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ABSTRACT

The long standing consensus in the High-Performance Computing

(HPC) Operating Systems (OS) community is that lightweight ker-

nel (LWK) based OSes have the potential to outperform Linux at

extreme scale. To explore if LWKs live up to their expectation we

developed IHK/McKernel, a lightweight multi-kernel OS designed

for HPC, and deployed it on two high-end supercomputers to com-

pare its performance against Linux. Oakforest-PACS, an Intel Xeon

Phi (x86) based supercomputer, runs a moderately tuned Linux

distribution. Fugaku, the world’s fastest supercomputer at the time

of writing this paper, is based on Fujitsu’s A64FX (aarch64) CPU

that runs a highly tuned Linux environment.

We discuss recent developments in our OS and provide a detailed

description on the challenges of tuning Fugaku’s Linux for high-end

HPC. While in a moderately tuned environment McKernel signifi-

cantly outperforms Linux (by up to approximately 2X), on Fugaku

we observe an average of 4% speedup across all our experiments,

with a few exceptions where the LWK outperforms Linux by up to

29%. As part of our evaluation we also disclose a full scale (158,976

compute nodes) noise profile of the Fugaku system.
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1 INTRODUCTION

Lightweight kernel (LWK) [43] based operating systems (OS) de-

signed for high-performance computing (HPC) workloads have

been successfully deployed in the past on a number of large-scale

supercomputers. For example, Cougar [8] and Catamount [29], two

LWKs that originate from the SUNMOS [45] and PUMA [49] OSes

developed at Sandia National Laboratories and the University of

New Mexico, were the default operating systems on the compute

partitions of the ASCI Red and Red Storm supercomputers, respec-

tively. IBM’s Compute Node Kernel (CNK) [20, 33], another notable

lightweight kernel, was the default OS on the BlueGene line of

supercomputers.

Lightweight kernels provide excellent scalability, predictable

performance, i.e., very low OS jitter [40, 43], and present oppor-

tunities for rapid experimentation with novel OS concepts due to

their relatively simple code base [7, 8, 14, 37, 42], something the OS

community has for a long time recognized as nimbleness [13].

However, the lack of device driver support and the limited com-

patibility with the standard POSIX/Linux APIs in LWKs have pro-

hibited their wide-spread deployment. For example, it has been

reported that the main obstacle for carrying out large-scale eval-

uation of Kitten [31], the latest of the Sandia line of lightweight

kernels, has been the lack of support for Infiniband networks [37].

At the same time, neither Catamount nor the IBM CNK provided

full compatibility for a POSIX compliant glibc, limiting the avail-

ability of standard system calls, such as fork() [20]. The lack of

full POSIX/Linux support has been increasingly becoming problem-

atic with the shift to more diverse workloads in supercomputing

environments, e.g., Big Data analytics and machine learning [4].

Multi-kernel operating systems have been proposed to address

the aforementioned shortcomings of LWKs [17, 19, 30, 37, 38, 50],

where Linux and a lightweight kernel run side-by-side on compute

nodes with the motivation to provide LWK scalability, to retain

full compatibility with the Linux/POSIX APIs, and to reuse de-

vice drivers from Linux at the same time. Another advantage of

multi-kernels is performance isolation, a property that has become

increasingly desired with the emergence of many-core CPUs and

co-location of different workloads [18, 37].

Linux, on the other hand, has also improved throughout the

years. In particular, the introduction of Linux control groups (i.e.,

cgroups), which forms one of the pillars of application containers,

contributed significantly to Linux’ ability for providing predictable

performance and better workload isolation [52]. While previous

work has shown that lightweight multi-kernels can outperform

Linux on various HPC applications [14], as of today, there has been
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no evaluation that compared multi-kernels with a highly tuned

Linux environment.

We developed IHK/McKernel, a lightweight multi-kernel OS

designed for HPC, which we deployed on two high-end super-

computers to compare its performance against Linux. While on

Oakforest-PACS, an Intel Xeon Phi (x86) based supercomputer, only

a moderately tuned Linux environment is available, we went to

great lengths to optimize Linux for scalability on Fugaku. Fugaku is

the world’s fastest supercomputer at the time of writing this paper,

which is based on Fujitsu’s A64FX (aarch64) processor. This paper

describes the specific countermeasures we took to eliminate OS

jitter on Fugaku’s Linux environment and reports on our findings

how the lightweight multi-kernel fares against the aforementioned

Linux environments.

Specifically, we make the following contributions:

• We describe the measures we took for scaling Linux to Fu-

gaku’s over 150k compute nodes. In particular, we discuss

containers, virtual NUMA nodes, various techniques for

OS noise mitigation including ARM64’s remote Translation

Lookaside Buffer (TLB) invalidation issue, and the integra-

tion of cgroups with hugeTLBfs.

• We present the latest developments in IHK/McKernel, the

lightweight multi-kernel OS we developed and deployed on

two high-end supercomputers.

• We evaluate IHK/McKernel against the two Linux environ-

ments using micro-benchmark as well as a number of differ-

ent HPC applications.

• As part of the evaluation, we provide a full-scale noise profile

of the Fugaku Linux environment.

To the best of our knowledge, this is the first time a lightweight

multi-kernel has been compared against a highly tuned Linux envi-

ronment for large-scale scientific computing. We find that while

IHK/McKernel consistently outperforms themoderately tuned Linux

environment on Oakforest-PACS, on Fugaku we observe an average

of 4% performance improvement across all our measurements, with

a few exceptions where the LWK outperforms Linux by 29%.

The rest of this paper is organized as follows. We begin with

motivating our study in Section 2, which is followed by an overview

of our target platforms in Section 3. The challenges of scaling Linux

on the Fugaku system is described in Section 4. Section 5 provides an

overview of IHK/McKernel OS and discusses recent developments.

Evaluation is provided in Section 6. Section 7 discusses related work,

and finally, Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION

The most prevalent runtime behavior of parallel scientific appli-

cations executed on large-scale supercomputers is alternating be-

tween phases of computation and communication, also known

as bulk-synchronous parallel execution [48]. While there have

been various efforts to create runtime systems (e.g., task-based,

adaptive runtimes [3]) that avoid such behavior, as of today, bulk-

synchronous execution still dominates most HPC applications. For

example, eight out of the nine applications representing the nine

priority issues identified during the Fugaku development project

follow the bulk-synchronous parallel execution model [46].

