the domain how to acceler-
ate the failure free period of checkpoint-recovery based replication,
focusing mainly on decreasing its computational overhead [12, 19,
35]. Communication performance, due to the consistency require-
ments mentioned above, remains notoriously poor [6]. Workloads,
which require high-bandwidth TCP data transfer are particularly
hurt, because TCP transmission is unable to progress as a result of
the constant delay in acknowledgments from its peers.

In this paper we focus on the TCP communication performance
of replicated virtual machines, i.e., virtual machines that are being
replicated via checkpoint-recovery based replication. We make the
following contributions:

87

• We revisit the basic replication protocol and extend it with spec-
ulative communication. Speculative communication fabricates
and delivers speculative acknowledgments to the VM in re-
sponse to its TCP packets so that the guest’s TCP stack can
progress with TCP transmission. In order to ensure consistency,
speculative messages are not exposed to the client machines un-
til the VM’s corresponding execution state is checkpointed and
the update is acknowledged by the backup host.

• We propose replication aware congestion control, an extension
to the guest OS’ TCP stack that aggressively fills up the replica-
tion buffer of the VMM so that speculative packets can be sent
to the backup host and released earlier to the clients.

• Finally, a rigorous evaluation of the introduced mechanisms is
given using two different interconnects, Gigabit Ethernet and
Infiniband [1] (a high-performance interconnect that is gaining
popularity also in data-centers) as the network for replication.

Experimental results show up to an order of magnitude improve-
ment in bulk data transfer with speculative communication, and
close to native network performance when replication awareness
is enabled in the guest OS and replication is performed over Infini-
band.

We begin with detailing the basic VM replication protocol in
Section 2. Section 3 describes the design of our proposed mecha-
nisms and Section 4 provides insight to the details of implementa-
tion. Experimental evaluation is given in Section 5. Section 6 sur-
veys related work, Section 7 provides further discussion along with
future plans, and finally, Section 8 concludes the paper.

2. Background and Motivation
This section provides an overview of the basic virtual machine
replication protocol focusing in particular on communication as-
pects. It also motivates the need for further investigation how to
improve communication performance.

2.1 Basic Replication Protocol
As mentioned above, checkpoint-recovery based replication of vir-
tual machines is delivered by capturing snapshots of the running
VM at relatively high frequency so that changes can be reflected to
the backup machine almost instantly.

Between checkpoints the VM executes in log-dirty mode, i.e.,
write accessed pages are recorded so that when the checkpoint is
taken only pages that were modified in the most recent execution
phase need to be transferred, along with execution context of the
virtual devices and vCPUs. One phase of dirty logging and transfer-
ring the corresponding changes is often called a replication epoch
[6, 19, 35].

VM downtime during replication epochs, i.e., the period while
the VM is stopped, can be eliminated almost entirely. Instead of
leaving the VM paused and transferring the update synchronously,
data can be buffered first and transferred in an asynchronous fash-
ion (which we call the basic asynchronous replication protocol in
the rest of this paper). This way the VM is stopped only for the
buffering period, and execution of the next epoch can overlap the
actual data transfer [6]. Copy-on-write (COW) can be used to omit
VM downtime even while buffering the update [12].

When a failure occurs, the backup machine rolls back to the
latest consistent state it received from the primary host and restarts
the most recent replication epoch’s execution phase. Since the
execution path on the backup may be different (particularly, when
multiple vCPUs access shared memory) than that executed on the
primary machine, the primary machine’s output, which may depend
on such non-deterministic steps, have to be buffered and held back
until the corresponding checkpoint is acknowledged by the backup.

This property of the replication protocol is consequence of the
so-called output commit problem [27], which postulates that any
fault tolerant system needs to ensure that the state from where a
message is sent will be recovered despite any future failure.

2.2 TCP Communication
Transmission Control Protocol (TCP) is the most widely used net-
work protocol for reliable data transfer over the Internet. TCP relies
on acknowledgments to ensure data have been transferred entirely,
and at the same time acknowledgments play a crucial role in adapt-
ing the transmission bandwidth to the properties of the underlying
physical network.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

0

8
9

1
7

8

2
6

7

3
5

6

4
4

5

5
3

4

6
2

3

7
1

2

8
0

1

8
9

0

9
7

9

1
0

6
8

1
1

5
7

1
2

4
6

1
3

3
5

1
4

2
4

1
5

1
3

1
6

0
2

1
6

9
1

1
7

8
0

1
8

6
9

1
9

5
8

2
0

4
7

2
1

3
6

2
2

2
5

T
C

P
 s

e
q

u
e

n
ce

 n
u

m
b

e
r

Time elapsed (milliseconds)

native

replicated

Figure 1. TCP bulk data transfer of the native and the repli-
cated virtual machines. Replication epoch length is set to 50 mil-
liseconds in this experiment and Gigabit Ethernet is used as the
underlying network between the VM and the client machine.

Taking a closer look at how output commit affects the TCP per-
formance reveals that the attainable network bandwidth is substan-
tially lower compared to the native execution. Figure 1 demon-
strates the difference between the native and the replicated virtual
machine’s TCP throughput, as recorded on the client side. The
figure shows how TCP progresses with sequence numbers with
respect to the time elapsed. One of the key observations is the
grouped fashion of the transfer when replication is enabled. As
seen, groups of packets appear approximately in every 50 millisec-
onds on the client machine, which is the length of the replication
epoch in this experiment.

In each replication epoch the VM’s TCP stack attempts to trans-
mit a number of packets to the client, which are buffered and held
back, i.e., delayed by the VMM (in order to guarantee output com-
mit) until the end of the epoch. Consequently, acknowledgments of
these packets are also delayed which prevents the VM’s TCP stack
to increase the congestion window at the same pace how the native
execution would do. As a result of this quenched transmission, the
VM’s TCP stack believes the underlying network provides signif-
icantly lower bandwidth than it does in reality. In this experiment
we obtain less than 6 MB/s TCP throughput from the replicated vir-
tual machine, as opposed to the 110 MB/s of the native execution.
In both scenarios, the physical link between the VM and the client
machine was Gigabit Ethernet. Clearly, such degraded network per-
formance is unacceptable for online services where clients expect
reasonable bandwidth and short response times from the server ma-
chines.

