
An Implementation of User-Level Processes using
Address Space Sharing

Atsushi Hori
Center for Computational Science

RIKEN
Tokyo, JAPAN

ahori@riken.jp

Balazs Gerofi
Center for Computational Science

RIKEN
Tokyo, Japan

bgerofi@riken.jp

Yutaka Ishikawa
Center for Computational Science

RIKEN
Tokyo, JAPAN

yutaka.ishikawa@riken.jp

Abstract—There is a wide range of implementation approaches
to multi-threading. User-level threads are efficient because
threads can be scheduled by a user-defined scheduling policy
that suits the needs of the specific application. However, user-level
threads are unable to handle blocking system-calls efficiently. To
the contrary, kernel-level threads incur large overhead during
context switching. Kernel-level threads are scheduled by the
scheduling policy provided by the OS kernel which is hard
to customize to application needs. We propose a novel thread
execution model, bi-level thread, that combines the best aspects
of the two conventional thread implementations. A bi-level thread
can be either a kernel-level thread or a user-level thread at
runtime. Consequently, the context switching overhead of a bi-
level thread is as low as that of user-level threads, but thread
scheduling can be defined by user policies. Blocking system-calls,
on the other hand, can be called as a kernel-level thread without
blocking the execution of other user-level threads.

Furthermore, the proposed bi-level thread is combined with
an address space sharing technique which allows processes to
share the same virtual address space. Processes sharing the
same address space can be scheduled with the same technique
as user-level threads, thus we call this implementation a user-
level process. However, the main difference between threads and
processes is that threads share most of the kernel state of the
underlying process, such as process ID and file descriptors,
whereas different processes do not. A user-level process must
guarantee that the system-calls always access the appropriate
kernel information that belongs to the particular process. We
call this system-call consistency.

In this paper, we show that the proposed bi-level threads,
implemented in an address space sharing library, can resolve the
blocking system-call issue of user-level threads, while at the same
time it retains system-call consistency for the user-level process.
A prototype implementation, ULP-PiP, proves these concepts and
the basic performance of the prototype is evaluated. Evaluation
results using asynchronous I/O indicate that the overlap ratio of
our implementation outperforms that in Linux.

Index Terms—Threads, Concurrent Programming, Concurrent
programming structures

I. INTRODUCTION

The debate between User-Level Threads (ULT) are Kernel-

Level Threads (KLT) has taken place for decades. The char-

acteristics of ULT and KLT mentioned below are part of most

computer science textbooks.

The most well-known kernel thread implementation is

PThreads. Since KLTs are created and scheduled by an OS

(a) Kernel-Level Threads (b) User-Level Threads

KC

UC0 UC1 UC2

U
LT

U
LT

U
LT

ctx sw

K
LT

K
LT

KC0

UC0

KC2

UC2UC1

KC1

K
LT

Fig. 1. KLT and ULT decomposed

kernel, when a KLT is blocked by calling a blocking system-

call, another KLT is scheduled by the OS, if any. The context

switching overhead between KLTs is high because the OS

kernel is involved in this operation. ULT libraries, on the

other hand, are implemented at user-level. A ULT can be

created by allocating a new stack region and switching to

it by using for example setjump/longjump in Unix,

ucontext in Linux, or fcontext implemented in the

Boost C++ library [1]. There is no kernel-level operation

involved during context-switching between ULTs and thus the

context switch is faster than that of KLT. Unlike KLT, a ULT

is blocked when it calls a blocking system-call and no chance

to schedule the other eligible-to-run ULTs.

KC0

UC0 UC1

KC1 KC0

UC1 UC0

KC1

(1) create two KLTs (3) KCs and UCs
are tangled

KC0

UC0 UC1

KC1

ctx swblocked

(2) UC0 is decoupled and
coupled with KC1

Fig. 2. Coupling and decoupling of UCs and KCs

Let us consider KLTs and ULTs in more detail. A KLT can

be though of as a pair of kernel context (KC) and user context

(UC) as shown in Figure 1. A KC is the reference for accessing

resources maintained by an OS kernel. A UC is the same as

a ULT. A KLT always consists of a pair of a KC and a UC

and is often categorized as 1:1 thread execution model. What

if we could decouple KC and UC of a KLT? The decoupled

UC now becomes a ULT and can be scheduled by another

KLT. One might wonder what happens with the decoupled

976

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00161

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

KC. The decoupled KC has nothing to do but idling (i.e., it

either becomes blocked in the OS kernel or it can busy-wait)

as shown in Figure 2.
If a UC is coupled with a KC and the KC has no other

UC to schedule, then the UC and KC can be thought of as

a KLT. If a UC is one of the UCs scheduled by a KC then

the UC can be thought of as a ULT. By coupling a UC and

a KC, the ULT becomes a KLT. By decoupling UC from a

KC in a KLT, the KLT becomes a ULT. In this paper, we call

this implementation a Bi-Level Thread (BLT) because a BLT

can be either a KLT or a ULT at runtime. It should be noted

that the proposed BLT technique can be applied to any ULT

implementations, independent from ULP.
We implement the proposed BLT in the Process-in-Process

(PiP) [2] library and name it ULP-PiP. PiP is a pure user-level

library enabling for processes to share the same virtual address

space. Unlike KLTs which also share the same virtual address

space, all variables defined in the process on PiP are privatized.