When running bulk-synchronous applications on large-scale su-

percomputers, operating system management tasks may delay the

execution of application processes, which adversely affects overall

performance. Delay in application execution due to non-application

processes, such as OS daemons, kernel daemons, interrupt process-

ing, etc., are collectively called operating system noise, also known

as OS jitter [40]. Figure 1 shows the effect of OS noise on parallel

applications.

Figure 1: Impact of OS noise on bulk-synchronous parallel

applications

The delay due to OS noise for bulk-synchronous applications

can be estimated as the maximum length of the noises happening

in the aggregated synchronization interval, which is calculated as

the synchronization interval of the application times the number

of threads [9]. Let us group the noises by their lengths and denote

by Li the length of the i-th group, byM the number of groups, by

N the number of threads, by Ii the noise occurrence interval of the
i-th group and by S the synchronization interval of the application.

The delay can be estimated as follows:

M
max
i=1

((
1 −

(
1 −

S

Ii

)N )
×
Li
S

)
(1)

For example, OS noise could slow down an application with N =
100, 000 threads with S = 250 µs synchronization interval by 20%

with a machine with only one noise group with L1 = 1 ms and

I1 = 500 s. Therefore, reducing OS noise is essential for large-scale

supercomputing environments.

The operating system community in high-performance com-

puting has spent decades on addressing OS noise mitigation and

various approaches have been proposed throughout the years [13].

Due to its widely available, standard development environment

and excellent tools support Linux has emerged as the dominant

OS for large-scale supercomputers. Although the expectation that

lightweight kernel based OSes have the potential to outperform

Linux at extreme scales endured, how such an approach performs

in comparison to a highly tuned Linux environment remains an

open question.
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Table 1: Overview of platforms and Linux runtime settings

Platform / Oakforest-PACS [24, 26] Fugaku [12, 44]

Attribute

Node level

CPU model Intel Xeon Phi 7250 Knights Landing (KNL) Fujitsu A64FX

Instruction set architecture x86_64 ARM aarch64
Number of CPU cores 68, 4-way SMT 50 (or 52, depending on the node), no SMT

Number of TLB entries L1: 64, L2: 64 L1: 16, L2: 1,024

Memory 96GB DDR4 & 16GB MCDRAM 32 GB HBM2

Linux distribution CentOS 7.3 RedHat Enterprise Linux 8.3

Linux kernel version 3.10.0-693.11.6 4.18.0-240.8.1.el8_3
Containerization No Docker

nohz_full on app cores Yes Yes

CPU isolation No cgroups
IRQ steering No Routed to OS cores

Large page support THP HugeTLBfs

System level

Peak performance 25 PFlops 488 PFlops

Number of compute nodes 8,192 158,976

Interconnection network Intel OmniPath Fujitsu TofuD

3 PLATFORMS

In order to lay the groundwork for discussion on operating system

issues to extreme scale HPC, we first provide an overview of the

platforms used in this study with a special emphasis on their system

software environment. Table 1 summarizes various hardware and

software attributes of the two platforms.

3.1 Oakforest-PACS

Oakforest-PACS (OFP) is a 25 peta-flops supercomputer installed at

JCAHPC, managed by The University of Tsukuba and The Univer-

sity of Tokyo [26]. OFP is comprised of eight-thousand compute

nodes that are interconnected by Intel’s Omni Path network. Each

node is equipped with an Intel® Xeon Phi™ 7250 Knights Landing

(KNL) processor, which consists of 68 CPU cores, accommodating

4 hardware threads per core. The processor provides 16 GB of in-

tegrated, high-bandwidth MCDRAM and it also is accompanied

by 96 GB of DDR4 RAM. From the operating system’s perspective

there are 272 logical CPUs.

The software environment on OFP is as follows. Compute nodes

run CentOS 7.3 with Linux kernel version 3.10.0-693.11.6 that

support various Intel provided kernel level improvements specifi-

cally targeting the KNL processor. The OFP operating system envi-

ronment does not strictly divide processor cores into system versus

application dedicated partitions. While there is a designated group

of 256 logical CPU cores that users are encouraged to use for ap-

plications, the entire chip is available for applications if desired.

Application cores, nevertheless, are configured with the nohz_full

Linux kernel argument to disable kernel timer interrupts and thus

minimize operating system jitter. We note that device IRQs are

balanced across the entire chip and are not restricted to cores on

which timer interrupts are enabled. Previous work has shown that

pinning application threads to the processor cores with no timer

interrupts yields significant performance benefits [14].

The primary runtime environment for HPC applications on OFP

is Intel MPI with the GNU standard library and the Linux transpar-

ent hugepages facility is enabled to reduce TLB misses.

3.2 Fugaku

Fugaku is a Fujitsu built supercomputer installed at RIKEN Center

for Computational Science [44]. At the time of writing this paper,

Fugaku is number one on the TOP500 list of the world’s fastest

supercomputers. It offers a theoretical peak double precision perfor-

mance of 488 peta-flops. Fugaku is comprised of 158,976 compute

nodes that are interconnected by the Fujitsu TofuD network. Each

node is equipped with a Fujitsu A64FX processor, which consists of

up to 52 CPU cores and provides the ARM64 (aarch64) instruction

set architecture (ISA). The processor is integrated with 32GB HBM2

high-bandwidth memory.

Compute nodes on Fugaku run Red Hat Enterprise Linux (RHEL).

48 CPU cores can be used by applications and the remaining CPU

cores (also referred to as assistant cores) are dedicated to system

activities. Note that most compute nodes on Fugaku are equipped

with only 50 CPU cores, on those nodes the number of OS cores in

limited to two. Application cores are not only configured with the

nohz_full Linux kernel argument to minimize operating system

jitter, but are also separated from system processes (e.g., daemon

processes) using the Linux control groups (cgroups) facility. For

further details on Fugaku’s software stack and the approach we

took to scale Linux for HPC see Section 4.

One notable difference between the Xeon Phi and A64FX is the

number of TLB entries supported. As shown in the table, while

Xeon Phi has only 64 last level TLB entries, A64FX provides 1,024.