3. Design
Motivated by the scenario presented above, this section discusses
the idea of speculative communication and the role of shadow sock-

88

ets. Moreover, replication aware congestion control, a modification
to the VM’s TCP stack, which further improves attainable network
bandwidth is also presented.

client

VM

I / O buffer (VMM)

CheckPoint

R
X

T
X

R
E

L
E

A
S

E

T
X

A
C

K

A
C

K

T
X

A
C

K

T
X

 - Speculative packets

(need to be transferred

to the backup machine)

time

Figure 2. Speculative communication of replicated virtual ma-
chines. Dashed arrows represent speculative acknowledgments of
the VMM and speculative packets of the VM. Speculative commu-
nication allows the VM to progress with its TCP streams further
than it can under the basic replication protocol. Speculative pack-
ets, however, need to be transferred to the backup host.

3.1 Speculative Communication
The mechanism of speculative communication is shown in Figure
2. The basic idea is that instead of simply buffering network pack-
ets the VMM tracks established TCP connections and fabricates
speculative acknowledgments that appear exactly the same as if the
client sent them. The acknowledgments are submitted to the VM,
which enables the VM’s TCP stack to progress with data trans-
fer and transmit more packets during the same period of time. In
order to ensure consistency, the packets from the VM are not trans-
ferred immediately to the client machines, but are only buffered
first, hence the name speculative communication. Once the corre-
sponding checkpoint is acknowledged by the backup, the packets
can be released. This mechanism allows the replicated VM to at-
tain higher network throughput and better response times, however,
it also opens up various questions and issues.

3.1.1 Determinism and Fault-Tolerance
One might be wondering whether or not allowing the VM to
progress with its TCP streams breaks the conditions of fault tol-
erant execution. Since speculative packets are not exposed to the
clients until the corresponding execution state’s checkpoint is ac-
knowledged by the backup machine, such packets do not depend on
any non-deterministic steps of the VM that cannot be recovered in
the future if a failure occurs. However, when a checkpoint is taken,
the VM’s TCP stack (encompassed by the execution context of
the virtual machine) does represent a state where retransmission of
these packets is already impossible, due to the fact that they have
been acknowledged and the TCP stack has likely removed them
from its retransmission queue. Consequently, the packets which
are acknowledged by the VMM also need to be transferred to the
backup machine so that they can be transmitted over the network
again in case the primary machine fails. The main goal of specula-
tive communication is to overlap the actual transfer on the network
with the backup data transfer of the next epoch’s speculative pack-
ets. (Note, that the replication takes place over a separate NIC.)

3.1.2 Correctness
Another issue is how buffered packets are released, i.e., actually
transferred to the clients. TCP ensures that every single byte of a
stream is received correctly (assuming no permanent error occurs
on the network), and packets are retransmitted if they get lost or
corrupted during the transfer. When the VMM acknowledges a TCP
packet to the VM, the VM’s TCP stack cannot be counted on for
possible retransmissions any more, because it believes the packet
reached its destination. Once data are buffered by the VMM, it be-
comes the VMM’s responsibility to transfer that data properly and
conforming to the TCP semantics. For this reason, the VMM main-
tains shadow sockets of each established TCP stream of the repli-
cated VM. Shadow sockets ensure both necessary packet retrans-
missions and correct TCP congestion control of the speculative
stream. The mechanism of shadow sockets, along with the neces-
sary alternations to network packets of both incoming and outgoing
traffic will be explained below.

3.2 Shadow Sockets
Shadow sockets play a central role in performing speculative com-
munication. The VMM maintains a hash table of shadow sockets
based on IP addresses and TCP port numbers of the given TCP flow.
A simplified view of the shadow socket infrastructure is shown in
Figure 3.

 OS in Virtual Machine (VM)

 Virtual Machine Monitor (VMM)

TCP sate machine

src_IP, dst_IP

src_port, dst_port

snd_nxt

rcv_nxt

TCP shadow socket

src_IP, dst_IP

src_port, dst_port

vm_snd_nxt

vm_rcv_nxt

real_snd_nxt

real_rcv_nxt

TCP shadow socket

src_IP, dst_IP

src_port, dst_port

vm_snd_nxt

vm_rcv_nxt

real_snd_nxt

real_rcv_nxt

TCP state machine

src_IP, dst_IP

src_port, dst_port

snd_nxt

rcv_nxt

 OS in Virtual Machine (VM)

TCP sate machine

src_IP, dst_IP

src_port, dst_port

snd_nxt

rcv_nxt

TCP state machine

src_IP, dst_IP

src_port, dst_port

snd_nxt

rcv_nxt

Client

speculative transfer

actual data transfer

Figure 3. High-level overview of the shadow socket infrastruc-
ture. Shadow sockets track TCP flows and perform speculative
communication for the guest’s TCP connections. They also are re-
sponsible for the actual data transfer to the client.

Most importantly, a shadow socket stores information about the
sequence numbers of a TCP stream, both from the point of view
of the VM and the real network (i.e., the client). Essentially, spec-
ulative communication offloads the actual TCP transmission from
the VM’s TCP stack to the shadow socket of the VMM. Although
data are transferred (during speculative communication) via TCP
from the VM to the VMM, it is merely a memory copy, without
any network transmission involved. The VMM stores the payload
of the TCP packets from the VM and during packet release phase it
transfers the data through the corresponding shadow socket. Since
we utilize the Linux kernel’s TCP stack to perform this task, as
it will be detailed in Section 4, the actual TCP transmission over
the network behaves entirely conforming to standard TCP seman-
tics. In fact, it does so as if it was one of the host’s non-virtualized
TCP connections. It is also worth mentioning, that incoming traffic
doesn’t go through the shadow socket, but the payload is passed

89

to the VM directly. However, special care has to be taken how in-
coming, outgoing and speculative packets are handled, which we
describe in the next sections.

3.2.1 Connection Tracking
Our current implementation assumes that any TCP activity of the
guest is initiated after the replication has been enabled. This makes
TCP connection tracking slightly less complicated, because an es-
tablished flow can be identified by the acknowledgment of the
SYN-ACK packet. The VMM creates shadow sockets for any TCP
flow once a SYN packet is identified (regardless if it originates from
the VM or from the clients). When the connection enters the estab-
lished state, the VMM starts performing speculative communica-
tion for the given flow.

Shadow sockets are destroyed in three possible scenarios. The
most common ways are if both parties of the connection sent their
respective FIN packets or if there is no activity on the flow for more
than a user specified time interval. Besides these, RST flags can
also indicate a connection break-down.