Here, variable privatization means that there are N instances

of variable x when N processes are derived from the same

program defining the x. KLTs share all variables, however, all

variables in PiP are not shared but shareable. Any objects in

PiP are accessible and shareable since everything is located

in the same virtual address space. For more implementation

details of PiP, refer to Section IV. The same technique for

switching ULTs can be applied to switching process contexts

in the same address space. We call this User-Level Processes
(ULP). The overhead of context-switching between processes

is larger than that of PThreads, because each process has its

own address space and the address spaces must be switched

when to switch one process to the other. Thus, the low

overhead of switching ULPs is more beneficial than that of

ULTs.
Although the context switching technique to implement

ULT and ULP can be the same, there is a big difference

between them. A system-call is to access resources inside of

an OS kernel, and each KC has a different set of resources.

For example, when a UC calls the getpid() system-call,

the returned PID may vary depending on the scheduling KLT.

If the open() system-call is called, then the opened file

descriptor (FD) is only valid if the KC calling open() and the

KC calling read(), for example, are the same. This system-
call consistency must be maintained by a ULP system.

In this paper, we make the following contributions:

1) We propose a novel thread execution model called Bi-

Level Thread (BLT) where ULT can become KLT and

KLT can become ULT,

2) BLT can resolve the blocking system-call issue found in

ULT,

3) which we combine with an address space sharing tech-

nique and propose User-Level Processes (ULP),

4) we introduce the concept of system-call consistency for

ULPs, and

5) through micro-benchmark results we demonstrate how

BLTs and ULPs outperform conventional programming

models.

II. BACKGROUND

Using a conventional ULT implementation, the block-

ing system-call problem can be avoided by issuing asyn-

chronous I/O (AIO) system-calls, such as aio_read()
or aio_write(). The current Linux AIO implementation

works as follows; 1) a PThread is created at the first call

of aio_read() or aio_write(), 2) the main thread

delegates the I/O operation to the created thread, and 3) it waits

for the completion of the I/O by calling aio_return() or

aio_suspend(). When a conventional ULT tries to read

or write on a file, it calls the corresponding AIO call instead

and waits for its completion in a loop consisting of yield

and the call to aio_return(). Unfortunately, the current

AIO infrastructure only supports read and write. There are no

corresponding calls for open(), listen(), connect(),

and numerous other blocking system-calls. The nonblocking

I/O might be another solution to I/O operations for ULTs,

however, it requires more programming effort.
Scheduler Activation (SA) was proposed to cope with the

blocking system-call issue of ULTs [3]. SA, however, requires

the cooperation of the OS kernel and the ULT system, and SA

is not widely supported by today’s OS kernels. In contrast to

SA, our proposal is implemented at entirely at user-level.
In general, thread execution models can be categorized

into three configurations; 1:1, N:1, and M:N, where the first

number is the number of UCs and the second number is the

number of KCs in the system. The execution model of the

proposed BLT can be any of these by changing KLTs to ULTs

or ULTs to KLTs at runtime (shown in Figure 3). The current

prototype implementation of BLT only allows to create BLTs

as KLTs at beginning. Thus the number of UCs and KCs

must be the same. In this sense, our proposed BLT can be

categorized as N:N model. This restriction comes from the

system-call consistency, i.e., every BLT is able to preserve the

consistency. However, the proposed BLT model can be easily

extended to M:N model. This will be discussed in Section VII.

BLT N:1 Model

M:N Model

KC1 KC2

UC0 UC2UC1 UC3

ctx sw ctx sw

KC0

blocked

KC3

blocked

KC1

UC0 UC2UC1 UC3

ctx sw

KC0

blocked

KC2

blocked

KC3

blocked

KC1 KC2KC0

UC0 UC2UC1

KC3

UC3

1:1 Model

Fig. 3. BLT Execution Model

Most threading libraries, regardless of KLTs or ULTs, fol-

low the fork-join model for creating threads and synchronize at

977

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

thread termination. BLT, however, does not follow this model

since BLTs must be created as KLTs from which some may

become a ULT. This BLT behavior resembles a thread pool

model better than the fork-join model. Additionally all BLTs

always terminate as KLTs coupled with their original KC.

Here, the original KC is defined as the KC which was used to

create the KLT (i.e., a pair of KC and UC) in the beginning.

Thus in the parent process that creates its child processes as

BLTs in ULP, the wait() system-call can be used to wait for

BLT terminations, just like the way used to wait for fork()ed

processes.

To summarize the relation of BLTs and ULPs:

1) A BLT is created as a KLT consisting of a pair of UC

and KC

2) The KC created at the beginning is called original KC

3) UC and KC of a BLT can be decoupled and the

decoupled UC becomes a ULT

4) When a UC and a KC are coupled, the UC becomes a

KLT

5) If a KC has no UCs eligible to run, then the KC becomes

idle (by calling a blocking system-call or busy-waiting)

6) If an idle KC is given a UC to be scheduled, then the

KC is unblocked and starts running the given UC

7) When a UC terminates, it is coupled with its original

KC to become a KLT and the KLT terminates

8) A BLT implementation can support ULPs when com-

bined with an address space sharing technique (e.g., PiP)

III. RELATED WORK

Address space sharing technique, where processes share

the same virtual address space and maintaining privatized

variables has been being proposed; SMARTMAP [4], MPC

[5] , Shinjuku [6], PVAS [7], and PiP [2]. SMARTMAP,

Shinjuku and PVAS require designated OS kernels to support

the address space sharing. MPC is more like a language

system consisting of compiler and linker. MPC is based on

PThread but its execution entity look like a process. The MPC

compiler converts user defined static variables to thread local

variables for each (fake) process to have privatized variables.

Shinjuku supports preemptive scheduling for ULTs. A signal

is sent to KLTs when to preempt. Among the shared address

pace sharing implementations listed above, PiP is the only

one implementation implemented as a pure user-level library.

So PiP is the most portable and practical among the other

implementations. Kaiming et al. proposes a new framework

of work stealing in MPI by using the address space sharing

(PiP) [8].