This, in combination with the lower memory capacity on A64FX,

implies larger potential coverage of the virtual address space and

thus, higher memory access performance. On the other hand, it

also has implications on the cost of TLB invalidation, which we

will detail in Section 4.2.2.
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4 PERFORMANCE SCALING LINUX ON
FUGAKU

4.1 Overall Approach for Optimizing
Application Performance

Our overall approach is to avoid custom modifications to the Linux

kernel source code shipped by RHEL as much as possible. This

decision has been partly driven by our experience operating the

K Computer, where custom kernel changes prevented us from fol-

lowing the mainline kernel’s development due to maintainability

issues [28]. When a fix is absolutely necessary to the Linux kernel,

we promote patches directly to the RHEL distribution and do not

apply them independently.

Fugaku provides a scalable execution environment for high-

performance computing applications. To provide such an environ-

ment, system operation overhead must be reduced. Specifically, we

use the following techniques for this purpose.

4.1.1 Containerization. On Fugaku, all applications run in Docker

containers. Users can either use container images defined by the

system administrators or their job will execute in a mode that

appears to run on the host Linux. Such jobs have direct access to

the host’s root file system. In either case, Docker creates cgroups
under the hood to manage compute resources for containers. An

application cgroup is used to limit application memory usage and

to bind user processes to specific cores and non-uniform memory

access (NUMA) domains. In addition, we create a dedicated cgroup
for system processes to isolate system CPUs and memory, which

we detail in Section 4.2.

4.1.2 Virtual NUMA nodes. On A64FX, it was introduced into the

system firmware that the physical address space are divided into

system and application areas which are exposed as different NUMA

domains to the Linux kernel. We call this technique virtual NUMA

nodes. Memory fragmentation is an important factor that affects

performance, which occurs with newly allocated memory areas that

have been used before. Such allocations can consequently degrade

performance for future memory allocations. The virtual NUMA

node technique ensures that memory allocations by non-application

processes can not utilize application dedicated memory areas, thus

mitigating performance degradation by memory fragmentation.

4.1.3 Large page support. For applications that use large amounts

of memory, the cost of virtual memory translations (i.e., TLB misses

and HW page table walks) affects execution performance. We prior-

itize larger page (a.k.a., huge page) backed memory allocations over

the normal page size. Huge pages reduce the cost of the address

translation process and improve memory access performance.

ARM64 supportsmultiple base page sizes [2]. On a typical aarch64
system the base page size is 4KB, but RHEL is using a base page

size of 64KB. ARM64 also provides a special feature called the page

table contiguous bit, which enables the virtual to physical address

translation for 32 physically contiguous pages to be cached by a

single TLB entry if a designated bit in each page table entry is set,

which can significantly reduce TLB misses.

Linux supports two methods for utilizing large pages, Transpar-

ent Huge Pages (THP) and hugeTLBfs. With 64kB base page size,

using the contiguous bit results in 2MB sized large pages, while

the regular large page is 512MB. Unfortunately, 512MB sized large

pages easily lead to memory fragmentation problems and to ineffi-

cient utilization of large pages in general. As Linux only supports

the contiguous bit feature in hugeTLBfs and not in the THP im-

plementation, we opted to use hugeTLBfs on Fugaku. Normally,

hugeTLBfs reserves a pool of large pages at boot time to ensure

their availability, which in turn limits the number of normal pages

available in the system. This can be a disadvantage for applications

which who do not require large pages, e.g., ones that do a lot of small

dynamic allocations. To address both needs, we enable hugeTLBfs

overcommit without reserving a pool and allocate large pages by

the buddy allocator at runtime. However, the memory cgroup is

not sufficiently integrated with hugeTLBfs and is unable to limit

the usage of surplus large pages allocated by overcommit. To solve

this problem, we hook a Linux kernel function in the cgroup imple-

mentation via a kernel module to override the default behavior and

properly charge surplus hugeTLBfs pages to the memory cgroup.
Fugaku’s runtime system provides a strong integration with the

Linux kernel’s hugeTLBfs facility. It enables the usage of large page

backedmemory for all processmemory areas, such as static data (i.e.,

.data and .bss), the stack area as well as the heap (the dynamic

memory area primarily managed through the mmap() system call).

The allocation scheme (i.e., pre-allocation based or demand paging)

can be controlled by specific environment variables.

4.1.4 NUMA aware process and thread binding. The A64FX node

topology is organized around four application NUMA domains

with 12 CPU cores on each. To maximize data locality, Fugaku’s

job scheduler automatically binds MPI process to specific NUMA

domains depending on the number of ranks per node and users do

not need to deal with the intricate interfaces of process binding

provided by MPI implementations. We note that sophisticated users

may choose to disable the default binding behavior and use the

standard Linux interfaces (e.g., numactl) if they wish so.

4.1.5 Hardware Barrier. The A64FX hardware provides a synchro-

nization method for parallel applications called the hardware bar-

rier [12] to accelerate synchronization between processes and/or

threads inside a node. Support for the hardware barrier feature is

integrated into the Fugaku’s runtime system, e.g., into the OpenMP

implementation.

4.2 OS Noise Elimination Techniques

As mentioned in Section 2, in large scale supercomputing systems

OS noise can have a significant impact on application performance.

Weworked together with RedHat to reduce OS noise in order to take

advantage of having a standard distribution and to avoid custom

changes to the Linux kernel. We describe our methodology in this

section. Much of the OS noise is eliminated by dividing the system

resources into a system CPU core partition and an application CPU

core partition and binding system tasks to the former partitionwhile

application tasks to the latter. Specifically, the following hardware

resources are partitioned into system versus application slices.

CPU cores The A64FX processor has 2-4 assistant cores in ad-

dition to the 48 application cores. System processes such as
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OS daemons are bound to system cores and application pro-

cesses are bound to application cores by using cgroups. De-
vice IRQs are routed to assistant cores by configuring the rele-

vant procfs files (e.g., /proc/irq/IRQ_NUMBER/smp_affnity).
Additionally, kworker tasks are also bound to assistant cores
by changing the CPU affinity value through their sysfs
interface.

Memory The physical memory address space is divided into a

system region and an application region using virtual NUMA

nodes. System processes are bound to the system region and

application processes are bound to the application region

through the Linux kernel’s cgroup facility.
CPU caches Cache blocks are also divided into a system seg-

ment and an application segment by using A64FX’s dedicated

feature to partition cache blocks, called sector cache [12]. As-

sistant cores are bound to the system region and application

cores are bound to the application region by using this cus-

tom HW feature.