3.2.2 Traffic Handling
As shown in Figure 3, we use the same set of notations for
TCP sequence numbers with the TCP protocol specification [31].
vm snd nxt denotes the next sequence number the guest OS
sends, while vm rcv nxt is the next sequence number the VM
expects on an incoming packet. Notice, that vm snd nxt, at the
same time, is the highest valid ACK number the VM accepts. These
values have to be updated according to the traffic to and from the
VM. For example, when a TCP packet is sent by the VM, the corre-
sponding shadow socket’s vm snd nxt field has to be updated so
that it stores the sequence number that equals to seq + tcp length
of the given packet. Similarly, vm rcv nxt will store the acknowl-
edgment field of the outgoing packet, since by definition, that is
the next sequence number the VM expects to receive. Looking
at the sequence numbers of the actual TCP flow on the network,
real snd nxt represents the sequence number the shadow socket
sends next, and real rcv nxt is the next sequence number the
VMM expects from the client.

The main source of complications with respect to incoming,
outgoing and speculative packets is the fact that the VM’s TCP
stack can be ahead of the actual data transmission, due to specu-
lative communication. Using the notations above, this means that
effectively vm snd nxt is ahead of real snd nxt when specula-
tive communication is in action. This has several implications on
how packets can be passed to and from the VM.

Speculative Acknowledgments. Speculative acknowledgments
always contain vm rcv nxt as their sequence nr. and vm snd nxt
as the acknowledgment. Essentially, they acknowledge the entire
in-flight sequence interval of the VM, i.e., the sequence interval the
VM believes currently resides on the network. There are two more
important issues worth mentioning with regards to speculative ac-
knowledgments.

First, it is infeasible to acknowledge every single outgoing
packet of the VM one-by-one, because of the high frequency of
packets during a high-bandwidth data transfer. For this reason we
employ a similar technique that is widely used in TCP implemen-
tations, i.e., acknowledging smaller than maximum segment size
(MSS) packets directly, but scheduling ACKs based on timers if
packets with MSS size are frequent.

Second, while speculative packets are continuously transferred
in the background to the backup machine (because they are part
of the given epoch update), the VMM keeps track of the overall
buffer size used and indicates to the VM once the buffer limit
has been reached. The limit of the buffer is determined by the
replication frequency and the available bandwidth between the

primary and the backup machines. The VM is notified to stop
transferring data by means of announcing zero window in the
speculative acknowledgment. In order to resume data transfer, each
shadow socket for which zero window has been announced is
marked and an acknowledgment with non-zero window is sent in
the beginning of the next replication epoch.

Incoming Traffic. When speculative communication is active,
incoming packets cannot be passed directly to the VM’s network
stack, because the VM’s TCP state machine may expect higher
acknowledgments than that in the actual traffic on the network. This
is due to the speculative acknowledgments the VMM submitted.
Therefore, the ACK field in incoming packet’s TCP header needs
to be updated according to the shadow socket’s vm snd nxt field.
Otherwise, passing the packet would cause the VM to possibly
discard it with the reason of invalid acknowledgment. Modifying
the TCP header’s ACK field also requires updating the TCP and
IP checksums, which is performed by the VMM before passing the
packet to the VM.

Outgoing Traffic. Special attention needs to be payed for out-
going packets from the VMM to the clients as well. Imagine a
scenario where the client sends a packet to the VM which has
non-zero payload. This will cause the VM to send an acknowl-
edgment to the client, which is in turn buffered by the VMM.
Instead of releasing this packet, the VMM needs to update the
real rcv nxt field of the shadow socket according to the ACK
field of the packet’s TCP header and send an acknowledgment with
the correct sequence number, i.e., real snd nxt. Otherwise, the
client TCP stack may receive packets that, on one hand, have se-
quence number ahead of the expected one (because real snd nxt
may be behind vm snd nxt), on the other hand, the client may
believe that the original packet (with the payload) was lost on the
network and retransmit packets unnecessarily.

3.3 Replication Aware Congestion Control

V
M

V
M

M

C
lie

n
t

C
P

V
M

V
M

M

C
lie

n
t

C
P

Regular congestion

control

Replication aware

congestion control

tim
e

Figure 4. Replication aware TCP congestion control of the
guest OS. Replication aware congestion control aggressively
transmits a large number of packets in order to fill up the repli-
cation buffer as soon as possible.

As mentioned above, speculative communication essentially of-
floads the actual TCP transmission to the VMM’s shadow sockets.
However, since speculative packets have to be transferred to the
backup machine first, the VMM should buffer speculative pack-
ets as fast as possible. There are two main factors that determine
how fast the VM transfers packets to the VMM’s buffer, the re-
ceive window size announced in the speculative acknowledgments

90

and the congestion window size of the guest’s TCP stack. Our first
approach towards gathering as many packets as possible from the
VM was to announce large receive window size (2MB in our cur-
rent implementation) in the speculative acknowledgments.

Unfortunately, standard congestion window control algorithms
(such as Vegas [3] or CUBIC [13]), which are widely used in oper-
ating systems’ network stacks, are not designed for the conditions
speculative communication promotes. On the other hand, conges-
tion control policy in TCP stack implementations is often easy to
alternate. Linux, for instance, provides a standard kernel interface
to grow or shrink congestion window size in response to acknowl-
edgments and different policies for congestion control can be easily
implemented as loadable kernel modules.

Several prior studies have explored the idea to make the guest
operating system aware of virtualization. In this paper we follow
the same path, but we take the approach to the next level, where the
guest OS is not only aware of virtualization, but also of high avail-
ability (i.e., it knows it runs in a replicated VM). In order to bet-
ter cooperate with speculative communication we developed a very
simple congestion control algorithm with a low slow start threshold
followed immediately by a relatively large congestion window. Fig-
ure 4 indicates the difference between regular and replication aware
congestion controls. Our congestion control algorithm aggressively
transmits groups of packets together, filling up the speculative com-
munication buffer much faster than operating under standard con-
gestion window algorithms. In Section 5 we provide experimental
results demonstrating the impact of this approach.

4. Implementation
We chose the Linux Kernel Virtual Machine (KVM) [17] as the
platform of this study. KVM takes advantage of the hardware virtu-
alization extensions so that it achieves nearly the same performance
with the underlying physical machine.

Linux kernel

libvirtd

virsh

QEMU-kvm

kvm-kmod

QEMU module

Figure 5. The Linux kernel virtual machine architecture.

Figure 5 depicts the high-level KVM architecture. The most
important components are the kvm kernel module and qemu-kvm,
a KVM tailored version of QEMU. On top of these, libvirtd is an
often used facility for managing virtual machines, for which virsh
provides a command line interface. A major advantage of the KVM
architecture is the full availability of user-space tools in the QEMU
process, such as threading or libraries. Similarly, the kvm kernel
module can directly make use of any functionality provided by the
Linux kernel, such as drivers or the TCP stack.

4.1 Replication Logic and Disk I/O Buffering
The replication logic is entirely implemented in qemu-kvm, lever-
aging a great amount of the live migration code.