ULP [9] is implemented on top of PVAS. This ULP switches

TLS regions when switching process contexts. Although the

address space sharing technique has the potential to imple-

ment ULP, however, none of them addresses the system-call

consistency issue.

TMPI [10] proposed the two-context switching technique

which is almost the same with the UC/KC coupling and

decoupling described in this paper. The two context switching

takes place when a ULT calls an MPI function inside of which

a blocking system-call is called. Although their intention, not

to block ULTs while calling blocking system-calls, is the same

with us, however, they did not try to generalize their technique

to BLT and ULP.

There are many ULT implementations; Qthreads [11], Mas-

siveThreads [12], Argobots [13], to name a few. Their con-

cern is mostly scheduling and work stealing. Castelló et al.,

thoroughly summarized ULT implementations [14]. Argobots

implemented their own TLS system while the others do not

support TLS.

Scheduler Activation, K42 [15], and PM2 [16] can handle

the blocking system-call issue with the cooperation between

OS kernel and user-level thread library. Each of them consists

of user-level thread library and kernel API. SA was imple-

mented on NetBSD [17] and some other OSes, unfortunately

this SA support by NetBSD is obsolete now.

OpenMP introduced nested parallel loops and tasking which

may create threads dynamically and often the number of

threads exceeds the number of CPU cores. This oversubscribed

situation may cause the large overhead due to the number

of thread context switching. If ULT is used for underlying

OpenMP runtime, instead of using PThreads, then this over-

head can be reduced. BOLT [18] is an OpenMP runtime

system using ULT to tackle this problem.

MPI is a widely-used communication library in the HPC

community. The gap between computation speed and the

communication latency is getting bigger and bigger every year,

the latency hiding technique becomes more important. Current

MPI supports asynchronous communication though, it forces

users to have more programming effort and there are cases

where users are unable to hide latencies completely. This

situation may become more severe for larger-scale parallel

computing. The larger the network, the harder the prediction

of communication behavior. Another approach for this latency

hiding is over-subscription. Similar to the OpenMP case de-

scribed above, context switching overhead can be problematic

when using oversubscribed KLTs or processes. Thus, MPI

implementations using ULT are gathering attentions. MPIQ

[19] and AMPI [20] are the ones for such purpose.

As described above, over-subscription is gathering atten-

tions in the OpenMP and MPI implementations. In the

MPI+X hybrid parallel programmings model, the ’X’ has

been considered as OpenMP, many researchers are working

to replace and/or re-implement OpenMP with using ULT. It

is the authors’ wish that this paper will contribute to such

work. The reason why we focus on ULP is motivated by

MPI [21]. Although the MPI standard does not define how MPI
processes 1 are implemented, i.e., whether it is multi-process

or multi-thread, most MPI implementations are based on multi-

process execution model and most MPI applications assume

this model. Therefore, ULP is a more suitable execution

model than ULT. Another possible application of ULPs are

in-situ programs and multi-physics simulations. In a typical

in-situ case, the in-situ program is attached to a simulation

1Each MPI process is an execution entity to have an MPI rank.

978

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

program to run simultaneously. Theoretically it is possible

to merge the in-situ program and the simulation to have a

single program so that it run on a ULT system, but this

approach is impractical. Merging different programs can come

at significant effort, especially if those programs are written in

different programming languages. It would be more convenient

to run them as separate programs.

IV. PROCESS-IN-PROCESS (PIP)

In this section, we briefly introduce PiP which is the authors

previous work, because this is one of the key technologies to

implement our ULP-PiP. The motivation of PiP development

is to have a new innode parallel execution model expected

to be more suitable for many-core architectures as oppose

to the conventional multi-thread (e.g., OpenMP) and multi-

process (e.g., MPI) execution models. In the current multi-

thread model, threads can easily communicate with the others,

however, there is overhead to protect simultaneous updates on

a variable because all variables are shared among threads. Con-

trastingly in the multi-process model, each process has its own

variable set, however, efficient inter-process communication is

hard to implement because a process cannot access data owned

by the other processes. SMARTMAP, MPC, Shinjuku, PVAS

and PiP enables processes to share the same virtual address

space and to privatize variables on each process.

This programming model looks similar to the shared mem-

ory model but it does not. Shared memory is to share a

physical memory region. Each process has to map the shared

physical memory and each process may have different logical

address of the shared memory region, resulting the pointers

to the shared memory region cannot be dereferenced without

offset. In contrast, the address space sharing is to share the

entire address space. Every process has exactly the same

logical to physical address mapping, in other words, a whole

page table representing the address space is shared from

the beginning. There is no need of creating a new memory

map to share, and pointers can be dereferenced as they are.

Furthermore, the minor page faults to create page table entries

happen only once per page in the address space sharing

regardless to the number of involving processes, whereas the

minor page faults happen to every process accessing shared

memory pages in the shared memory model.

PiP is implemented purely at the user-level and this makes

PiP portable and practical. All the other address space shar-

ing techniques require specialized OS kernel (SMARTMAP,

MPC, Shinjuku, and PVAS) or language system consisting of

compilers and some other related tools (MPC).

PiP utilizes the dlmopen(), not a typo of dlopen(),

glibc function to load and dynamically link PIE (Position

Independent Executable) program and required shared object

files. Unlike dlopen(), the dlmopen() function can create

a new name space to link variables and functions between

shared object files. Thus all variables can be privatized by

creating a new name space.