The strict partitioning of hardware resources has a profound

impact on mitigating interference between the operating system’s

internal activities and the application processes. However, various

software interference remains. We discuss how such jitter can be

mitigated focusing specifically on kernel and user level components.

4.2.1 Techniques in Kernel Space. For identifying kernel mode

tasks that interfere with application code we utilize execution time

profiling and ftrace, the Linux kernel’s call tracing facility. Such
interfering tasks can be suppressed by disabling them entirely, re-

ducing their invocation frequency and/or binding them to assistant

CPU cores. For example, the ftrace analysis revealed that a kernel
thread for block I/O processing is spawned to application cores

when using blk-mq even when unbound kworker tasks are bound

to assistant cores because their binding is controlled by a dedicated

data structure in the kernel (i.e., struct blk_mq_hw_ctx.cpumask).
In order to force them to specific processor cores we explicitly up-

date the aforementioned CPU mask.

Another notable issue was a periodic access to performance mon-

itoring unit (PMU) counters, such as the ones obtained with the

perf_event_open() system call. We identified that PMU counters

were read on all CPU cores in kernel space (involving IPIs), even

if the access was initiated by a process bound to an assistant CPU

core. After careful investigation, we found that the Fujitsu technical

computing suite (TCS) [11], a middleware product that provides

exascale system operation and application development environ-

ments, initiated these PMU access operations. TCS job operation

software collects PMU counters to obtain number of execution cy-

cles, floating-point instruction operations, memory read requests,

memory write requests, and sleep cycles. We resolved this problem

by providing a command that allows users to stop the automatic

reading of PMU counters on a per-job basis, thus eliminating the

implied interference.

4.2.2 Techniques in User Space. OS noise usually refers to the de-

lay in the execution of application code due to activities in the OS

kernel, such as an interrupt handler. However, that is not all. In

today’s multi-core systems, the OS code running on one CPU core

may affect the execution time of applications running on another

processor core. The occurrence of such noise can be confirmed by

capturing the number of instructions retired and the execution time

in user space and kernel space, respectively, using the performance

counters of the CPU. If the number of executed instructions in ker-

nel space increased, one can attribute such noise to OS processing,

such as to interrupt or page fault handlers. On the other hand, when

the execution time increases due to hardware sharing or internal

contention in the hardware, there is no change in the number of

executed instructions neither in user space nor in kernel space, and

only the execution time increases.

Such interference may occur due to the fact that memory band-

width to the main memory and/or to the last level cache are shared

by multiple CPU cores. In Fugaku, TLB flush processing also had

a large effect on performance, so countermeasures were required.

As opposed to sending IPIs to specific processor cores for explicit

remote TLB invalidation, the ARM64 ISA provides a special op-

tion to the TLB flush instruction (i.e., TLBI) so that invalidation is

performed in the entire Inner-Sharable domain, which entails all

CPU cores on the chip. On A64FX used by Fugaku, we found that

the execution of this instruction affects the performance of other

CPU cores due to the relatively large TLB caches of A64FX (see

Table 1). Experiments have confirmed that a delay of about 200 ns

is generated by a single TLB flush instruction in A64FX. On Linux,

some operations that release large amounts of memory, such as

garbage collection at Go’s runtime system and process termina-

tion operations, can cause hundreds to thousands consecutive TLB

flushes, resulting in hundreds of microseconds of noise.

We worked with RedHat to address this issue by upstreaming

Linux changes to reduce TLB flush broadcasts [1] and by incorpo-

rating improvements into RHEL 8.2 for use specifically for Fugaku’s

operation. In particular, the patch reduces TLB flush processing by

utilizing a TLB flush instruction that affects only one core without

broadcasting TLB flushes for processes that have all threads on a

single CPU core, such as single-threaded processes. As with other

ISAs (e.g., x86_64 and SPARC64), it is also possible to implement

all TLB flush processing in software that combines IPI and local

TLB flush. However, Arm64 is originally designed with a relatively

fast hardware implementation so that TLB flush processing to all

processor cores can be called in one instruction and software im-

plementation of multi-core TLB flush processing is significantly

slower than the hardware implementation. Therefore, only the un-

necessary process of broadcasting TLB flush for processes executed

on a single CPU core is reduced and we continue using the broad-

cast based instruction for flushing TLBs on multiple CPU cores. In

TCS, all components necessary for system operation, such as OS

daemons and interrupts are bound to a single specific processor

core.

5 IHK/MCKERNEL

This section gives a general overview of IHK/McKernel and de-

scribes recent developments targeted for the Fugaku system.

The IHK/McKernel multi-kernel operating system is comprised

of twomain components. A low-level software infrastructure, called

Interface for Heterogeneous Kernels (IHK) [47], provides capabil-

ities for partitioning resources in a many-core environment (e.g.,

CPU cores and physical memory) and it enables management of
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lightweight kernels. McKernel is a lightweight co-kernel developed

on top of IHK. An overview of the multi-kernel architecture is

depicted in Figure 2.

IHK is capable of allocating and releasing host resources dynam-

ically and no reboot of the host machine is required when altering

configuration. It is implemented as a collection of Linux kernel mod-

ules without any modifications to the Linux kernel itself, which

enables straightforward deployment of the multi-kernel stack on

a wide range of Linux distributions. Besides resource and LWK

management, IHK also facilitates an Inter-kernel Communication

(IKC) layer, which is used for implementing system call delegation

(discussed below).

Figure 2: Architectural overview of IHK/McKernel and its

integration with Docker containers

McKernel has been developed from scratch and while it is de-

signed explicitly for high-performance computing workloads it

retains a Linux compatible application binary interface (ABI) so

that it can execute unmodified Linux binaries. There is no need

for recompiling applications or for any McKernel specific libraries.

McKernel implements only a small set of performance sensitive

system calls and the rest of the OS services are delegated to Linux.

Specifically, McKernel implements memory management, it sup-

ports processes and multi-threading, it has a simple round-robin

co-operative (tick-less) scheduler, and it supports standard POSIX

signaling. It also implements inter-process memory mappings and

it offers interfaces for accessing hardware performance counters.