For disk I/O buffering we modified the virtio driver of qemu-
kvm. The disk I/O buffer behaves also as a hash table that operates
on sector granularity so that read requests referring to sectors which
are already buffered can be accessed consistently.

4.2 Speculative Communication and Shadow Sockets
Most of the speculative communication functionality is imple-
mented in user-space, i.e., in the qemu-kvm process. Both incom-
ing and outgoing packets are examined in the networking code of
QEMU. Speculative packets are put on a backup-queue first, which
is continuously processed by a background thread that transfers the
packets to the backup machine. Packets that have been acknowl-
edged are then put on the transfer-queue. However, the transfer-
queue is only processed once the corresponding epoch’s update is
also acknowledged by the backup machine.

Shadow sockets, on the other hand, have components both in
a user-space and in the Linux kernel. The user-space component
is mainly responsible for tracking TCP flows from the VM’s view-
point (i.e., it takes care of vm snd nxt and vm rcv nxt) and han-
dles speculative acknowledgments. Shadow sockets in qemu-kvm
are created immediately once a SYN packet is detected and are
maintained on a hash table so that a particular flow can be quickly
identified. Kernel components are, however, only allocated when
the connection enters the established state.

For the kernel-space component of shadow sockets we modified
the kvm kernel module and extended it with special purpose ioctl()
calls in order to create and close sockets, and also to perform write
on them. Socket creation raises certain complications, because it
requires imitating the steps of a connection establishment, with-
out actually putting any packets onto the network. Nevertheless,
for most of the functionalities of shadow sockets we directly lever-
age the underlying TCP implementation of the Linux kernel. This
makes several things significantly easier. Because shadow sockets
are identical to the non-virtualized TCP connections of the host, the
Linux kernel completely exempts us from maintaining and iden-
tifying connections (such as hashing and looking up sockets for
packets). It also handles the actual TCP transmission, and thus,
we don’t need to worry about packet retransmissions, congestion
control, fairness among flows, and other aspects of the TCP proto-
col itself. We did need, however, an additional feature so that the
rcv nxt field of a TCP socket can be advanced from user-space in
case it is dictated by an acknowledgment of the VM.

4.3 Replication Aware Congestion Control
Replication aware congestion control is a kernel module of the
guest OS. The Linux kernel provides a standard interface for de-
veloping alternative congestion control algorithms in the form of
implementing a tcp congestion ops structure and registering it via
the tcp register congestion control() function. The linux kernel ad-
justs the congestion window either according to the slow start algo-
rithm or according to congestion avoidance. The slow start thresh-
old (ssthresh) is used to determine whether to use slow start or
congestion avoidance algorithms. A congestion control algorithm
is allowed to specify ssthresh and once the threshold is reached, it
can adjust the actual congestion window (snd cwnd) in face of an
ACK. We use a very low slow start threshold (ssthresh is set to 2),
followed by a constant large congestion window (snd cwnd is set
to 1024).

4.4 Transactional Updates
Another particular issue worth mentioning is the transactional na-
ture of updating the backup machine. When replication data are
sent to the backup host, qemu-kvm cannot just read and apply the
changes directly, because a failure during the update would leave
the backup machine in an inconsistent state.

This implies that at the end of each replication epoch the backup
machine needs to collect the updates first and then apply all changes
together in a transactional fashion, only if all data were received
successfully. Unfortunately, the network protocol of qemu-kvm’s
live migration code doesn’t support this by default.

91

For this reason we extended the QEMUFile object with a buffer
and a flag that indicates that the file is in accumulating mode. The
primary machine toggles this flag on the file corresponding to the
backup connection and all subsequent writes are first buffered. We
record the number of bytes to be transmitted and inform the backup
machine in advance regarding the length of the update. It can then
read the whole stream, store it in a buffer and toggle the backup
file’s flag to indicate that subsequent read operations issued by
qemu-kvm should access the buffer instead of receiving data from
the network.

5. Evaluation
In this section we present the evaluation of speculative commu-
nication and replication aware congestion control. We discuss bulk
TCP throughput first, which is then followed by demonstration how
application level performance is affected. We consider applications
that are good candidates for deployment over virtualized infrastruc-
tures (i.e., in cloud computing environments) and for which high-
availability is naturally expected.

5.1 Experimental Setup
Throughout our experiments the host machine of the replicated
VM was equipped with a 4 cores Intel Xeon 2.2GHz CPU, with
2 hyperthreads per core (i.e., 8 hardware threads altogether), 6GBs
of RAM and a 250GB SATA harddrive. The machine had two Intel
82546GB Gigabit Ethernet network interfaces. One of the physical
network cards were bridged to the virtual machine and used for
application traffic and the other was dedicated to the replication
protocol for the experiments, when replication took place over
Gigabit Ethernet. Moreover, a Mellanox MT26428 Infiniband QDR
HCA was also present in both the primary and the backup hosts for
the experiments utilizing Infiniband.

The host machines run Ubuntu server 9.10 on Linux kernel
2.6.37 and we used qemu-kvm 0.14.50 with kvm-kmod 2.6.37 as
the basis of our implementation. For the virtual machines in each
experiment we used the KVM virtio disk and network drivers. We
do not present performance results on the native host machine, be-
cause in virtualized environments direct access to the underlying
machines is normally not available. However, we had Intel’s hard-
ware MMU virtualization support, i.e. Extended Page Tables (EPT)
enabled in all experiments. Unless stated otherwise, the VM had 1
GB of RAM allocated with memory ballooning support disabled.

5.2 TCP Throughput

6.1 5.9 6.2 6.1

0

10

20

30

40

50

60

70

80

90

100

110

120

130

100kB 1MB 10MB 100MB

N
e

tw
o

rk
 b

a
n

d
w

id
th

 (
M

B
/s

)

Number of bytes transferred

native basic_repl spec_com+GigE spec_com+rac+GigE spec_com+rac+IB

Figure 6. Bulk data transfer performance measured on the
client machine. The replication period is set to 50 milliseconds
in this experiment.

In our first experiment we measured the TCP network through-
put from the virtual machine to a separate host. The VM and the
client were connected through Gigabit Ethernet (i.e., theoretically
the maximum throughput is around 120MB/s).