The program loaded by calling dlmopen() can run as

a process by calling Linux’s clone() system-call, or can

run as a PThread by calling the pthread_create() glibc

function. Former is called process mode and latter is called

thread mode in PiP. In the process mode, the processes sharing

the same address space are more like a normal process from

the viewpoint of the OS kernel, each process may have its

own signal attributes (handler mask, etc.) and parent process

can wait the termination of spawned processes by calling the

wait() system-call. In the thread mode, the PiP processes

are basically PThreads in terms of the signal attributes and

termination handling. Note that the variable privatization is

effective in both PiP modes. Since the clone() system-call

is very Linux specific, the thread mode is supported to run PiP

on the environment not supporting the clone() system-call.

The PiP library also provides several functions to hide the

difference between the two PiP execution modes. For more

details, refer to our paper [2]2. All evaluations in this paper

uses the process mode.

PiP root process is a normal Unix/Linux process and it can

spawn PiP processes3 in the same address space with that

of the root process. The PiP processes must be derived from

PIE programs. In an MPI implementation by using PiP, for

example, the MPI process manager is the PiP root process

and the MPI processes are the PiP processes spawned by the

PiP root.

In theory, a program utilizing the heap segment cannot run

with PiP. Since only one heap segment is allowed to have in

one address space, the heap segment must be shared among

PiP processes. Unfortunately the (s)brk() system-call is

not designed to be shared (i.e., multi-thread safe). This heap

segment issue is avoided by setting the malloc option not

to use heap, instead to use mmap in the PiP library. In our

PiP experiments, including running large simulation programs

using MPI, we have not faced any problems to run existing

programs with PiP.

V. DETAILED DESIGN OF BLT AND ULP

A. Trampoline Context

It is not difficult to implement decoupling UC from a KLT,

saving the current UC and the saved context can be resumed

by the some other KC. The KC that loose UC to run has

nothing to do but idle. There are two problems here; a) how

to idle the KC, and b) how the decoupled UC is coupled again

with the idling KC. Let us examine one by one.

When a KC is busy-waiting while idling, it must run on a

stack. The UC which was associated with the KC is already

saved to run with the other KC. The UC cannot be scheduled to

run because the original KC is busy-waiting on the same stack.

Well, this busy stack problem would be solved by blocking the

KC by calling a blocking system-call. In this case, however,

another problem arises when the UC is back to the original

KC. If the UC has been scheduled by the other KC, then

2PiP is an open source software package and able to download from https:
//github.com/RIKEN-SysSoft/PiP

3In paper [2], they are called PiP tasks since they do not follow the process
nor the thread definition. In this paper, the term PiP process is used just for
simplicity.

979

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

the stack state (stack pointer and stack content) is changed.

The context of the original KC includes the stack pointer

assuming the stack state of the UC is not changed. Thus it

is also impossible to schedule the UC by the original KC,

when the UC has been scheduled to run by the other KC.

KC0

UC0

save_context(UC0);
blocking_syscall();

-idle-
-idle-
-idle-
<SIGSEGV>

load_contex(UC0);

save_context(UC1);
load_context(UC0);

:
save_context(UC0);
unblock_syscall();
load_context(UC1);

:

UC1

KC1

UC0

ctx sw

<SIGSEGV>

Fig. 4. Decoupling Issue

Figure 4 shows the example of this problem. Decoupling

can be implemented as; 1) save UC0, 2) pass the saved UC0

to KC1 so that the KC1 can schedule it as a ULT, and 3) KC0

calls a blocking system-call to suspend. Once the decoupled

UC0 is scheduled by KC1 and run, the stack state of UC0

has been changed and KC0 cannot resume UC0 execution.

The root cause of this problem is the context for a KC to

idle. To avoid this problem, we introduce trampoline context
(TC). A trampoline context is another context used for the

transition from KLT to ULT or vice versa. The stack region

of a trampoline context can be very small. Every BLT has an

associated TC. A trampoline context may be created at the time

of a KLT creation, or in a lazy way when to decouple. Figure 5

shows how decoupling and coupling using TC work. In this

figure, the procedure (1) to (3) are for the transition from KLT

to ULT, and the procedure (4) to (6) are for the transition from

ULT to KLT. When a KLT (KC0 and UC0) becomes ULT, it

first switches to the associated trampoline context and the UC0

is now free from KC0 and can be scheduled by any other KC.

Then TC0 becomes idle and the transition completes. When

a ULT (UC0) becomes a KLT again (with KC0), then KC1

which is the current scheduler of UC0 cuts off UC0 so that

it can be scheduled by the other KC, and wake KC0. KC0 is

resumed with TC0 and swap TC0 and UC0 contexts. Finally

UC0 becomes KLT running with KC0. Note that the stack

state associated with a TC is not changed by the other KC,

and thus the above problem can be avoided.

B. System-call consistency

To deal with the blocking system-call issue of ULT

and to maintain the system-call consistency, we introduced

two library functions; couple() and decouple(). The

couple() function is to couple the calling UC with its

original KC, assuming the current UC is running as a ULT,

i.e., scheduled by the other KC. The decouple() function

(1) swaps UC0 and TC0

UC0

KC0

TC0

(2) TC0 and KC0
are blocked

UC0

KC0

TC0

(3) UC0 is decoupled and
KC1 can schedule UC0

UC1

KC1

UC0

ctx sw

UC1

KC1

UC0

ctx sw

(4) UC0 unblocks KC0 and
swaps UC0 and UC1

UC1

KC1

UC0

ctx sw

UC1

KC1

UC0

ctx sw

(6) KC0 and UC0 are
coupled again

UC0

KC0

TC0

(5) KC0 swaps
TC0 and UC0

UC0

KC0

TC0

KC0

Fig. 5. Trampoline Context

is the opposite, assuming the calling UC is running as a KLT.