For each OS process executed onMcKernel there is a process run-

ning on Linux, which we call the proxy-process. The proxy process’

main role is to assist system call offloading. Essentially, it provides

the execution context on behalf of the application so that offloaded

system calls can be invoked in Linux. For more information on

system call offloading, refer to [17]. The proxy process also pro-

vides means for Linux to maintain various state information that

would have to be otherwise kept track of in the co-kernel. McKernel

for instance has no notion of file descriptors, but it simply returns

the number it receives from the proxy process during the execu-

tion of an open() system call. The actual set of open files (i.e., file

descriptor table, file positions, etc.) are managed by the Linux ker-

nel. Relying on the proxy process, McKernel provides transparent

access to Linux device drivers not only in the form of offloaded

system calls (e.g., through write() or ioctl()), but also via direct

device mappings. Details of the device mapping mechanism has

been described elsewhere [18].

5.1 Development for Fugaku

IHK/McKernel was originally developed for x86 [18, 47]. Part of

the Fugaku effort has been to port the multi-kernel OS to Fugaku’s

hardware, i.e., supporting the aarch64 ISA with all the ARM spe-

cific system level requirements. Additionally, we have integrated

IHK/McKernel into Fugaku’s containerized runtime as well as into

the batch job submission system. Fugaku runs a proprietary job

scheduler developed by Fujitsu. As opposed to OFP, where booting

IHK/McKernel entails nothing more than calling a few privileged

mode scripts in the prologue and epilogue of a particular job, on

Fugaku there is a much tighter integration between IHK/McKernel

and the Fujitsu environment. This is primarily due to the unique

features of the Fugaku platform (e.g., the hardware barrier, the way

how process placement is performed, its interaction with MPI, etc.,

which we described in Section 4.1). One may consider the LWK as a

plugin replacement to the cgroup facility of the Linux kernel with

the important addition of its ability of kernel level specialization.

In combination with containers, which enable customization of

user-space components, the multi-kernel plus container approach

enables specialization of the entire software stack [15].

Finally, another notable extension to McKernel is the Tofu Pi-

coDriver. At high level, the Tofu network’s system programming

interface provides similar abstractions to that of Infiniband or Intel’s

OmniPath, but at the implementation level there are many subtle

differences. For example, the registration of the so called STAGs, a

concept similar to the Infiniband verbs layer’s memory registration

is performed through ioctl() calls into the Tofu driver. Because by
default this is offloaded to Linux in our multi-kernel framework, it

introduces additional latency. To eliminate such overhead we have

developed a similar split driver infrastructure to that of OmniPath’s

PicoDriver described in [16]. We note that all of our experiments

have been conducted using this capability.

6 EVALUATION

This section compares the performance of IHK/McKernel with

Linux on two supercomputers. We describe the platforms and the

benchmarks we used and present experimental results.

6.1 Experimental Environment

In addition to the platform description in Section 3 we provide

further details of the exact software environment used in this paper.

For all of our experiments on OFP, we configured the KNL pro-

cessor in Quadrant flat mode; i.e., MCDRAM and DDR4 RAM are

addressable at different physical memory locations and appear as

different NUMA domains. Applications were compiled with Intel

compiler 19.0.3.199 and use the Intel MPI Version 2019 Update 3

Build 20190214 environment. For the McKernel measurements we

deployed IHK and McKernel, commit hash 3bd05 and da77a, respec-

tively. We utilized IHK’s resource partitioning feature to reserve

processor cores and physical memory dynamically.

On Fugaku, we compare the Linux environment described in

Section 3 and Section 4 with IHK and McKernel commit hash 797a2

and b9edb, respectively. TCS version used for our experiments is

1.2.30a, a version used during the early access program of Fugaku.

IHK/McKernel is open source and publicly available at:

https://github.com/RIKEN-SysSoft/mckernel.
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Figure 3: Impact of individual noise countermeasures on Fugaku Linux as captured by FWQ

6.2 Benchmarks and Applications

For noise measurement we use the Fixed Work Quanta (FWQ)

benchmark [32]. FWQ performs a fixed amount of work in a loop,

which contains only computation and does not access memory nor

performs file I/O, it records the execution time for each loop itera-

tion. System noise can be measured by the difference in the values.

In all of our FWQ measurements we configure the benchmark to

run for approximately 6.5ms, the largest value we could configure

below 10ms on Fugaku. OFP uses the same target interval in terms

of elapsed time. We chose this interval to match Linux’ default

timer interrupt frequency.

As for application level evaluation, we use the following codes.

• AMG2013 is a parallel algebraic multigrid solver for linear

systems arising from problems on unstructured grids. The

code is written in ISO standard C [21].

• Milc represents part of a set of codes written by the MIMD

Lattice Computation (MILC) collaboration used to study

quantum chromodynamics (QCD), the theory of the strong

interactions of subatomic physics. It performs simulations

of four dimensional SU(3) lattice gauge theory on MIMD

parallel machines. Strong interactions are responsible for

binding quarks into protons and neutrons and holding them

all together in the atomic nucleus [35].

• Lulesh is the Livermore Unstructured Lagrangian Explicit

ShockHydrodynamics benchmark, which is part of the Shock

Hydrodynamics Challenge Problem. It was originally defined

and implemented by LLNL as one of five challenge problems

in the DARPA UHPC program and has since become a widely

studied proxy application in DOE co-design efforts for exas-

cale [27].

• LQCD benchmarks the performance of a linear equation

solver with a large sparse coefficient matrix appearing in

lattice Quantum Chromodynamics (QCD) simulations ex-

plaining the nature of protons and neutrons in terms of

elementary particles called quarks and gluons. The four di-

mensional (space and time) coordinate is latticized and the

equation of motion for quarks is converted to a large scale

linear equation by the finite-difference method. It solves the

equation for the O(a)-improved Wilson-Dirac quarks using

the BiCGStab algorithm [25].

• GeoFEM solves 3D linear elasticity problems in simple cube

geometries by parallel finite-element method (FEM). Tri-

linear hexahedral elements are used for the discretization.

The Conjugate Gradient solver preconditioned by Incom-

plete Cholesky Factorization (ICCG) is applied for solving

linear equations with sparse coefficient matrices. Additive

Schwartz Domain Decomposition is introduced for stabiliza-

tion of the parallel preconditioner [34].