We ran the test under five different VM configurations, native
virtual machine, VM replicated with the basic asynchronous repli-
cation protocol (see Section 2.1) over GigE, speculative communi-
cation enabled over GigE, speculative communication enabled over
GigE with replication awareness in the guest kernel, and finally,
speculative communication with replication aware congestion con-
trol in the guest, replicated over Infiniband. Replication period was
set to 50 milliseconds, where replication was enabled. We used the
ttcp utility [29] to perform these experiments. ttcp allows to de-
fine the number of bytes transferred over the link and we used four
different scenarios, 100kB, 1MB, 10MB, and 100MB. Each exper-
iment was executed multiple times and we report the average, the
highest, and the lowest values (in form of error bars) we obtained.
Figure 6 illustrates the results.

As seen, the native execution achieves up to 117MB/s, which
is close to the maximum possible throughput of Gigabit Ethernet.
Contrary, the throughput attained by the basic replication protocol
is extremely low, approximately 6MB/s. Looking at the numbers
for speculative communication, the figure reveals that speculative
communication achieves near native network performance for short
streams (100kB and 1MB), which is followed by a sudden drop
in the performance settling around 40-50MB/s for longer trans-
fers. Notice however, that speculative communication achieves up
to 65MB/s throughput, which is an order of magnitude better per-
formance compared to the basic replication protocol. Furthermore,
replication awareness in the guest kernel further contributes up to
35% performance improvement compared to the only speculative
communication case.

The sudden performance drop with longer streams is related to
the replication period of the experiment. Because both 100kB and
1MB can be buffered under one replication epoch, the maximum
achieved throughput is very close to the native execution, essen-
tially, the transfer is merely double buffered. However, when the
transfer spans multiple replication epochs (such as in case of the
10MB and 100MB transfers), speculative buffering is interrupted in
every 50 milliseconds. Whereas replication aware congestion con-
trol in conjunction with Infiniband yields up to 95MB/s throughput
even for longer streams, a similar tendency can be observed over
Infiniband as well.

0

10

20

30

40

50

60

70

80

90

100

110

120

25 50 100 200

M
a

x
im

u
m

 n
e

tw
o

rk
 b

a
n

d
w

id
th

 (
M

B
/s

)

Replication epoch length (milliseconds)

100kB

1MB

10MB

50MB

100MB

Figure 7. Bulk data transfer performance according to differ-
ent stream sizes and replication epoch lengths. Legend repre-
sents the number of bytes transferred. The experiments were exe-
cuted over GigE, without replication aware congestion control in
the guest OS.

92

Another interesting observation is the relatively high deviation
of the attainable bandwidth, especially for longer streams. We be-
lieve this is related to scheduling issues, similarly how related work
describes it in case of TCP reception performance of virtualized en-
vironments [16].

In order to further investigate the bandwidth drop effect we ran
additional tests with different replication epoch lengths for differ-
ent stream sizes. These experiments were all executed over Giga-
bit Ethernet, without replication aware congestion control. Figure 7
shows the maximum bandwidth we could obtain for each combina-
tion. One of the key observations is the fact that streams with longer
sizes perform worse, because they span through several replication
epochs. As seen, in case of a 1MB stream the smallest replication
buffer it fits was the one corresponding to 50 milliseconds epoch
length, while the 10MB could only fit the 200 milliseconds one.
It is also shown that enlarging the replication epoch length gener-
ally increases the attainable bandwidth, because longer epoch size
means less frequent checkpoints, which in turn lowers the overhead
of the replication itself.

In terms of network performance the basic replication protocol
would favor shorter replication epochs, so that buffered packets
can be released earlier, however, short replication epochs introduce
higher computational overhead. The main strength of speculative
communication is its ability to allow long replication epochs and
reasonable network performance at the same time.

5.3 SPECweb 2005
The first application we investigated was SPECweb’s Banking
workload, which emulates an Internet personal banking web-site,
where clients are accessing their accounts, making transactions,
etc [14]. Requests are transmitted over SSL throughout the whole
benchmark. The SPECweb configuration requires at least three ma-
chines for running the experiments. One of the server hosts is the
actual SPECweb application server, which is accompanied by a
backend machine. These were deployed in two VMs residing on
two separate physical machines. On the application server we used
Apache 2.2.11 with the default configuration the Ubuntu server
distribution provides. Besides these, another machine was utilized
for running the SPECweb client side scripts.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

g
e

 o
f

S
P

E
C

w
e

b
 r

e
sp

o
n

se
s

VM configuration

Tolerable Answers Good Answers

Figure 8. SPECweb2005 Banking results. The replication period
is set to 50 milliseconds and the number of simultaneous connec-
tions is 100.

We replicated only the main SPECweb application server,
for which another physical machine was utilized to serve as
backup host. SPECweb reports two separate values for each ex-

periment, the ratio of good and tolerable answers. First we tuned
the SPECweb configuration so that 98% of the responses are cat-
egorized as good when executed on the native VM. In order to
assess scalability aspects of the proposed improvements we set the
number of simultaneous client connections to 100 in this setup. The
same configuration was then used to measure the performance in
case of the basic asynchronous replication over Gigabit Ethernet,
speculative communication over GigE, speculative communication
and replication aware congestion control over GigE, and finally,
speculative communication with replication aware congestion con-
trol in the guest and replicated over Infiniband.

Figure 8 illustrates the ratio of answers we obtained from these
experiments. As seen, the basic replication mechanism imposes
substantial performance degradation, achieving only 30% of the
good answers of the native execution. Webservers are good candi-
dates for speculative communication, because a typical web inter-
action consists of a small request message which is then followed
by a longer, bulk data transfer from the server process. Speculative
communication allows the replicated server to possibly transmit the
entire response into the VMMs buffer in one go, which can be trans-
ferred over the network during the next replication epoch, instead
of spanning several epoch as it happens using the basic replication.
We expected to see significant improvements due to this mecha-
nism in case of SPECweb.

As the figure shows, speculative communication even over GigE
yields 2.6X better performance in terms of good answers com-
pared to the basic mechanism, achieving 80% of the native VM’s
performance. However, we do not observe significantly better per-
formance when replication aware congestion control is enabled in
the guest kernel. Further examination on SPECweb’s attributes re-
vealed that the average response size is approximately 50kB in this
test, with the maximum size transfers not exceeding 150kB. Up to
150kB can be easily buffered even without replication aware con-
gestion control, which explains why the two methods perform very
similar in this benchmark.

