Proposing A New Task Model towards Many-Core
Architecture

Akio Shimada', Balazs Gerofi2, Atsushi Hori!, and Yutaka Ishikawa!?

1 RIKEN Advanced Institute for Computational Science

a-shimada@riken.jp, ahori@riken.jp

2 The University of Tokyo

bgerofi@il.is.s.u-tokyo.ac.jp, ishikawa@is.s.u-tokyo.ac.jp

ABSTRACT

Many-core processors are gathering attention in the areas
of embedded systems due to their power-performance ra-
tios. To utilize cores of a many-core processor in parallel,
programmers build multi-task applications that use the task
models provided by operating systems. However, the con-
ventional task models cause some scalability problems when
multi-task applications are executed on many-core proces-
sors. In this paper, a new task model named Partitioned
Virtual Address Space (PVAS), which solves the problems,
is proposed. PVAS enhances inter-task communications of
multi-task applications and averts serialization of concurrent
virtual memory operations. Preliminary evaluations by us-
ing micro benchmarks showed that PVAS has the potential
to promote the performance of multi-task applications that
run on many-core processors.

Keywords
Operating systems, Task model, Process, Thread

1. INTRODUCTION

Having reached the evolutionary limits of single-core per-
formance in terms of power-efficiency, the number of cores
being incorporated into multi-core processors has shown dra-
matic growth in recent years. By increasing the number of
cores rather than promoting single-core performance, it is
possible to achieve both high throughput and good power-
performance ratios. Multi-core processors containing several
tens or over hundred of cores are called many-core proces-
sors. Then, the utilization of many-core processors is be-
coming popular in the areas of embedded systems.

To efficiently utilize multiple cores in parallel, program-
mers commonly build multi-task applications using one of
two task models, multi-process and multi-thread. However,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
MES’13 June 23 - 24 2013, Tel-Aviv, Israel

Copyright 2013 ACM 978-1-4503-2063-/4/13/06 ...$15.00.

those conventional task models are originally designed to
implement time-shared multi-tasking for single-core proces-
sors, so some scalability problems arise when a large num-
ber of tasks are executed in parallel on a many-core pro-
cessor. In this paper, how the conventional task models
cause those problems is described. Then, a new task model
that is capable of avoiding those problems is proposed. The
proposed task model is named Partitioned Virtual Address
Space (PVAS), and preliminary evaluations conducted us-
ing micro benchmark tests show that our PVAS task model
has the potential to promote the performance of multi-task
applications that run on many-core processors.

2. CURRENT TASK MODEL ISSUES
2.1 Multi-Process Model

In case of the multi-process model, a multi-task applica-
tion invokes multiple processes and directs them to execute
multiple tasks in parallel. During such executions, each task
runs in an independent virtual address space. Multiple tasks
within the same multi-task application must communicate
with the others in order to exchange the data required for
processing a parallel computation. Those inter-task commu-
nications must take place beyond address space boundaries
between the tasks. To overcome the address space boundary,
modern operating systems (OSes) provide a variety of inter-
process communication (IPC) methods, such as socket, pipe,
and shared memory. In general, those IPC methods are im-
plemented by using intermediate buffers located on the ker-
nel space or in shared memory regions. In those methods,
two memory copies (from sender task to inter-mediate buffer
and from intermediate buffer to receiver task) take place for
every inter-task communication. These two memory copies
result in high latency which can then result in performance
bottlenecks for multi-task applications. This problem can be
more serious for multi-task applications that run on many-
core processors because a larger number of processes can be
invoked, and the frequency at which the inter-task commu-
nication takes place can be higher.