• GAMERA solves 3D nonlinear seismic wave propagation

problems in complex geometry domain based on implicit

low-order finite-element method. Second-order tetrahedral

elements are used for discretization, with a multi-grid and

mixed precision arithmetic enhanced adaptive conjugate

gradient solver. A matrix free matrix-vector multiplication

method is used for reducingmemory transfer and footprint [23].

AMG2013, Milc and Lulesh are from the CORAL benchmark

suite for which we have only x86_64 optimized versions. As A64FX

optimized versions of these codes are not available, we provide

results on these applications using only OFP.

On the other hand, LQCD and GAMERA are two of the priority

target applications of the Fugaku development project. Both of

these have highly optimized versions for both target platforms that

entail substantial code changes, but the different versions of the

applications address the same science problem. As for GeoFEM,

while it has a highly optimized version for OFP, it also has a few

minor tweaks to support efficient execution on Fugaku.

6.3 Results of OS Noise Elimination
Techniques on Linux

This section provides evaluation of the impact of various noise elim-

ination techniques on Linux. We emphasize that these techniques

have been only applied to Fugaku, as we have no control over the

OFP Linux environment, we simply report the results we captured

on that platform.

The noise elimination techniques are evaluated by using FWQ.

The metrics used are the rate of noise that occurs per unit time

(which we call noise rate) and the maximum noise length. The noise

impact on bulk-synchronous applications is often dominated by the

ratio of the maximum noise length to the synchronization interval,

which has been shown in the past through simulations as well as
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Figure 4: FWQ latency cumulative distribution function on OFP and Fugaku, comparing Linux vs. McKernel

kernel level noise injection [10, 22]. Using Eq. 1, this is because the

1 − (1 − S

Ii
)N component, which represents the probability for the

max noise to hit and delay at least one of the N synchronization

intervals gets close to 1 due to the large N . For example on full

scale Fugaku, where N equals to 7,630,848 (the total number of HW

threads), even with as small rate as once in every 600 seconds the

probability is close to 1.

Table 2: Effectiveness of individual noise elimination tech-

nique

Disabled technique Maximum noise

length (us)

Noise rate

None 50.44 3.79E-6

Daemon process 20346.98 9.94E-4

Unbound kworker tasks 266.34 4.58E-6

blk-mq worker tasks 387.91 4.58E-6

PMU counter reads 103.09 8.27E-6

CPU-global flush instruction 90.2 3.87E-6

The noise elimination techniques we evaluate are as follows.

Binding daemon processes to assistant cores, binding unbound

kworker tasks to assistant cores, binding blk-mq worker tasks to
assistant cores, stopping periodic PMU counter reads, and suppress-

ing CPU-global TLB flush instruction. For each of these measures,

we capture FWQ results with the selected one turned off and com-

pare it with a baseline where all countermeasures are enabled.

We note that these measurements were performed on an in-

house 16-node A64FX system with identical hardware and software

environment to that of the main Fugaku system. Table 2 shows the

maximum noise lengths and the corresponding noise rates, calcu-

lated as follows. Let us denote the execution time of i-th FWQ loop

by Ti , Tmax and Tmin then indicate the maximum and minimum

values across all loops, respectively. The maximum noise length is

calculated by Tmax − Tmin and the noise rate is obtained by the

following formula:

∑
n

i=0
Ti−Tmin

Tmin

n
(2)

In addition, we plot time series of noise length data calculated

from the output of FWQ. Noise length Li is calculated as Ti −

Tmin . Figure 3a shows the noise lengths when FWQ runs with

all countermeasures enabled, while Figure 3b and Figure 3c show

the noise lengths with individual countermeasures disabled. The

X axis indicates sample ID, i.e., the i-th loop of FWQ and the Y

axis plots the corresponding Li . Sample ID increases once in every

approximately 6ms in an ideal condition without noise.

As one can see from the table and the figures, each measure

eliminates a significant amount of jitter from the system. Making

sure OS daemons are restricted to assistant cores has the most

pronounced effect, eliminating as much excess noise as 20 millisec-

onds. Binding kworkers, blk-mq and the avoidance of global TLB

invalidations have an impact in the range of up to 400μs. However,
there still remains some OS noise even when applying all of the

noise elimination techniques. We found that the main cause of

the remaining noise is a Linux tool called sar, which periodically

monitors system activities including CPU, memory, I/O, network,

context switches and paging. This service is required on Fugaku to

be turned on for operation purposes.

To get a better assessment of OS noise in the overall system we

also captured FWQ data at scale. Specifically, we extended FWQ

to run on an arbitrary number of nodes (using MPI) and measure

OS noise on all CPU cores simultaneously. We ran ten iterations

of measurements that last for approximately 6 minutes, capturing

a noise profile that covers one hour altogether. Due to the large

amount of raw data that would need to be saved, we in-situ select the

100 worst performing compute nodes (i.e., the ones with the largest

noise duration) and save data to the parallel file system only on

those. Using all the data captured we plot cumulative distribution

functions of the noise data in Figure 4 comparing OFP against

Fugaku, using both Linux and IHK/McKernel.

On OFP, we used 1,024 nodes for this experiment because we

did not have exclusive access to the entire machine. On Fugaku, we

provide data for the following three configurations. For McKernel,

we had exclusive access to 24 racks (9,216 compute nodes) and

provide data on that scale. For Linux, we show measurements using

the full scale (158,976 compute nodes) Fugaku system, and for fair-

ness we also use the same 24 racks on which the McKernel results

were obtained. X axis indicates the FWQ iteration length and Y axis

represents the cumulative distribution function (i.e., the tail latency

of FWQ). We scale the X axis on both OFP (Figure 4a) and Fugaku
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Figure 5: Application results exclusively on Oakforest-PACS

(Figure 4b) results to the same interval so that results from the two

systems can be easily compared.

The first observation is that OFP is significantly more jittery

compared to Fugaku. In particular, on OFP we observe FWQ itera-

tions under Linux that last for up to 24ms (note that the benchmark

is configured to capture periods of 6.5ms), while on Fugaku the

largest FWQ value is around 10ms. With respect to Linux vs. IHK/-

McKernel, on OFP McKernel provides significant noise reduction,

the largest value on McKernel remains smaller than 7ms. However,

the situation on Fugaku is more intricate. While the full scale Linux

numbers clearly look more jittery than McKernel, Linux on 24 racks

is in fact not that different, only slightly worse than McKernel’s per-

formance. Due to resource limitations and stability issues we were

unable to capture IHK/McKernel results on full scale, but knowing

that it performs absolutely no background activities we speculate

that noise profile on full scale would not look significantly different

than on 24 racks.