It decouples the KC and decoupled UC is enqueued so that the

UC is going to be scheduled by the other KC. If a UC wants

to call a blocking system-call or a series of system-calls, some

of them are blocking, then the system-call or system-calls

are enclosed by the couple() and decouple() functions.

This is all that a user has to do. Then the code enclosed by

these functions is executed by the same original KC and the

system-call consistency is preserved.

Figure 6 shows an example of BLT usage scenarios, but

not limited to. Here, CPU cores are divided into two groups;

one is for running user program and another is dedicated to

execute system-calls. BLTs are created to run user program

and to act as a scheduler. The number of BLTs to run user

program is larger than (over-subscription) or equal to (no-over-

subscription) the number of CPU cores to run the program.

BLTs to run user program are decoupled and decoupled

UCs are scheduled by the scheduling BLTs. The number of

scheduling BLTs are equal to the number of CPU cores for

user program execution and each KC of the BLTs is bound to

one of these CPU cores. The decoupled KCs from the BLTs

to run program are bound to the CPU cores for system-call

execution. Here, a CPU core for executing system-calls may

have more than one KCs.

NC = NCprog +NCsyscall (1)

NB = NCprog × (O + 1) (2)

Here, NC is the number of CPU cores, NCprog is the

number of CPU cores to run user program, NCsyscall is the

number of CPU cores dedicated for system-call execution,

NB is the number of BLTs, and O is the over-subscription

magnification. The number of CPU cores for system-calls must

be chosen based on the frequency and duration of the system-

calls.

980

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

ctx sw

CPU Core #0

ctx sw

CPU Core #1

UC0 UC1 UCi

KCk KCk+1

UCi+1

CPU Core #n

KC0 KC1

CPU Core #n+1

KCi+1KCi

CPU Cores dedicated for system-callsCPU Cores dedicated for user execution

Fig. 6. A BLT Usage Scenario

In addition to the system-call consistency, thread local

storage (TLS) regions4 must also be switched when switching

a UC to another because each process has its own TLS

variables. Usually a TLS region is located right before or after

the thread descriptor [22]. A designated hardware register is

used to point the thread descriptor. On an x86 64 CPU, the FS
segment register is used to point the thread descriptor and TLS

variables are accessed by using this register. Unfortunately the

FS register is privileged and the arch_prctl() system-

call must be called to update the value of this register. Thus,

the context switch overhead is increased considerably and this

is the reason why most ULT implementations ignore TLS

variables whereas ULP cannot.

Table I shows the more detailed procedure when to call

a system-call and it is enclosed by the couple() and

decouple(). This procedure starts from the state (3) shown

in Figure 5, where UC0 is running as a ULT scheduled by

KC1 and KC0 is blocked already. The swap_ctx() func-

tion is to save registers of the current UC and load registers

of the new UC. Here, UC0 is about to call a system-call. The

couple() function is to couple the current UC0 with its

original KC0. If readers take a look at this procedure carefully,

readers would notice that there are two race conditions. The

first one is between Seq.3 of KC1 and Seq.4 of KC0. Here,

the UC0 context saved by KC1 is loaded by KC0. The second

one is between Seq.8 of KC0 and Seq.9 of KC1. Here, the

UC0 context saved by KC0 is loaded by KC1. So we must

have synchronizations on those two points.

To implement ULP, processes must share the same virtual

address space. Unlike multi-thread, each process might be

derived from different programs which might be written in

different programming languages. Further, variables must be

privatized so that each process has its own variable set. We

chose Process-in-Process (PiP) to implement our ULP since

PiP is purely implemented at user-level.

As already mentioned, TLS register which points to a TLS

region must be switched when to switch contexts between

different UCs. On an x86 64 architecture we have to call a

system-call to do this, but this is totally depending on CPU

architecture and how CPU registers are used by language

4A TLS region holds TLS variables. A TLS variable can be defined by
adding thread_local keyword. The most well-known TLS variable is
errno.

systems. On an AArch64 (ARM 64bit) architecture, the TLS

register (tpidr_el0) which can be accessed from user

applications is used and TLS switching is much faster than that

of x86 64. So the TLS switching overhead can be negligible

on such architectures. Fortunately, the TLS register is set when

a process or thread is created and once it is set it will not be

altered again during the lifespan of a process or thread. In

our implementation, TLS register content is saved at the time

of creation of a ULP and new TLS register content is set at

every context switching excepting the context switch between

TC and UC.

VI. EVALUATION

A. Evaluation Environment

The proposed BLT and ULP are implemented in the PiP

library as to prove those concept. Thus, there is a room for

further optimization and the API is tentative at the time of this

writing. Since our system is very portable, evaluations in this

section was carried out by using two machines shown in Ta-

ble II, one is x86 64 named Wallaby and another is AArch64

named Albireo. The context switching is implemented by using

the fcontext in the Boost C++ library (Version 1.72.0)

Some evaluations in this section, clock cycles are also mea-

sured on x86 64 using the RDTSC instruction. Unfortunately

AArch64 does not have the instruction to obtain the clock

cycles and no clock cycles is measured on Albireo.

All evaluations in this section has a warming up loop

followed by a measurement loop. All values are the minimum

ones of ten runs, because the evaluations in this section have

no theoretical fluctuation but OS noise. Indeed, the fluctuations

in all evaluations were quite small.

B. Basic Performance

Table III shows the basic performance numbers on each

machines largely depending on CPU architectures, measuring

the time to user-level context switch and the time to load

a value to the TLS register, the FS register on Wallaby

(x86 64) by calling the arch_prctl() system-call, and the

tpidr_el0 register on Albireo (AArch64).