Table 1. SPECweb Banking average response times (seconds)
Request Type native basic spec com+ spec com+

VM asynchr. GigE rac+IB
login 0.418 3.183 2.022 1.313
account sum 0.105 2.356 1.389 0.720
check detail 0.122 2.506 1.610 0.793
bill pay 0.140 2.315 1.332 0.727
add payee 0.129 1.820 0.960 0.473
payee info 0.164 2.611 1.414 0.664
quick pay 0.132 4.799 2.413 1.214
billpay status 0.166 2.388 1.308 0.745
chg profile 0.187 2.498 1.309 0.780
post profile 0.107 2.412 1.328 0.888
req checks 0.214 2.921 1.649 0.780
post chk order 0.157 2.392 1.156 0.607
req xfer form 0.179 2.089 1.238 0.687
post fund xfer 0.103 2.309 1.243 0.586
logout 0.139 1.845 0.822 0.522
check image 0.016 0.827 0.382 0.179

Utilization of Infiniband, nevertheless, contributes another 13%
increase in the attainable ratio of good answers, getting as close
as 93% of the native execution. Infiniband provides significantly
higher network bandwidth (up to 6X in our setup), which enables
the backup machine to acknowledge a replication epoch’s update
in much shorter time. Consequently, the buffered reply can be also
transferred with much smaller delay.

Table 1 provides further details on the average response time of
each individual request types the benchmark consists of. As seen,

93

the basic asynchronous replication renders the response times sub-
stantially longer than the native execution. Speculative communi-
cation alleviates the overhead with an average ratio of 57% shorter
delay compared to the basic replication. We do not provide separate
results for the replication aware congestion control case over GigE,
because it’s very close to the speculative communication only case.
Infiniband, on the other hand, yields another 56% shorter delay in
responses compared to the GigE case.

5.4 Hadoop
Hadoop [30] is an open-source implementation of the MapReduce
(MR) [7] distributed data analysis tool, a framework often used
in cloud computing environments. A Hadoop MR cluster consists
of several worker nodes (called TaskTrackers) that are coordinated
by a central entity, the JobTracker. While TaskTrackers may fail
any time without bringing the entire job down, the failure of the
JobTracker is fatal. Therefore, it is a good candidate for fault
tolerant execution.

Our Hadoop cluster is relatively small scale, it consists of 16
worker nodes (i.e., TaskTrackers), each of them is a single vCPU
VM with 1.2GB of RAM, residing on four different physical hosts
equipped with Intel Xeon 2.2GHz Quad-core CPUs and 6GB of
RAM. We used approximately 2GB of raw data on each node the as
input. We evaluated the price of protecting the Hadoop master node
via VM level replication through the MR/DB benchmark set [26].
MR/DB operates on random generated HTML data and it includes
various common tasks that can be expressed either as SQL queries
or as MapReduce computations, such as grep, select, aggregate and
join.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

grep select aggregate join

E
x
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Hadoop job

native

basic_repl

spec_com+GigE

spec_com+rac+GigE

Figure 9. Hadoop MR/DB benchmark runtimes. Experiments
were run on a Hadoop cluster with 16 worker nodes and a separate
master node protected via VM level replication.

We ran four configurations for each benchmark, measuring exe-
cution running on native VM, basic asynchronous replication over
GigE, speculative communication over GigE, and finally, specula-
tive communication over GigE with replication aware congestion
control enabled in the guest’s kernel. We executed all tests five
times and report the average values.

Figure 9 illustrates the results. As seen, the basic replication
mechanism induces up to 34% overhead compared to the native
execution, which is significant considering the scale of the sys-
tem. Since the Hadoop JobTracker merely orchestrates the entire
job, the protected VM’s dominant action is communication rather
than computation. Just as the case with webservers, the JobTracker
is also a good candidate for speculative communication, because
speculative communication prevents messages to span multiple

replication epochs, which would otherwise slow down the entire
communication. As the figure shows, speculative communication,
even over Gigabit Ethernet, renders the overhead of replication be-
tween approximately 5% and 13%. With replication aware conges-
tion control enabled in the guest’s TCP stack, the overhead is fur-
ther alleviated down to 3%, which is almost the same with the na-
tive execution. No experiments were run over Infiniband for these
benchmarks.

6. Related Work
6.1 Virtual Machine Migration
Checkpoint-recovery based fault tolerance captures snapshots of
the running VM at high frequency, often leveraging the live migra-
tion support of the underlying Virtual Machine Monitor (VMM).
Thus, VM live migration is closely related to checkpoint-recovery
based replication. Solutions, such as Xen [5], KVM [17], and
VMware’s VMotion [23] all provide the capability of live migrating
VM instances. Pre-copy is the dominant approach to live VM mi-
gration [5, 23]. It initially transfers all memory pages then tracks
and transfers dirty pages in subsequent iterations. When the amount
of data transferred becomes small or the maximum number of iter-
ation reached, the VM is suspended and finally, the remaining dirty
pages and the VCPU context is moved to the destination machine.
VM replication, on the other hand, leaves the VM running in pre-
copy mode at all times so that dirty pages are logged and the entire
execution state can be reflected to the backup node at the end of
each replication epoch [6, 9].

Performance improvement to VM migration has been the focus
of several prior studies. Xian et al. showed how data deduplica-
tion can be exploited to accelerate live migration [34], while Mi-
crowiper [10] proposed ordered propagation of dirty pages to trans-
fer them according to their rewriting rates, reducing service down-
time during the migration. High performance interconnects have
also been used in the context of virtual machine migration, Huang
et al. presented RDMA based migration over Infiniband [15],

6.2 Virtual Machine Replication
Bressoud and Schneider [4] introduced first the idea of hypervisor-
based fault tolerance by executing the primary and the backup
VMs in lockstep mode, i.e., logging all input and non-deterministic
events of the primary machine and having them deterministically
replayed on the backup node in case of failure. Whereas Bressoud
and Schneider demonstrated this technique only for the HP PA-
RISC processors VMware’s recent work implements the same ap-
proach for x86 architecture [25]. These works, however, can han-
dle only uni-processor environments. Deterministic-replay imposes
strict restrictions on the underlying architecture and its adaption to
multi-core CPU environment is cumbersome, because it requires
determining and reproducing the exact order in which CPU cores
access the shared memory.

In the context of deterministic (i.e. replayable) SMP execution,
solutions on different abstraction levels have been proposed. Flight
Data Recorder [33] is a hardware extension that enables determin-
istic replay for SMP environments, but it is unclear what degree
of concurrency they can handle without significant performance
degradation. Runtime system level solutions, such as Respec [18]
and CoreDet [2] ensure deterministic execution of multi-threaded
applications, but their main weakness compared to VM level solu-
tions is the inability to provide fault tolerance for an entire software
stack (including the operating system), which is encompassed by a
virtual machine. SMP-ReVirt [11] exploits hardware page protec-
tion to detect and accurately replay sharing between virtual CPUs
of a multi-core virtual machine, however, their experiments report
superlinear slowdown with the increasing number of virtual CPUs.