6.4 Application Level Results

Let us turn our attention to application level evaluation. As we

described in Section 6.2, we gathered results on three CORAL mini-

apps using only OFP and another three primarily from the Fugaku

development project comparing Linux with IHK/McKernel both on

OFP and on Fugaku. We note that similarly to the FWQ measure-

ments, on Fugaku resource limitations and stability problems pre-

vented us from gathering full scale measurements and we present

numbers on up to 24 racks. On both platforms we utilize IHK/-

McKernel’s integration with the job submission system and run

the measurements through the batch job system, however, we note

that on Fugaku we made sure that for each node count the exact

same compute nodes are utilized for both the Linux and McKernel

measurements. We also note that while we show numbers on both

platforms using up to 8k compute nodes, because the number of

HW threads on the Xeon Phi chip is significantly larger than that

on A64FX, in absolute terms OFP results represent higher level of

parallelism, 2,097,152 and 393,216 HW threads on OFP and Fugaku,

respectively.

Figure 5 shows application level results for the CORAL work-

loads on OFP. On each plot, X axis denotes the number of compute

nodes and Y axis indicates performance. Linux numbers (blue bars)

are normalized to one for each node count and McKernel perfor-

mance (orange bars) indicate relative performance to Linux. We

plot relative performance as opposed to runtime because some ap-

plications report custom metrics. Unless stated otherwise we ran

each experiment at least three times and show mean performance

with error bars indicating variation from the mean where enough

data are available.

As seen in Figure 5, IHK/McKernel outperforms Linux on all

CORAL benchmarks we used for evaluation. On AMG2013 we ob-

serve up to approximately 18% performance improvement with a

slight tendency of increasing advantage as we scale out. On the

other hand, we observe a more pronounced performance increase

with the growing scale when running Milc and Lulesh, for which

McKernel attains up to 22% and almost 2X improvement, respec-

tively. As we discussed in previous work, the improvement of Lulesh

mainly stems from heap management issues in Linux [14].

Figure 6 and Figure 7 summarize application level results compar-

ing OFP and Fugaku on LQCD, GeoFEM and GAMERA. Similarly

to the CORAL applications, McKernel on OFP consistently out-

performs Linux on these applications as well. Results are shown

in Figure 6. Although we have results for only up to 2k nodes on

LQCD, we observe an increase in McKernel’s performance gain as

we scale to larger node counts reaching close to 25% at 2k nodes.

For GeoFEM, we have full-scale OFP measurements with McKernel

outperforming Linux by up to 6% at the entire machine. To much

of our surprise we also find a significant amount of variation (indi-

cated by large error bars) across measurements even on McKernel,

although we believe this could be related to the fact that different

measurements run on different nodes, which is particularly true for

smaller node counts. With respect to GAMERA, we have limited

data points for showing error bars on all scales and decided to show

only the mean performance. As seen, McKernel outperforms Linux

by over 25% on half-scale of the OFP supercomputer.

Fugaku results are shown in Figure 7. We observe substantially

lower performance gain with McKernel over Linux on the Fugaku

machine, although arguably 8k compute nodes on Fugaku is still

relatively small scale when considering the overall system’s node

count. LQCD performs almost identical on the two operating sys-

tems. For GeoFEM, we observe an average of 3% performance im-

provement over Linuxwhen running onMcKernel and the tendency

indicates the gain would possibly remain constant even if we scaled
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Figure 6: Application results on Oakforest-PACS

(a) LQCD (b) GeoFEM (c) GAMERA

Figure 7: Application results on Fugaku

further out. Only for GAMERA we see an increase in performance

gain reaching up to 29% on McKernel when running on 8k com-

pute nodes. We did investigate the GAMERA results further and

found that McKernel performs significantly better in the first step

(out of three) of the application, which may be related to some

sort of overhead in initialization on Linux. Had the application run

further steps we would likely see McKernel’s advantage decrease.

Unfortunately, we had a very narrow window of opportunity for

pinpointing where the performance difference stems from, but we

did observe faster RDMA registration in McKernel due to the LWK

integrated Tofu driver (described in Section 5.1), which we suspect

as one of the main contributors to the performance improvement.

7 RELATEDWORK

Without striving for completeness, this section discusses the most

related studies in the domain of operating systems for HPC. A more

complete coverage of this domain is presented in [13].

Lightweight kernels (LWKs) [43] designed for HPC applications

date back to the early 1990s. These kernels ensure low operat-

ing system noise, high scalability and predictable performance for

large scale scientific applications. Catamount [29], developed at

Sandia National laboratories, was one of the first LWKs that has

been deployed in a production environment. IBM’s BlueGene line

of supercomputers have also been running an HPC specific LWK

called the Compute Node Kernel (CNK) [20]. While Catamount has

been written entirely from scratch, CNK builds upon a substantial

amount of code from Linux so that it could provide better support

standard UNIX features. The most recent LWK from Sandia Na-

tional Laboratories is Kitten [39], which is unique compared to the

prior LWKs because it provides a more complete Linux-compatible

environment. There are also LWKs that start from a full Linux sys-

tem and modifications are introduced to meet HPC requirements.

Cray’s Extreme Scale Linux [36, 41], ZeptoOS [51] and the OS that

was deployed on the K Computer [28] follow this path. These ef-

forts usually eliminate daemon processes, simplify the scheduler,

and replace the memory management system. Linux’ complex code

base, however, can make it difficult to mitigate all the undesired

effects, as we also showed in this paper when capturing FWQ num-

bers on the full scale Fugaku machine. In addition, for projects that

do modify the Linux kernel it is also cumbersome to keep those

modifications in sync with the rapidly evolving Linux source code.

With the advent of many-core processors, the lightweight multi-

kernel approach has been proposed [18, 30, 37, 50]. Multi-kernels

run Linux and an LWK side-by-side on different cores of the CPU

to provide OS services in collaboration between the two kernels.

FusedOS [38] was the first proposal that pioneered this approach.