The fcontext context sizes are 64 bytes on x86 64

and 88 bytes on AArch64, and it takes only few 10s of

nanoseconds to swap contexts (save context to the stack and

load context from the stack) on both machines. The times to

load the TLS register have a large difference. This is because

981

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DETAILED PROCEDURE OF couple AND decouple

Seq.# User Code KC1 KC0

(UC0) Library Code User Context Library Code User Context

0 : [running] UC0 [being blocked] TC0

1 couple() enqueue(UC0,KC0) : : :
2 unblock(KC0) UC0 [unblocked] :
3 swap ctx(UC0,UCi) UC0 → UCi UC0 = dequeue() TC0

4 [running] UCi swap ctx(TC0,UC0) TC0 → UC0

5 system call() : : system call() UC0

6 decouple() : : enqueue(UC0,KC1) UC0

7 [yield or suspend] : swap ctx(UC0,TC0) UC0 → TC0

8 UC0 = dequeue() UCi [blocking itself] TC0

9 swap ctx(UCi,UC0) UCi → UC0 [being blocked] :
10 : [running] UC0 : :

TABLE II
EVALUATION ENVIRONMENT

Name Wallaby Albireo
Architecture x86 64 AArch64
CPU Type Intel Xeon E5-2650 v2 AMD Opteron A1170∗

#Cores x #Sock 8 x 2 8 x 1
Clock 2.6 GHz 2.0 GHz

Linux Kernel 3.10.0-327.36.3.el7 4.14.0-115.2.2.el7a
GCC 4.8.5 20150623

∗ARM Cortex-A57 based on ARMv8-A

TABLE III
CONTEXT SWITCH AND LOAD TLS

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

Context Sw. 3.34E-8 86 2.45E-8
Load TLS 1.09E-7 284 2.50E-9

a system-call must be called on Wallaby. On AArch64 this

time is only a few nanosecond and much faster than that of

x86 64.

Table IV shows the times of yielding two threads. The

times in this table is normalized to the times of one yield.

On ULP-PiP, yielding two ULPs and the time should be the

same with sum of the times of context switching and loading

TLS register shown in Table III ideally. The column titled

as “sched_yield() on 1 core” means that two PThreads

running and yielding on one CPU core, and another one titled

as “sched_yield() on 2 cores” means that two PThreads

bound to different CPU cores. When the two PThreads running

on one core, the call of sched_yield(), more precisely

pthread_yield(), results in actual context switching be-

TABLE IV
YIELDING TIME (2 ULPS OR PTHREADS)

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

ULP-PiP yield 1.50E-7 387 1.20E-7
sched_yield() on 1 core 2.66E-7 - 1.22E-6
sched_yield() on 2 cores 7.79E-8 - 3.48.E-7

TABLE V
TIME OF getpid()

Wallaby Albireo
Time [Sec] Cycles Time [Sec]

Linux 6.71E-8 174 3.85E-7
ULP-PiP: BUSYWAIT 1.33E-6 3452 2.71E-6
ULP-PiP: BLOCKING 2.91E-6 6172 4.48E-6

tween the threads. Whereas the case running on two cores,

the yield system-call results in doing nothing since there is no

other threads running on the same core. Thus, yielding time of

two threads on one core takes longer time than that of the two

core case because of the context switch overhead. Comparing

the x86 64 case of ULP-PiP and sched_yield() on two

cores, the sched_yield() is faster than that of ULP-PiP.

This is because the slow TLS loading is involved on x86 64.

C. getpid()

Here, The time to call the getpid() system-call is mea-

sured. Since the getpid() system-call is very light, the

overhead of the couple() and decouple() can be mea-

sured. Table V shows the times of getpid() and the time

of getpid() enclosed by couple() and decouple()
in ULP-PiP. There are two ULP-PiP’s cases, one for KC to

busy-wait (denoted as “BUSYWAIT”) and another for blocked

by calling a blocking system-call (denoted as “BLOCKING).

As for the blocking system-call in this evaluation, the Linux

semaphore (implemented by using futex) is used. As shown

in this table, the couple() and decouple() overhead is

only few microseconds. This overhead includes four times

context switching (as shown in Table I) and two times of

loading TLS register. In the ULP-PiP cases, busy-waiting

outperforms blocking. This is because there is no system-call

involved in busy-waiting.

D. AIO vs. ULP

In this subsection, we compared the performance of ULP-

PiP’s couple() and decouple() with the Linux’s AIO.

I/O operations in this evaluation are; 1) open a file on the

tmpfs file system to exclude the variation of actual disk

access, 2) write one block, and 3) close. Note that the

982

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

comparison between ULP-PiP and AIO might not be fair, since

the series of open-write-close system-calls are done on a KLT

while the actual AIO is only for the writing. On ULP-PiP. the

whole sequence must be done by a KLT otherwise the system-

call consistency is broken. In the Linux’s AIO implementation,

the first AIO call creates a PThread and the same thread is used

in the subsequent AIO calls. Our evaluation programs have a

warming up loop followed by a measurement loop. So the

PThread creation overhead is not included in this evaluation.

0.0

1.0

2.0

3.0

4.0

5.0

1,000 10,000 100,000S
lo

w
do

w
n

R
at

io
 b

as
ed

 o
n

Li
nu

x
sy

nc
. c

al
ls

Size [Bytes] - Wallaby (x86_64)

BUSYWAIT BLOCKING AIO-return AIO-suspend

0.0

1.0

2.0

3.0

4.0

5.0

1,000 10,000 100,000 S
lo

w
do

w
n

R
at

io
 b

as
ed

 o
n

Li
nu

x
sy

nc
. c

al
ls

Size [Bytes] - Albireo (AArch64)

Fig. 7. Slowdown comparison of Open-Write-Close

Figure 7 shows the slowdown ratio based on the time of

the Linux’s open(), write(), and close() system-calls

over the size of the write buffer. Left graph in this figure

shows the results running on Wallaby and the right graph

shows the results running on Albireo. There are two cases for

AIO, one for waiting the done of aio_write() by calling

the aio_return() (denoted as “AIO-return”) and another

is calling the aio_suspend() (denoted as “AIO-suspend”).