94

Checkpoint-recovery based solutions such as Remus [6] and
Paratus [9] can overcome the problem of multi-core execution by
capturing the entire executions state of the VM and transferring it
to the backup machine. Although most of the data transfer can be
overlapped with speculative execution, transferring updates to the
backup machine at very high frequency still comes with great per-
formance overhead. Kemari [28] follows a similar approach to Re-
mus, but instead of buffering output during speculative execution,
it updates the backup machine each time before the VM omits an
outside visible event.

Improving the performance of checkpoint-recovery based VM
replication has become an active research area recently. Lu et al.
[19] proposed fine-grained dirty region identification to reduce the
amount of data transferred during each replication epoch, while
Zhu et al. [35] improved the performance of log-dirty execution
mode by reducing read- and predicting write-page faults. Gerofi et
al. [12] utilized Infiniband RDMA for replicating multiprocessor
virtual machines. All the above mentioned studies in the domain of
checkpoint-recovery based VM replication, however, deal mostly
with computational overhead. To the contrary, we focus on the
communication aspect of highly available virtual machines.

6.3 Virtualized Network I/O
Alleviating the overhead of network device virtualization has been
also an active research domain in recent years. Menon et al. pro-
posed packet aggregation which reduces per-packet handling over-
head between the guest and the VMM [21]. TwinDriver suggested
tighter cooperation between the guest and the VMM by moving
some of the functionalities of the network driver into the host [22].
Dong et al. proposed efficient interrupt coalescing for network I/O
virtualization and virtual receive side scaling to effectively lever-
age multi-core processors [8]. The closest work resembling ours is
vSnoop [16]. vSnoop offloads TCP acknowledgment handling to
the VMM so that TCP reception performance doesn’t suffer due
to scheduling delays of virtual machines. The main difference be-
tween vSnoop and our work, is that vSnoop deals with TCP recep-
tion as opposed to TCP transmission, which eliminates the need of
shadow sockets. Moreover, while our study also exploits the idea of
offloading functionalities from the guest VM to the virtual machine
monitor, we are focusing on improving network performance of
virtualized environments with the additional feature of high avail-
ability.

7. Discussion and Future Directions
7.1 Scheduling and Epoch Length
We have already pointed out in Section 5.2 that one of the main
strengths of speculative communication is the fact that high net-
work throughput can be attained even with longer replication
epochs. Generally, the longer the replication epochs are the smaller
the overhead of the replication itself is. Therefore, as a general
policy, one could enforce as long replication epochs as possible in
order to minimize the overhead. However, under the basic repli-
cation protocol network I/O benefits from shorter epochs so that
pending packets can be released earlier. As speculative communi-
cation opens up the way to prolong replication epochs but progress
with network transmission at the same time, determining the opti-
mal epoch length could be based on other aspects of the workload,
such as the amount of dirtied memory pages, number of written
disk I/O sectors, etc. In the future we intend to explore the idea
of how workload adaptive checkpoint scheduling and speculative
communication could interplay in an efficient manner, finding the
optimal epoch lengths of the replication dynamically based on the
workload executed in the VM.

7.2 Extended Replication Awareness
We have shown that making the congestion control algorithm of
the guest’s TCP stack replication aware yields significant improve-
ments. Whereas this particular modification focuses solely on net-
work performance, the guest’s kernel could be further extended so
that other aspects of the replication were also addressed.

General replication awareness in the guest kernel would open
up various directions for further optimization. For example, if the
guest kernel was aware of the checkpoint frequency (i.e., the exact
time when the next checkpoint will be taken), it could schedule disk
operations so that they are scattered among multiple checkpoints in
a balanced way or even delay them according to other factors of the
give epoch’s update, such as dirtied memory pages.

A more pervasive approach of replication awareness in the
guest’s TCP stack would allow to transfer (i.e., buffer in the VMM)
exactly the number of packets the replication buffer can handle,
without having to announce zero window to indicate when the
buffer is full. Furthermore, if the guest’s TCP stack knew when
the next checkpoint is going to be taken, it could simply transmit a
large number of packets without expecting an acknowledgment un-
til the next epoch, which would exempt us from having to transfer
those packets to the backup machine, because the TCP stack would
be aware of the fact that they are still not acknowledged.

8. Conclusions
Checkpoint-recovery based virtual machine replication is attrac-
tive, because it provides high availability for the entire software
stack executed in the VM. Due to the output commit problem,
however, network performance of the basic replication method is
extremely poor.

In this paper we have revisited the replication protocol and ex-
tended it with speculative communication. Speculative communi-
cation enables the VM to progress with TCP transmission with-
out exposing the messages to the client machines before the corre-
sponding execution state is acknowledged by the backup host. We
have introduced the notion of shadow sockets, which track TCP
flows, perform speculative communication for the guest and effec-
tively offload TCP transmission into the virtual machine monitor.
Moreover, we have proposed replication aware congestion control,
an extension to the guest’s TCP stack that cooperates better with
speculative communication. While we have focused on improv-
ing TCP transmission performance of replicated virtual machines,
speculative communication is also applicable for TCP reception.

We have shown that speculative communication yields up to an
order of magnitude better performance of bulk TCP transmission,
and close to native network performance when replication aware
congestion control is enabled in the guest’s TCP stack and the
replication is performed over Infiniband. We also presented mea-
surements regarding the impact of speculative communication on
applications, which naturally fit virtualized environments, and at
the same time, require high-availability. SPECweb attains close to
80% of the native performance with speculative communication,
and over 90% when replicated over Infiniband. We observe close to
native performance with speculative communication of the Hadoop
master node even when replication takes places over Gigabit Eth-
ernet.

Acknowledgments
This work has been supported by the Core Research for Evolutional
Science and Technology (CREST) project of the Japan Science and
Technology Agency (JST).

95

References
[1] InfiniBand Trade Association. InfiniBand Architecture Specification,

Release 1.2.

[2] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: a compiler and runtime system for deterministic multithreaded
execution. In Proceedings of the fifteenth edition of ASPLOS on Archi-
tectural support for programming languages and operating systems,
ASPLOS ’10, pages 53–64. ACM, 2010. ISBN 978-1-60558-839-1.

[3] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Congestion
Avoidance on a Global Internet. IEEE Journal on selected Areas in
communications, 13:1465–1480, 1995.

[4] T. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance.
In Proceedings of the fifteenth ACM symposium on Operating systems
principles, SOSP ’95, pages 1–11, New York, NY, USA, 1995. ACM.
ISBN 0-89791-715-4.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live Migration of Virtual Machines. In NSDI’05:
Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation, pages 273–286, Berkeley, CA, USA,
2005. USENIX Association.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: high availability via asynchronous virtual ma-
chine replication. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, NSDI’08, pages 161–
174, 2008. ISBN 111-999-5555-22-1.