It’s primary motivation was to address CPU core heterogeneity

between system and application cores. In contrast to McKernel,

FusedOS runs the LWK at user level. The kernel code on application

CPUs in the FusedOS prototype is simply a stub that offloads all



Linux vs. Lightweight Multi-kernels: Experiences at Pre-Exascale SC ’21, November 14–19, 2021, St. Louis, MO, USA

system calls to a corresponding user-level proxy process called CL.

The proxy process itself is similar to that in IHK/McKernel, but in

FusedOS the entire LWK is implemented within the CL process.

The FusedOS work was the first to demonstrate that Linux noise

can be completely isolated to the Linux cores and avoid interference

with HPC applications running on the LWK cores. This attribute of

the multi-kernel approach has been also one of the driving forces

for the McKernel model.

From more recent multi-kernel efforts, one of the most similar

projects to ours is Intel’s mOS [19, 50]. mOS follows a path of much

stronger integration with Linux and can directly take advantage

of some of the Linux kernel infrastructure. Nevertheless, this ap-

proach comes at the price of Linux modifications and an increased

complexity in eliminating OS interference.

Argo [5] is an exa-scale OS project targeted at workflow like

applications. The Argo approach is using OS and runtime special-

ization (through enhanced Linux containers) on compute nodes, to

some extent similar to Fugaku’s usage of container technologies.

Argo expects to use a ServiceOS based on Linux to boot the node

and run management services. It then runs different container in-

stances that cater to the specific needs of applications or pieces of

a workflow.

Hobbes [6] is a DOE Operating System and Runtime (OS/R)

framework for extreme-scale systems. The central theme of the

Hobbes design is improved support for application composition.

Hobbes utilizes virtualization technologies to provide the flexibility

to support the requirements of application components for different

node-level OSes. At the bottom of its software stack, Hobbes runs

Kitten [39] as its LWK, on top of which Palacios [31] serves as a

virtual machine monitor. As opposed to IHK/McKernel, Hobbes

separates Linux and Kitten at the PCI device level, which implies

some difficulties in supporting the full POSIX APIs and in porting

necessary device drivers to Kitten.

8 CONCLUSION AND FUTUREWORK

The HPC OS community has been living with the presumption

that lightweight kernels have the potential to outperform Linux at

extreme scale scientific computing. Yet, no large scale studies have

been performed where an LWK is compared with a highly tuned

Linux environment.

In this paper, we have presented IHK/McKernel, a lightweight

multi-kernel operating system designed for high-performance com-

puting. We deployed McKernel on two large scale HPC system, one

of which is Fugaku, the fastest supercomputer on the TOP500 list

at the time of writing this paper. We also described Fugaku’s Linux

software environment and the specific measures we took to scale

it for HPC. Through rigorous evaluation using microbenchmarks

as well as various HPC applications, we conclude that although

our LWK can outperform Linux at extreme scale, a highly tuned

Linux environment provides close to LWK level performance, in

the proximity of 4% on average across all experiments. However,

according to our most recent experience on Fugaku, maintaining

Linux scalability across OS updates (in particular when updating

the Linux kernel) is a non-trivial effort that requires thorough in-

vestigation of Linux internals. As no such investigation is required

for an LWK, we see this as a clear advantage of IHK/McKernel.

In the future, we will pursue further opportunities to improve

the performance of our OS and we intend to evaluate it on a broader

set of applications using the full scale Fugaku machine. We also

believe that the multi-kernel operating system structure has a role

to play in a future of heterogeneous processing elements (PE) as

specialized PEs get increasingly capable and will eventually allow

running privileged mode code. Finally, as it has been demonstrated

before [37], multi-kernel systems provide excellent performance

isolation which could play an important role in multi-tenant de-

ployments on accelerator equipped fat compute nodes, a direction

we also consider for future investigation.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We use three applications in this paper, LQCD, GeoFEM and GAM-

ERA running on two platforms and two operating systems each.

LQCD is publicly available (see artifacts below), GeoFEM and GAM-

ERA are not available online. For GeoFEM we got the source code

directly from the developer (Prof. Nakajima Kengo @ The Uni-

versity of Tokyo). For GAMERA we used binary executables we

received from the maintainer of the application (Dr. Kohei Fujita @

The University of Tokyo).

On Oakforest-PACS we used Intel compiler 19.0.3.199 and Intel

MPI Version 2019 Update 3 Build 20190214. LQCD was run using 4

ranks per node and 32 OpenMP threads per rank. GeoFEM was run

using 16 ranks per node and 8 OpenMP threads per rank. GAM-

ERA was run with 8 ranks per node and 8 OpenMP threads per

rank. For the Linux runs we utilize Intel MPI’s process binding

and the I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=0-3,68-71,136-

139,204-207 environment variable to exclude system CPU cores.

On McKernel we use the -n mcexec option to automatically bind

processes.

On Fugaku we used Fujitsu TCS 1.2.30a which contains Fujitsu

MPI and Fujitsu OpenMP implementations with the same version.

All applications were ran using 4 ranks per node and 12 threads per

rank (i.e., one rank per A64FX CMG). The Fujitsu runtime binds

MPI processes automatically.

Author-Created or Modified Artifacts:

Persistent ID:

https://github.com/fiber-miniapp/ccs-qcd↩→

Artifact name: LQCD x86 version

Persistent ID: https://github.com/RIKEN-LQCD/qws
Artifact name: LQCD Fugaku optimized version

Persistent ID:

https://github.com/RIKEN-SysSoft/mckernel↩→

Artifact name: IHK/McKernel

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Oakforest-PACS: 8,192 compute nodes

of Intel Xeon Phi 7250 Knights Landing CPU; Fugaku: 158,976

compute nodes of Fujitsu A64FX CPU

Operating systems and versions: Oakforest-PACS: CentOS

7.3, Linux kernel 3.10.0-693.11.6, IHK/McKernel: commit hash:

3bd05/da77a; Fugaku: RHEL 8.3 Linux kernel 4.18.0-240.8.1.el8_3,

IHK/McKernel commit hash: 797a2/b9edb

Compilers and versions: Intel compiler 19.0.3.199, Fujitsu TCS

1.2.30a

Applications and versions: LQCD, GeoFEM and GAMERA

Libraries and versions: Intel MPI Version 2019 Update 3 Build

20190214 and Fujitsu MPI TCS v1.2.30a