As described already, calling aio_return() is suitable for

a ULT to use.

On Wallaby, ULP-PiP outperforms the AIO in all cases. On

Albireo, however, ULP-PiP’s busy-waiting outperforms AIO

slightly if the buffer sizes are less than 32 KiB. In general,

the larger the write buffer, the lower the slowdown ratio, if

the overhead of ULP-PiP’s coupling and decoupling, or the

overhead of AIO, is constant over the size of the write buffer.

This situation can only be seen on the Wallaby cases.

0

10

20

30

40

50

60

70

80

90

100

1,000 10,000 100,000

O
ve

rla
p

[%
]

Size [Bytes] - Wallaby (x86_64)

BUSYWAIT BLOCKING AIO-return AIO-suspend

0

10

20

30

40

50

60

70

80

90

100

1,000 10,000 100,000

O
ve

rla
p

[%
]

Size [Bytes] - Albireo (AArch64)

Fig. 8. Comparison of Overlap Ratios

Figure 8 shows the overlap ratio calculated in the way used

in the Intel MPI benchmarks [23]. As shown in this figure, the

overlap ratios of ULP-PiP are more than 70% on Wallaby and

80% on Albireo whereas the percentages of all AIO cases are

less than 70%.

VII. DISCUSSION

One may argue that enclosing system-call(s) by couple()
and decouple() is not practical. Linux supports this kind

of system-call wrapper in a several ways, such as GNU wrap

(GNU ld option) and LD_PRELOAD. Even with using one

of them, the couple() and decouple() functions still

remain because those functions can enclose a series of system-

calls shown in the previous section.

As described above, ULP-PiP can resolve the blocking

system-call problem found in ULT. However, this is ineffective

when the program is blocked by page faults to create page

table entries (minor page faults) and to allocate physical

memory pages (major page faults). In system software used for

HPC, large (huge) memory pages and/or populated mmap are

prevalent because they can reduce the number of page faults as

well as the number of TLB misses. Therefore in the context of

HPC, we believe that handling of page faults at ULP or ULT

can be ignored if larger page sizes and/or populated mmap are

used.

So far, a BLT is created as KLT to create both UC and

KC. This is because each UC must have an original KC to

preserve system-call consistency. In this sense, our BLT can

be categorized as N:N model. However, it is not difficult to

create a number of ULTs (UCs) having the same original KC

in theory and practice. In this case, the UCs having the same

original KC access the same information in an OS kernel.

This situation is similar to the relation of the conventional

process and thread, since threads of a process access the same

resources in the OS kernel.

Another argument might be that the ULP requires more

OS kernel resources than that of conventional KLT and ULT.

While this is true, as already described in equation 2, the num-

ber of BLTs or ULPs depends on the number of oversubscribed

threads. This resource consumption can be relaxed by having

UCs with the same original KC as described above.

As described in the Section VI, the current ULP-PiP

implementation can choose the way of idling, busy-waiting

or blocking at runtime. As already shown, the busy-waiting

introduces less overhead than blocking, however, busy-waiting

consumes more power. So the choice of the blocking ways

is a trade-off between latency and power. Ideally, one could

determine the way of blocking in an automatic way according

to the application’s behavior or leave this choice as a power

nob to control power consumption while maintaining the

performance. This is left for our future work.

ULP-PiP has one problem on its system-call consistency.

It is signaling. The current implementation uses fcontext
and it does not save and restore signal masks. So if one tries

to send a signal to a UC, then the signal is delivered to

the scheduling KC. To avoid this situation, use ucontext
which saves and restores signal masks. However, to access

the signal mask, we have to call a system-call and this adds

983

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

non-negligible overhead to the context switching. This signal

problem cannot be avoided by having a wrapper function of

the kill() system-call because a signal might be sent via a

terminal.
In the scenario in Figure 6, some CPU cores are dedicated

for executing system-calls. Recent many-core CPU architec-

tures allow us to do so. Since all system-calls are executed

on the dedicated CPU cores, this may result in making the

cache footprints by calling system-calls independent from the

caches on the CPU cores running user program. This situation

is close to the idea of FlexSC [24]. We intend to investigate

this effects in the near future.

VIII. SUMMARY

In this paper, we have proposed bi-level threads and user-

level processes to resolve the blocking system-call issue and,

at the same time, to preserve system-call consistency, which

can be crucial in a ULP system. By simply enclosing a

system-call or a series of system-calls by the couple() and

decouple() functions provided by the ULP-PiP library, the

aforementioned problems can be avoided. Evaluation results

show that there is non-negligible overhead introduced by those

functions, however, ULP-PiP outperforms the Linux AIO in

terms of overhead and overlap ratio.
Is ULP worth investigating? We believe so because users

can combine different programs to run simultaneously. This

configuration applies to in-situ and multi-physics applications.

If applications do not call blocking system-calls frequently,

then ULP’s context switching overhead is almost equal to

the overhead of ULT context switching plus the overhead of

loading the TLS register. For CPU architectures that allow ac-

cessing the TLS register directly (e.g., AArch64) this overhead

is negligible.