[7] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Commun. ACM, 51:107–113, January 2008.

[8] Y. Dong, Y. Zhang, and G. Liao. Optimizing Network I/O Virtual-
ization with Efficient Interrupt Coalescing and Virtual Receive Side
Scaling. In Proceedings of the 2011 IEEE International Conference
on Cluster Computing, CLUSTER ’11, 2011.

[9] Y. Du and H. Yu. Paratus: Instantaneous Failover via Virtual Machine
Replication. In Proceedings of the 2009 Eighth International Confer-
ence on Grid and Cooperative Computing, GCC ’09, pages 307–312.
IEEE Computer Society, 2009.

[10] Y. Du, H. Yu, G. Shi, J. Chen, and W. Zheng. Microwiper: Efficient
Memory Propagation in Live Migration of Virtual Machines. In
Proceedings of the 2010 39th International Conference on Parallel
Processing, ICPP ’10, pages 141–149, Washington, DC, USA, 2010.
ISBN 978-0-7695-4156-3.

[11] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.
Execution replay of multiprocessor virtual machines. In Proceedings
of the fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE ’08, pages 121–130, 2008. ISBN
978-1-59593-796-4.

[12] B. Gerofi and Y. Ishikawa. RDMA based Replication of Multiproces-
sor Virtual Machines over High-Performance Interconnects. In Pro-
ceedings of the 2011 IEEE International Conference on Cluster Com-
puting, CLUSTER ’11, pages 35–44, 2011.

[13] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed
TCP variant. SIGOPS Oper. Syst. Rev., 42:64–74, July 2008. ISSN
0163-5980.

[14] R. Hariharan and N. Sun. Workload Characterization of
SPECweb2005. http://www.spec.org/workshops/2006/
papers/02_Workload_char_SPECweb2005_Final.pdf, 2006.

[15] W. Huang, Q. Gao, J. Liu, and D. K. Panda. High performance
virtual machine migration with RDMA over modern interconnects. In
Proceedings of the 2007 IEEE International Conference on Cluster
Computing, CLUSTER ’07, pages 11–20, Washington, DC, USA,
2007. ISBN 978-1-4244-1387-4.

[16] A. Kangarlou, S. Gamage, R. R. Kompella, and D. Xu. vSnoop: Im-
proving TCP Throughput in Virtualized Environments via Acknowl-
edgement Offload. In Proceedings of the 2010 ACM/IEEE Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA,
2010. IEEE Computer Society.

[17] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
Linux virtual machine monitor. In Ottawa Linux Symposium, pages
225–230, July 2007. URL http://www.kernel.org/doc/ols/
2007/ols2007v1-pages-225-230.pdf.

[18] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn. Respec: efficient online multiprocessor replayvia spec-
ulation and external determinism. ASPLOS ’10, pages 77–90. ACM,
2010. ISBN 978-1-60558-839-1.

[19] M. Lu and T. cker Chiueh. Fast memory state synchronization for
virtualization-based fault tolerance. In Dependable Systems Networks,
2009. DSN ’09. IEEE/IFIP International Conference on, pages 534 –
543, 2009.

[20] R. McDougall and J. Anderson. Virtualization performance: perspec-
tives and challenges ahead. SIGOPS Oper. Syst. Rev., 44:40–56, De-
cember 2010. ISSN 0163-5980.

[21] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing network
virtualization in Xen. In Proceedings of the annual conference on
USENIX ’06 Annual Technical Conference, pages 15–28, Berkeley,
CA, USA, 2006. USENIX Association.

[22] A. Menon, S. Schubert, and W. Zwaenepoel. TwinDrivers: semi-
automatic derivation of fast and safe hypervisor network drivers from
guest OS drivers. In Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems, ASPLOS ’09, pages 301–312, New York, NY, USA, 2009.
ACM.

[23] M. Nelson, B. H. Lim, and G. Hutchins. Fast transparent migration for
virtual machines. In ATEC ’05: Proceedings of the annual conference
on USENIX Annual Technical Conference, page 25, Berkeley, CA,
USA, 2005. USENIX Association. URL http://portal.acm.org/
citation.cfm?id=1247360.1247385.

[24] G. Pokam, C. Pereira, K. Danne, L. Yang, S. King, and J. Torel-
las. Hardware and Software Approaches for Deterministic Multi-
Processor Replay of Concurrent Programs. In Intel Technology Jour-
nal, volume 13, issue 4, pages 20–41, 2009.

[25] D. J. Scales, M. Nelson, and G. Venkitachalam. The design of a
practical system for fault-tolerant virtual machines. SIGOPS Oper.
Syst. Rev., 44:30–39, December 2010.

[26] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin. MapReduce and parallel DBMSs: friends
or foes? Commun. ACM, 53:64–71, January 2010.

[27] Strom, R.E. and Bacon, D.F. and Yemini, S.A. Volatile logging in
n-fault-tolerant distributed systems. In Fault-Tolerant Computing,
Eighteenth International Symposium on, pages 44 –49, Jun 1988.

[28] Y. Tamura. Kemari: Virtual Machine Synchronization for Fault Toler-
ance using DomT. Technical report, NTT Cyber Space Labs, 2008.

[29] Test TCP (TTCP): Benchmarking Tool and Simple Network Traffic
Generator. http://www.pcausa.com/Utilities/pcattcp.htm, 2010.

[30] A. TM. Hadoop. http://hadoop.apache.org.
[31] Transmission Control Protocol. Protocol Specification. http://www.

ietf.org/rfc/rfc793.txt, 1981.
[32] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing

hardware reliability. In Proceedings of the 1st ACM symposium on
Cloud computing, SoCC ’10, pages 193–204, New York, NY, USA,
2010. ACM.

[33] M. Xu, R. Bodik, and M. D. Hill. A ”flight data recorder” for enabling
full-system multiprocessor deterministic replay. In Proceedings of the
30th annual international symposium on Computer architecture, ISCA
’03, pages 122–135. ACM, 2003. ISBN 0-7695-1945-8.

[34] X. Zhang, Z. Huo, J. Ma, and D. Meng. Exploiting Data Deduplication
to Accelerate Live Virtual Machine Migration. In Cluster Computing
(CLUSTER), 2010 IEEE International Conference on, pages 88 –96,
2010.

[35] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and X. Li. Improving
the Performance of Hypervisor-based Fault Tolerance. In Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1 –10, 2010.

96