In the case of N tasks, N(IN — 1)/2 communication pat-
terns exist. So, to execute the communications between
tasks in the most efficient way, the multi-task application
has to preliminarily create N (NN —1)/2 intermediate buffers.
By doing so, all possible communication patterns can be ex-
ecuted simultaneously, and the multi-task application can

45

Virtual Address Space Virtual Address Space Virtual Address Space

TEXT

TEXT

TEXT PVAS

Partition 0

DATA&BSS DATA&BSS

DATA&BSS

HEAP

PVAS HEAP
Partition 1

HEAP STACK

STACK 1

STACK

STACK 2

I IS
E: —_—s§
Fe——Address)

KERNEL KERNEL KERNEL

(a) Prosess (b) Thread (c) PVAS

Figure 1: Semantic views of the virtual address space of the
conventional task models and PVAS task model

achieve efficient parallelization. However, this results in
much memory consumption. For example, in the case of
100 tasks, 4950 buffers are required. Even if the size of each
buffer is only four kilobytes, approximately two gigabytes
of physical memory in total are consumed for the inter-task
communication. This memory consumption can be a serious
problem for embedded systems that have only a few gigabyte
of main memory at the most.

2.2 Multi-Thread Model

In case of the multi-thread model, multiple threads are in-
voked within a process, which then execute tasks in parallel.
On this model, all tasks related to a multi-task application
run in the same virtual address space. They can access the
data of the other task directly whenever necessary because
there are no address space boundaries between the tasks. As
a result, high-performance inter-task communication can be
achieved without inter-mediate buffers. However, another
problem, the serialization of the virtual memory (VM) op-
erations, arises on this model.

Modern OS kernels manage a virtual address space using
a memory region tree and a page table tree. Those trees are
shared by all tasks running in the same virtual address space,
and VM operations (mmap, munmap and page fault handling)
issued by the multiple tasks update those trees. The mem-
ory region tree stores information regarding memory map-
pings within a virtual address space. The mmap operation
creates a new memory mapping and stores its information
in the memory region tree. The munmap operation deletes
any memory mapping and removes its related information
from the memory region tree. If multiple tasks running in
the same virtual address space execute those VM operations
simultaneously, they must be serialized in the kernel to avoid
the race condition that would occur during the memory re-
gion tree update process.

The page table tree manages mappings from physical to
virtual pages. If any task incurs a page fault, a page fault
handler looks up the faulting address in the memory re-
gion tree. If the faulting address is included in any memory
mapping, the page fault handler then allocates a new page
and maps it to the virtual address space by recording the
new page mapping on the page table tree. If multiple tasks
running in the same virtual address space incur page fault
handling operations simultaneously, those operations must
be serialized in the kernel to avoid the race condition that
would occur during the page table tree update.

These serializations described above block parallel pro-
cessing and limit the performance of multi-task applications
[5]. This problem can be more serious for multi-task appli-
cations that run on many-core processors because a larger

number of threads can be created, and the frequency at
which the race condition occurs can be higher.

3. PVAS TASK MODEL
3.1 Address Space Design

Figure 1(a) shows the design of the virtual address space
on the multi-process model. On this model, each task runs
in an independent virtual address space, and each task has
its own TEXT/DATA&BSS/HEAP segments within its vir-
tual address space. Each task uses its DATA&BSS/HEAP
segments as its private data regions. There are address space
boundaries between the tasks constructing a multi-task ap-
plication.

Figure 1(b) shows the design of the virtual address space
on the multi-thread model. On this model, multiple tasks
run in the same virtual address space and STACK segments
are prepared for each task. The TEXT segment is shared
by all tasks running in the same virtual address space. The
DATA&BSS/HEAP segments are also shared by all tasks.

Figure 1(c) shows our design of the virtual address space
on the PVAS task model proposed in this paper. The idea
behind the PVAS task model is to partition a virtual ad-
dress space and assign one partition to one task. On the
PVAS task model, multiple tasks run in the same virtual
address space. A task on the PVAS task model is called
PVAS task. The virtual address space for this model is par-
titioned, and each partitioned region is called a PVAS par-
tition. Each PVAS task is assigned its own PVAS partition,
which also contains its TEXT/DATA&BSS/HEAP/STACK
segments, and PVAS tasks use their DATA&BSS/HEAP
segments as their private data regions. While each PVAS
task accesses the data located on its DATA&BSS/HEAP
segments, it can also access the data of the other PVAS
task directly whenever necessary because there are no ad-
dress space boundaries between the PVAS tasks. As a result,
high-performance inter-task communication can be achieved
without inter-mediate buffers.