REFERENCES

[1] “Boost C++ libraries,” https://www.boost.org.
[2] A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and

Y. Ishikawa, “Process-in-process: Techniques for practical address-
space sharing,” in Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC 18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
131143. [Online]. Available: https://doi.org/10.1145/3208040.3208045

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy,
“Scheduler activations: Effective kernel support for the user-level
management of parallelism,” in Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, ser. SOSP 91. New
York, NY, USA: Association for Computing Machinery, 1991, p.
95109. [Online]. Available: https://doi.org/10.1145/121132.121151

[4] R. Brightwell, K. Pedretti, and T. Hudson, “SMARTMAP: Operating
System Support for Efficient Data Sharing among Processes on
a Multi-Core Processor,” in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, ser. SC ’08. Piscataway, NJ,
USA: IEEE Press, 2008, pp. 25:1–25:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413396

[5] M. Pérache, H. Jourdren, and R. Namyst, “MPC: A Unified Parallel
Runtime for Clusters of NUMA Machines,” in Proceedings of the
14th International Euro-Par Conference on Parallel Processing, ser.
Euro-Par’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 78–88.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-85451-7\ 9

[6] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, “Shinjuku: Preemptive Scheduling for Microsecond Scale
Latency,” in Proceedings of the 16th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI19. USA: USENIX
Association, 2019, p. 345359.

[7] A. Shimada, B. Gerofi, A. Hori, and Y. Ishikawa, “Pgas intra-node
communication towards many-core architecture,” in In PGAS 2012: 6th
Conference on Partitioned Global Address Space Programing Model,
ser. PGAS’12, 2012.

[8] K. Ouyang, M. Si, and Z. Chen, “Exploring interprocess work
stealing for balanced mpi communication (research poster).” SC19.
[Online]. Available: https://sc19.supercomputing.org/proceedings/tech
poster/poster files/rpost121s2-file2.pdf

[9] A. Shimada, A. Hori, Y. Ishikawa, and P. Balaji, “User-level Process
towards Exascale Systems,” IPSJ SIGARC, vol. 2014, no. 22, pp. 1–7,
dec 2014. [Online]. Available: http://ci.nii.ac.jp/naid/110009850784/

[10] K. Shen, H. Tang, and T. Yang, “Adaptive two-level thread management
for fast mpi execution on shared memory machines,” in Proceedings of
the 1999 ACM/IEEE Conference on Supercomputing, ser. SC 99. New
York, NY, USA: Association for Computing Machinery, 1999, p. 49es.
[Online]. Available: https://doi.org/10.1145/331532.331581

[11] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An api
for programming with millions of lightweight threads,” in 2008 IEEE
International Symposium on Parallel and Distributed Processing, April
2008, pp. 1–8.

[12] J. Nakashima and K. Taura, “Massivethreads: A thread library for high
productivity languages,” in Concurrent Objects and Beyond, 2014.

[13] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castell, D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kal,
S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun,
K. Taura, and P. Beckman, “Argobots: A lightweight low-level threading
and tasking framework,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 3, pp. 512–526, March 2018.

[14] A. Castell, A. J. Pea, S. Seo, R. Mayo, P. Balaji, and E. S. Quintana-Ort,
“A review of lightweight thread approaches for high performance com-
puting,” in 2016 IEEE International Conference on Cluster Computing
(CLUSTER), Sep. 2016, pp. 471–480.

[15] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xenidis,
D. Da Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen, and
et al., “K42: Building a complete operating system,” SIGOPS Oper.
Syst. Rev., vol. 40, no. 4, p. 133145, Apr. 2006. [Online]. Available:
https://doi.org/10.1145/1218063.1217949

[16] V. Danjean and R. Namyst, “Controlling kernel scheduling from user
space: An approach to enhancing applications’ reactivity to i/o events,”
in High Performance Computing - HiPC 2003, T. M. Pinkston and V. K.
Prasanna, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 490–499.

[17] N. J. Williams, “An implementation of scheduler activations on the
netbsd operating system,” in Proceedings of the FREENIX Track: 2002
USENIX Annual Technical Conference. USA: USENIX Association,
2002, p. 99108.

[18] S. Iwasaki, A. Amer, K. Taura, S. Seo, and P. Balaji, “Bolt: Optimizing
openmp parallel regions with user-level threads,” in 2019 28th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2019, pp. 29–42.

[19] D. T. Stark, R. F. Barrett, R. E. Grant, S. L. Olivier, K. T.
Pedretti, and C. T. Vaughan, “Early experiences co-scheduling
work and communication tasks for hybrid mpi+x applications,”
in Proceedings of the 2014 Workshop on Exascale MPI, ser.
ExaMPI 14. IEEE Press, 2014, p. 919. [Online]. Available:
https://doi.org/10.1109/ExaMPI.2014.6

[20] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé, “Performance Evaluation
of Adaptive MPI,” in Proceedings of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming 2006, Mar. 2006.

[21] Message Passing Interface Forum. (2015) MPI: A Message-Passing
Interface Standard Version 3.1. Message Passing Interface Forum.
[Online]. Available: http://mpi-forum.org/docs/mpi-3.1/mpi31-report.
pdf

[22] U. Drepper, “ELF Handling For Thread Local Storage,” 2013.
[23] Intel Corporation, “Intel MPI Bennchmarks

User Guide,” https://software.intel.com/en-us/
imb-user-guide-measuring-communication-and-computation-overlap.

[24] L. Soares and M. Stumm, “Flexsc: flexible system call scheduling with
exception-less system calls,” in Proceedings of the 9th USENIX confer-
ence on Operating systems design and implementation, ser. OSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–8.

984

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on February 03,2022 at 05:45:00 UTC from IEEE Xplore. Restrictions apply.