3.2 Virtual Memory Management

Because multiple tasks run in the same virtual address
space on the PVAS task model, it was initially thought
that VM operations simultaneously issued by multiple tasks
would need to be serialized in the kernel as well as the multi-
thread model. To avoid this problem, multiple memory re-
gion trees are created to manage PVAS partitions instead of
creating a single memory region tree to manage the whole
virtual address space, as described in Figure 2. On the
PVAS task model, each PVAS task can create memory map-
pings within its PVAS partition and cannot create memory
mappings within the PVAS partition dedicated to any other
PVAS task. Thus, each PVAS task updates only one mem-
ory region tree which manages its PVAS partition. As a
result, VM operations such as mmap and munmap do not need
to be serialized when the memory region tree is updated,
even if multiple PVAS tasks execute those VM operations
simultaneously.

The procedure of the page fault handling operation on
the PVAS task model is as follows. If any PVAS task incurs
a page fault, a page fault handler confirms which PVAS
partition the faulting address belongs to, and looks up the
faulting address in the memory region tree managing the
PVAS partition to which the faulting address belongs. If

46

sub tree

memory region

tree mapping 0 — page table
—— —_— l tree root
- I
update pr— b
mapping 2 —
I Pt
PVAS partition . sub tree
memory region —
tree mapping 0 | [——
mapping 1 e— —
@ =r
Update
mapping 2 f—

/'

PVAS partition -]

\Vinual Address Space

Figure 2: Semantic view of the VM management on the
PVAS task model. Each parallel task (t0, t1) updates only
its own memory region tree.

the faulting address is included in any memory mapping,
the page fault handler then allocates a new page and maps
it to the virtual address space by recording the new page
mapping on the page table tree. All PVAS tasks running
in the same virtual address space share the same page ta-
ble tree. However it is logically partitioned into sub trees.
Each sub tree covers the address range of one of the PVAS
partitions as describe in Figure 2. If multiple PVAS tasks
try to update the same sub tree simultaneously, these op-
erations are serialized to avoid the race condition. In this
scheme, the serialization of page fault handling operations
may occur when any PVAS task accesses the data located
on the PVAS partition dedicated to any other PVAS task.
However, each PVAS task accesses the data within its PVAS
partition basically. Thus, the frequency at which the serial-
ization of page fault handling operations occurs can be lower
on the PVAS task model.

4. PRELIMINARY EVALUATION

Currently, PVAS is implemented in Linux kernel version
2.6.32 for the x86-64 architecture. Our implementation of
PVAS was evaluated by a ping-pong communication bench-
mark implemented by the message passing interface (MPI),
and a handmade VM operation benchmark. The evaluations
were performed with Intel Xeon X5670 multi-core processor
(6 cores x 2 Sockets).

4.1 Inter-task Communication

MPI is a standard specification that is widely used in HPC
applications. MPI provides the interface for the message
passing communication to the multi-task application built
from the multi-process model. MPICH2 [1] is one of the MPI
implementations. MPICH2 uses Nemesis [4], which is a low-
level inter-task communication layer. Here, MPICH2 was
modified to support the PVAS task model. The task man-
ager of modified MPICH2 invokes the PVAS tasks, which
execute the MPI program. Furthermore, Nemesis was also
modified to leverage the inter-task communication of PVAS.
The original Nemesis performs inter-task communication by
using the shared memory as the inter-mediate buffer, which
produces two memory copies for every communication. On
the PVAS implementation, the sender task directly copies
data from its send buffer to the receive buffer of the receiver
task, so only one memory copy is produced for every commu-

1000

“©-nemesis-rendezvous
> nemesis-eager

“rpvas-rendezvous

Latency (usec)
5

01

0 S D @ P O P 0 &
G A

. R A P
Message size (byte)

Figure 3: The performance of the ping-pong latency

nication. If the modified Nemesis shows better performance
than does the original version, we can say that PVAS has
the potential to improve inter-task communication of the
multi-task application.

The ping-pong benchmark of the Intel MPI Benchmarks
[6] was used for this evaluation. The PVAS implementa-
tion that supports the rendezvous protocol and the original
Nemesis implementation that supports both the eager and
the rendezvous protocols were evaluated. MPI message com-
munication uses two protocols: the rendezvous protocol and
the eager protocol. In the rendezvous protocol, a sender
task and a receiver task are synchronized until both tasks
are ready. In the eager protocol, the sender task sends mes-
sages regardless of the state of the receiver task. With this
protocol, the sender task has a buffer for send operations.
After copying the send data to the buffer, the sender task
can start to execute the next operation.

Figure 3 shows the latency of the ping-pong communica-
tion of a pair of tasks. When the message size is sufficiently
smaller than the buffer size (smaller than eight kilobyte), the
Nemesis eager protocol shows the best performance. The
PVAS implementation shows better performance than the
Nemesis rendezvous protocol, because the PVAS implemen-
tation produces only one memory copy for every inter-task
communication, while the Nemesis rendezvous protocol pro-
duces two memory copies. When the message size is big-
ger than 256 kilobytes, all implementations show almost
the same performance, because the Nemesis implementation
splits a message when the message size is big, and sends the
split messages in the same manner as in pipeline processing.

Also the PVAS implementation can support the eager pro-
tocol. If the PVAS implementation adopts the eager proto-
col when the message size is small, it can achieve higher
performance than the original Nemesis in all cases.

4.2 VM Operation

To evaluate the VM operation performance of the PVAS
task model, a micro benchmark was performed. This bench-
mark invokes multiple tasks that execute VM operations in
parallel. In this benchmark, each task executes mmap, mem-
set and munmap 1000 times. 1 MB of the memory region
is allocated by mmap, and accessed by memset, so page fault
handling operations are executed. The allocated memory re-
gion is deleted by munmap. The benchmark is implemented
by the conventional task models and the PVAS task model.

The result of this benchmark is shown in Figure 4. In
this graph, the horizontal axis represents the number of
parallel tasks, and the vertical axis represents the average
number of CPU cycles counted by the time stamp counter.

47

©Thread

>Process
#-PVAS

Number of Tasks

Figure 4: CPU cycles in 1000 time mmap, memset, and
munmap calls

In the graph, the performance of the PVAS task model is
comparable with the multi-process model, while the multi-
thread model shows poor performance. On the multi-process
model, each task has its own virtual address space, so con-
current VM operations are not serialized. As described in
Section 3.2, the concurrent mmap and munmap operations are
not serialized on the PVAS task model as well as on the
muti-process model. In addition, page fault handling op-
erations are not serialized in this benchmark because the
inter-task communication does not take place. This is be-
cause both of them show good performance. In contrast, on
the multi-thread model, VM operations need to be serialized
as described in Section 2.2. This serialization incurred the
bad performance.

5. RELATED WORK
5.1 Kernel Thread Copy

Another method called inter-task communication via the
kernel thread [7] was proposed to improve the inter-task
communication of the multi-task application built from the
multi-process model. Since the kernel thread can access the
data of all user processes beyond the address space bound-
ary, inter-task communication via the kernel thread pro-
duces only one memory copy. Therefore, the communication
latency is smaller than that occurring during inter-task com-
munication using the intermediate buffer (where two mem-
ory copies are created). However, this method via the kernel
thread introduces overhead in the form of context switching
between the user processes and the kernel thread. As a re-
sult, the communication latency becomes larger than that
of PVAS.

5.2 Virtual Address Space Mapping

XPMEM [2] is a Linux kernel module that enables any
process to map memory pages of another process into its
virtual address space. After mapping, the process can then
access them in the same way as it accesses the local data.
This XPMEM capability improves the communication per-
formance of a multi-task application built from the multi-
process model. However, XPMEM needs an extra mem-
ory mapping operation. This mapping operation causes the
overhead.

SMARTMAP [3] enables a process for mapping the mem-
ory of another process into its virtual address space, in a way
similar to that of XPMEM. In SMARTMAP, a process occu-
pies an address range from 0 to 512 GB as its local address
space. The rest of the virtual address space is treated as a

global address space and is used for mapping the memory of
all other processes. Thus, a process can directly access the
memory of another process. Each process of SMARTMAP
has a separate page table tree, but the portion of the page
table tree that maps the global address space is shared by
all processes in SMARTMAP, so page fault handling opera-
tions need to be serialized as on the multi-thread model. To
avoid serialization of the page fault handling, SMARTMAP
does not support on-demand paging and uses linear map-
ping from the virtual addresses to the physical pages of the
memory. This incurs poor memory-use efficiency.

6. CONCLUSION AND FUTURE WORK

This paper proposed a new task model, called PVAS, that
is designed to promote the performance of the multi-task
applications that run on many-core processors. PVAS en-
hances the inter-task communication of a multi-task appli-
cation. On the PVAS task model, inter-task communication
can take place with only one memory copy, and it does not
require inter-mediate buffers that incur huge memory con-
sumption. Moreover, the virtual memory management of
PVAS averts the serialization of concurrent VM operations.

Preliminary evaluations showed that PVAS has the poten-
tial to increase the performance of multi-task applications
that run on many-core processors. The evaluation of the
ping-pong communication benchmark showed that PVAS
has the capability to improve the latency of the inter-task
communication. The evaluation of the VM operation bench-
mark showed that PVAS has the capability of achieving ef-
ficient parallelization, even if the number of tasks increases.
Preliminary evaluations were performed in the small envi-
ronment by using micro benchmarks. The ping-pong com-
munication benchmark was performed with only two tasks,
and the VM benchmark was performed with only twelve
tasks. Evaluation of PVAS by using real applications in the
large environment is future work.

7. ACKNOWLEDGMENTS

This research was partially supported in part by the CREST

project of Japan Science and Technology Agency (JST).

8. REFERENCES

[1] MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/.

[2] . XPMEM Cross-Process Memory Mapping.
http://code.google.com/p/xpmem/.

[3] R. Brightwell, K. Pedretti, and T. Hudson. SMARTMAP:
operating system support for efficient data sharing among
processes on a multi-core processor. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, pages
25:1-25:12, Piscataway, NJ, USA, 2008. IEEE Press.

[4] D. Buntinas, G. Mercier, and W. Gropp. Design and Evaluation
of Nemesis, a Scalable, Low-Latency, Message-Passing
Communication Subsystem. In Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the Grid,
CCGRID ’06, pages 521-530, Washington, DC, USA, 2006.
IEEE Computer Society.

[5] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable
address spaces using rcu balanced trees. In Proceedings of the
seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
XVII, pages 199-210, New York, NY, USA, 2012. ACM.

[6] Intel Corporation. Intel MPI Benchmarks 3.2.3. http:
//software.intel.com/en-us/articles/intel-mpi-benchmarks/.

[7] T. Takahashi, F. O’Carroll, H. Tezuka, A. Hori, S. Sumimoto,
H. Harada, Y. Ishikawa, and P. H. Beckman. Implementation
and Evaluation of MPI on an SMP Cluster. In IPPS/SPDP
Workshops, pages 1178-1192, 1999.

48

